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Abstract

This study aims to automatically diagnose thoracic diseases depicted on the chest x-ray (CXR) 

images using deep convolutional neural networks. The existing methods generally used the entire 

CXR images for training purposes, but this strategy may suffer from two drawbacks. First, 

potential misalignment or the existence of irrelevant objects in the entire CXR images may cause 

unnecessary noise and thus limit the network performance. Second, the relatively low image 

resolution caused by the resizing operation, which is a common pre-processing procedure for 

training neural networks, may lead to the loss of image details, making it difficult to detect 

pathologies with small lesion regions. To address these issues, we present a novel method termed 

as segmentation-based deep fusion network (SDFN), which leverages the domain knowledge and 

the higher-resolution information of local lung regions. Specifically, the local lung regions were 

identified and cropped by the Lung Region Generator (LRG). Two CNN-based classification 

models were then used as feature extractors to obtain the discriminative features of the entire CXR 

images and the cropped lung region images. Lastly, the obtained features were fused by the feature 

fusion module for disease classification. Evaluated by the NIH benchmark split on the Chest X-ray 

14 Dataset, our experimental result demonstrated that the developed method achieved more 

accurate disease classification compared with the available approaches via the receiver operating 

characteristic (ROC) analyses. It was also found that the SDFN could localize the lesion regions 

more precisely as compared to the traditional method.
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I. Introduction

Chest X-ray (CXR) is a very common, non-invasive radiology examination, which has been 

widely used to screen a variety of thoracic diseases, such as pneumonia, effusion, cancer, 

and emphysema. In clinical practice, the CXR images are typically interpreted by 

radiologists and this process is time-consuming and prone to subjective assessment errors 

[1]. Hence, it is always desirable to have a reliable computer tool that can efficiently and 

accurately aid in the diagnosis and detection of the diseases depicted on CXR images. As an 

emerging technology in machine learning, deep learning has demonstrated remarkable 

strength in a variety tasks of medicalimage analyses, such as disease classification [2–5], 

lesion segmentation [6–8], and registration [9–10]. With the recent availability of the Chest 

X-ray 14 Dataset [11], many deep learning approaches [11–16] have been proposed to 

automatically diagnose the thoracic diseases in CXR images. Most of the approaches [11–

14] used the entire CXR images for training purpose, but this strategy may suffer from two 

drawbacks. First, the potential artifacts in the entire images, such as image misalignment and 

irrelevant objects (e.g. medical devices) as shown in Figure 1, may cause unnecessary noise 

and thus limit the network performance. Second, training deep neural networks typically 

requires resizing original images to a smaller resolution to allow a higher computational 

efficiency. However, this resizing process significantly reduces the image resolution and 

unavoidably leads to the loss of image details, which may be crucial for detecting the 

pathologies with small lesions. Realizing these drawbacks, some recent studies have 

proposed to train the networks with higher resolution images: Guan et al. [15] introduced an 

attention guided convolutional neural network (AG–CNN), where the most discriminative 

local regions obtained by the class activation maps (CAMs) were considered. However, the 

CAMs may not correctly indicate the lesion regions and thus lead to unreliable 

classification. In addition, Gündel et al. [16] proposed to add two extra convolution layers at 

the beginning of the DenseNet [17] so that the modified network could be trained with full-

resolution CXR images. However, limited performance improvement was achieved.

In this paper, we present a novel method termed as Segmentation-based Deep Fusion 

Network (SDFN), which also leverages the higher resolution images: the lung regions. The 

underlying idea was inspired by the domain knowledge that the thoracic diseases are 

typically limited within the lung regions. If the lung regions are identified, the networks can 

be trained using higher resolution images with reduced noisy regions (i.e., misalignment and 

irrelevant objects). Meanwhile, since the thoracic diseases may also be associated with some 

other contextual characteristics outside of the lung regions, the entire CXR images were also 

considered. By jointly learning the features from the entire CXR and the local lung region, 

the proposed method consistently improved the classification performance compared to the 

traditional method. A detailed description of the implementation and the experimental 

results follows.

II. Materials and Methods

A. Image datasets

Two publicly available datasets were used in this study. The first dataset is the JSRT Dataset 

[18], which contains 154 nodule and 93 non-nodule CXR images. Each image has a 
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resolution of 2,048×2,048 pixels with a 12-bit density range. The masks for the lung regions 

are also publicly available at [19]. The primary objective of JSRT Dataset was to train a lung 

segmentation model that automatically extract the lung regions from the entire CXR images. 

The second dataset is the Chest X-ray 14 Dataset, which is comprised of 112,120 frontal-

view chest X-ray images acquired on 30,805 unique patients and labeled up to 14 diseases. 

A total of 984 bounding boxes for 8 pathologies were annotated by a board certified 

radiologist. The benchmark splits of training and testing sets are publicly available at the 

NIH website1. We used the Chest X-ray 14 Dataset to develop and validate the classification 

performance of the proposed SDFN. Detailed descriptions of these two datasets can be 

found in [11,18].

B. Segmentation-based deep fusion network

The proposed SDFN is a dual-pathway CNN that consists of a lung region generator, two 

feature extractors respectively for the entire CXR images and local lung region images, and 

a feature fusion module. The whole pipeline of the SDFN is shown in Figure 2. Given a 

CXR image, the associated lung region image was obtained by the Lung Region Generator 

(LRG). Two 121-layer DenseNets were fine-tuned and used as feature extractors to obtain 

the discriminative features of the entire CXR image and local lung region image. Lastly, the 

feature fusion module concatenates the global average pooling layers of the two feature 

extractors and is fine-tuned for the final prediction.

B.1. Multi-label setup—Thoracic disease classification is a multi-label classification 

problem. The input of the proposed SDFN is an entire CXR image and the output is a C-

dimension vector L = [l1, l2, l3, …, lC], where C = 14 and lC ∈ {0,1} (i.e., ‘0’ and ‘1’ 

represent absence or presence of a pathology). The pathologies in L are in the order of 

atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, 

consolidation, edema, emphysema, fibrosis, pleural thickening and hernia.

B.2. Lung region generator (LRG)—The LRG consists of two stages: (1) the lung 

segmentation model and (2) the post-processing procedures. Given a CXR image, the lung 

regions were initially predicted by a segmentation model. To further obtain a bounding box 

that fully enclosed the lung regions, several post-processing procedures were developed 

based on the anatomical characteristics of lungs.

B.2.1 Lung segmentation model: The U-net [20] is a well-established convolutional 

network architecture for fast and precise image segmentation. Recently, a modified U-net 

[21] trained on the JSRT Dataset has been successfully used to segment the lung regions on 

the CXR images. To enable automatic lung region extraction for the Chest X-ray 14 Dataset, 

we followed the same architecture in [21] and retrained this model using the JSRT Dataset. 

During training, the input CXR images and the lung masks were resized to 256×256 pixels 

and augmented by affine transformations, such as rotation, shifting, and zooming. We used 

the Adam optimizer with an initial learning rate of 1e–3 on mini-batch of size 8 and set the 

1https://nihcc.app.box.com/v/ChestXray-NIHCC
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maximum number of epochs as 100. The pixel-wise cross-entropy loss function was 

minimized for optimization and the model with the smallest validation loss was saved.

B.2.2 Post-processing procedures: As the examples in Figure 3(a) and Figure 4(a) 

showed, the existence of diseases and/or poor image quality may lead to undesirable 

segmentation, which may contain false positive and/or false negative regions. To address 

these issues, we propose to post-process the segmentation results based on the anatomical 

characteristics of lungs.

For example, the lungs consist of the left and right lungs. Therefore, when the segmentation 

result contained more than two regions, there were typically false positive identifications, as 

shown in Figure 3(a). These false positive regions were often caused by the external air or 

intestine gas, and thus located farther away from the image center compared to the lungs. 

Hence, we computed the distances between the image center and the centroid of each 

segmentation region, and only kept the two regions with the shortest distances, as shown in 

Figure 3(b).

For a healthy subject, the left and right lungs typically do not vary significantly in size. Also, 

due to the CXR scan alignment, the locations of the left and the right lungs are roughly 

symmetric along the vertical centerline of the image. These characteristics were used to 

identify the lung regions from the segmentation results with false negative regions, as shown 

in Figure 4. Specifically, when there were two regions in the segmentation result and their 

areas were significantly different, we removed the smaller region. The difference was 

considered to be significant if the smaller region had an area less than one third of the larger 

region. Thereafter, we mirrored the larger region with respect to the vertical centerline of the 

image and applied a bounding box for the mirrored region. Lastly, each boundary of the 

bounding box was expanded with a certain margin (i.e., 15 pixels along top, left and right 

and 20 pixels along bottom) to assure a fully inclusion of the features around the lung 

boundaries. In this study, we particularly expanded the box more along the bottom direction 

in order to include the subtle characteristics located at the bottom of the lungs such as the 

blunting costophrenic angles. The expanded bounding boxes were cropped from the original 

CXR images and used as the local lung region images.

B.3. Feature extractors—Due to the relatively higher resolution of the lung region 

images, the associated features may better describe the thoracic diseases with smaller 

pathological lesions. Meanwhile, the entire CXR images may include contextual features 

that are associated with the thoracic diseases but located outside of the lung region. To 

extract these distinct features, we trained two fine-tuned 121-layer DenseNets on the entire 

CXR images and the lung region images separately. The DenseNet was used because (1) it 

has several advantages over other classic networks [25–28] such as alleviating the vanishing-

gradient problem, strengthening feature propagation and reuse, and requiring less 

computation [18], (2) the fine-tuned DenseNet has been reported to be an effective method 

for thoracic disease classification [13] and thus can be used as a baseline for performance 

comparison.
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In implementation, each DenseNet was fine-tuned by adding a global average pooling layer 

on top of the last convolution layer, followed by a 14-dimension FC layer. Each output of the 

FC layer was normalized to [0,1] using a sigmoid activation function, defined by Eq. (1).

yi = 1
1 + e

−FCi
(1)

where yi is the predicted probability of ith class and FCi is the ith element at the fully-

connected layer.

The binary cross-entropy (BCE) loss function, as defined by Eq. (2), was minimized to 

obtain optimal classification performances.

BCE(y, y) = − 1
N ∑i = 1

N yi log yi + 1 − yi log 1 − yi (2)

where N is the number of classes (i.e., N = 14), yi is the ground truth and yi is the predicted 

probability.

During training, we initialized the DenseNet-121 with the weights pre-trained on the 

ImageNet [22]. The input images were resized to 224×224 pixels and augmented by random 

horizontal flipping. We used the Adam optimizer with an initial learning rate of 1.0e–4 and a 

decay of 1.0e–5 over each update. We set the maximum number of epochs as 100 and the 

mini-batch size as 16. Besides, the learning rate was reduced by a factor of 10 if the 

validation loss did not decrease for 5 epochs. The weights were saved from the models with 

the highest mean AUC on validation set and used for extracting the distinct features of the 

entire CXR images and local lung region images.

B.4. Feature fusion module—Typically, the kernels at the higher layers are learned to 

encode more abstract features [23]. For each feature extractor in the SDFN, the global 

average pooling layer is the highest layer and thus contains the most abstract features for 

thoracic disease classification. To take fully advantage of the distinct features of entire CXR 

images and local lung region images, the feature fusion module concatenated the global 

average pooling layers of the two feature extractors. The concatenation layer was further 

connected to a 14-dimension FC layer with a sigmoid activation function for the final 

prediction.

Since the two feature extractors in the SDFN have the same input resolution, the image 

features of the lung regions can be learned at different scales. Consequently, the feature 

fusion module will learn both the contextual information from the entire CXR images and 

the multiscale feature representations from the local lung regions.

B.5. Training strategy—The proposed SDFN followed a three-stage training strategy. 

First, we obtained the local lung region images by the LRG. Second, two feature extractors 
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(i.e., fine-tuned DenseNet–121) were separately trained on the entire CXR images and the 

lung region images. Third, we constructed the SDFN and initialized the feature extractors 

with their saved weights. During training, only the weights in the feature fusion module 

were trainable while the saved weights of the feature extractors were fixed. The same 

hyperparameters and optimization method in section B.3 were used.

C. Performance assessment

In this study, two types of deep learning models were involved in terms of their purposes: 

lung segmentation and disease classification. For the segmentation model, we conducted a 

five-fold cross-validation on the JSRT Dataset and quantitatively assessed the performance 

using the Dice similarity coefficient (DSC) and the intersection over union (IoU), as defined 

by Eq. (3) and (4). Moreover, we qualitatively examined the segmentation results on the 

Chest X-ray 14 Dataset based on the characteristics described in section B.2.2.

DSC = 2 X ∩ Y
X + Y (3)

IoU = X ∩ Y
X ∪ Y (4)

where X is the ground truth region and Y is the detected region.

For the disease classification models, we used the benchmark dataset split of the Chest X-

ray 14 Dataset for performance assessment. The mean Area under the Receiver Operating 

Characteristic curve (AUC) of 14 classes was used for the validation purposes. We compared 

the performance of the proposed SDFN with the fine-tuned DenseNets trained solely on the 

entire CXR images/local lung region images, as well as other existing methods. The paired t-

tests with a p-value 0.01 were conducted to evaluate if the performance improvement of the 

SDFN was statistically significant.

To assess the lesion detection performance of the SDFN, we followed the same strategy of 

the class activation map (CAM) [24] to visualize the suspicious lesions, as shown in Figure 

5. To generate the CAM for the SDFN, we feed an entire CXR image into the proposed 

SDFN and extracted the feature maps at the last convolution layers of both feature 

extractors. Let fk(x, y) and f k′ (x, y) be the kth feature map at spatial location (x, y) at the last 

convolution layer of the feature extractor for the entire CXR images and lung region images 

respectively. Let ωj,c be the weight between the jth element of the concatenation layer and 

the cth output in the prediction layer, where j ∈ [1,2048]. For an activated class c (e.g., the 

cth pathology), two heatmaps can be obtained by computing the weighted sum of the feature 

maps using the associated weights, as defined by (5) and (6).
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heatmap1 = ∑ j = 1
1024 ωc, j f j(x, y) (5)

heatmap2 = ∑ j = 1025
2048 ωc, j f j − 1024′ (x, y) (6)

The obtained heatmaps, which originally had the same dimension of the feature maps at the 

last convolution layer (i.e., 7×7), were resized respectively to the dimensions of the entire 

CXR and the cropped lung region. Finally, the two resized heatmaps were overlaid 

according to the cropped location and rescaled to [0,255] for visualization. In our 

experiment, the detected lesions using the SDFN and the traditional method (i.e., the fine-

tuned DenseNet-121 trained solely on the entire CXR images) were generated and compared 

to the ground truth annotated by a board certified radiologist.

III. Results

Evaluated on the JSRT Dataset, the five-fold cross-validation showed that the segmentation 

model achieved a mean DSC of 0.98 and a mean IoU of 0.97. Evaluated on the Chest X-ray 

14 Dataset, our experiment showed that the segmentation model successfully identified 

95.84% lung regions without false positive/negative segmentation, as shown in Figure 6. It is 

notable that the identified lung region images largely excluded the noisy regions such as the 

medical devices and misalignment regions. For the left 4.16% images (4,661 images), we 

visually examined their cropped lung region images and found most of them successfully 

enclosed the entire lung regions, as shown in Figure 7. The exceptions were mainly the CXR 

images with very poor image quality/alignment, and a few non-frontal view CXRs in the 

dataset (e.g., lateral-view CXRs and leg X-ray images).

In Table I, we summarized the classification performances of the proposed SDFN and other 

available methods in terms of AUC scores, evaluated by the NIH benchmark testing set. The 

ROC curves of the SDFN and the fine-tuned DenseNets trained solely on the entire CXR 

images or the local lung region images were shown in Figure 8. Our experiment showed that 

evaluated by the mean AUC over 14 classes, the fine-tuned DenseNet trained on the local 

lung region images slightly outperformed the one trained on the entire CXR images while 

the proposed SDFN outperformed both of these fine-tuned DenseNets. Moreover, the SDFN 

consistently outperformed the traditional method (i.e., the fine-tuned DenseNet trained on 

the entire CXR images) over all 14 classes. The outperformance was demonstrated to be 

statistically significant since all the two-tailed p-values in the paired t-tests were below 0.01. 

It is worth noting that the proposed SDFN achieved a mean AUC score of 0.815 that 

outperformed all other available approaches [11,14,16].

In addition, our experiment also showed that the proposed SDFN achieved more reliable 

lesion detection performance compared to the traditional method, as shown in Figure 9. We 

also demonstrated that not only the pathologies with small lesions (e.g. nodules) could be 
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detected more reliably, but also the ones with relatively larger lesions such as effusion and 

pneumonia.

IV. Discussion

In this study, we developed a novel deep learning network termed as Segmentation-based 

Deep Fusion Network (SDFN) to classify 14 thoracic diseases as depicted in CXR images. 

The most distinctive characteristic of our approach was the fusion of the features from both 

the entire CXR images and the local lung region images. The novelty of this work lies in the 

utilization of a multiple scale strategy to improve the classification accuracy. In particular, 

we demonstrated through this strategy that there might be contextual image features outside 

the lung regions that suggest the existence of specific diseases.

The primary motivation of this work was the emphasis on the most meaningful part (i.e., the 

lung regions) of the CXR images to improve the classification accuracy. The lung regions in 

a CXR image typically occupy around 1/3 or even less of the entire image. If we resize the 

entire image from 1,024×1,024 pixels to 224×224 pixels for the training purpose, the image 

details are significantly lost. Hence, we proposed to identify the local lung regions where the 

pathologies were primarily located.

Meanwhile, we also kept the features of the entire CXR images because there might be 

useful features located outside the lung regions that are associated with specific diseases or 

suggest their existence. In fact, our experiments suggested this interesting finding since 

fusing the features of the entire CXR images and the local lung region images achieved a 

consistently better performance. Moreover, we demonstrated that the proposed SDFN could 

generate more reliable class activation maps as compared to the traditional method. As 

illustrated in Figure 5, the CAMs generated by the proposed method emphasized the 

activated values of the lung region where the pathologies were primarily located and thus 

yielded more reasonable and interpretable CAMs. Besides, by leveraging the relatively 

higher resolution of the lung region images, SDFN could also detect the small lesions that 

were missed by the traditional methods. In terms of the network structure, the proposed 

SDFN is similar to the AG-CNN as proposed in [15] since both networks fused the features 

from the entire images and the local images for final prediction. The difference was that the 

proposed SDFN used the lung regions as the local images while AG-CNN used the most 

discriminative region indicated by the CAMs. However, the reliability of these 

discriminative regions was limited. As shown in Figure 9, a large portion of the most 

discriminative regions could be located outside the lung regions. Hence, we believe that it is 

not reliable to simply use the CAM to improve the classification accuracy. In contrast, we 

proposed to utilize the domain knowledge, namely the thoracic diseases are typically located 

within the lung regions, to improve the classification accuracy Compared to the 

discriminative region indicated by the CAMs, the local lung regions could be reliably 

identified using the proposed LRG.

In our experiment, the performance of the lung segmentation model on Chest X-ray 14 

Dataset was not quantitatively evaluated because (1) there are no available groundtruth lung 

masks, (2) the objective of the lung segmentation is to identify the bounding box of the lung 
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regions rather than to accurately delineate the lungs. However, our study, which involved 

more than 100,000 images, showed that the proposed LRG demonstrated a reliable 

performance in identifying the bounding boxes for lung regions. In this study, we did not 

quantitatively compare the heatmaps generated by CAMs with the annotated ground-truth, 

because it is not reasonable to compute the metrics, such as intersection over union (IoU) or 

mean average precision (mAP), given the fact that the heatmaps or CAMs only have a 

resolution of 7×7, which is far below the image resolution. Unlike the object detection 

problems, the heatmaps generated by CAM was used to roughly visualize the most 

discriminative region instead of to accurately locate / detect the diseases. As we 

demonstrated in Figure 9, the locations of the CAMs are often incorrect.

One of the interesting findings of our study was that the network trained only on the locally 

cropped images did not outperform the network on entire CXR images in all the pathologies. 

However, the integration of the local images and the global images resulted in a consistent 

higher classification accuracy, suggesting the entire CXR images may contain contextual 

image features outside of the lung regions that are associated with specific diseases. In 

addition, it is difficult to always guarantee a proper segmentation of all the lung regions in 

practice. Due to the existence of a variety of diseases, the lung regions may not be correctly 

identified from the chest x-ray images. Therefore, it is prudent to combine the local images 

and the global images to improve both the accuracy and the reliability of the thoracic disease 

classification.

For the proposed SDFN, we set the input images at a resolution of 224×224 pixels primarily 

for a fair comparison with available investigations, such as those described in [13, 15]. 

Typically, training with higher (proper) resolution images yields better performances for 

deep learning. However, it is notable that training on higher resolution images will 

necessitate more features involved in the deep learning and a larger dataset. Therefore, in 

practice, we need to set proper image resolution based on the consideration of a number of 

factors, such as dataset size and specific applications. For example, in [11, 16], the authors 

used images with a resolution of 1024×1024 for training purpose, but the performance 

improvement was very limited.

In our experiment, we found that that the fine-tuned DenseNet trained on the identified lung 

region images could outperform the one trained on the entire CXR images in certain classes, 

especially on the pathologies with small lesions such as ‘nodule’ and ‘mass’. The underlying 

reason may be due to the fact that the local lung region images largely excluded the noisy 

regions and made effective use of multiscale feature representations. However, some classes 

such as ‘emphysema’ were better classified if the network was trained on the entire CXR 

images, indicating that there were useful features in the entire CXR image but located 

outside of the lung region. For example, one of the important x-ray findings of emphysema 

is the hyper inflated lungs, which include the signs such as increased retrosternal air and 

hyper lucent lung fields [29]. Hence, the intensity contrast between the CXR background 

(i.e., air) and the lung regions may be a crucial feature for detecting emphysema, but this 

feature could only be captured by the entire CXR images.
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The performance of the proposed SDFN was evaluated by the mean AUC score of 14 classes 

using the NIH benchmark split on Chest X-ray 14 Dataset. We did not directly compare the 

SDFN with the methods that randomly split the dataset as performed in [12,13,15], because 

(1) there may be patient overlap between the training and testing datasets, (2) the 

classification performances may vary significantly between different splits due to the 

imbalanced data. Nevertheless, the experimental result showed that the proposed method 

outperformed all the methods [11,14,16] that were validated on the exact same testing set, as 

well as the fine-tuned DenseNets trained solely on the entire CXR images or lung region 

images. Most important, the proposed SDFN achieved higher AUC scores over all class as 

compared to the traditional method (i.e., fine-tuned DenseNet trained on the entire CXR 

images). Our paired t-test showed that the outperformance of SDFN was statistically 

significant, suggesting that the features of the entire CXR images and local lung region 

images were effectively fused to achieve better performances in both disease classification 

and lesion detection. We are aware that there might be some unavoidable problems with the 

dataset labels. However, the number of incorrectly labeled images should be limited as 

compared to the entire dataset and thus should not affect the development and validation of a 

computer algorithm, especially when the comparison of different algorithms was performed 

on the same dataset.

V. Conclusion

In this paper, we proposed a novel approach termed as Segmentation-based Deep Fusion 

Network (SDFN) to classify 14 thoracic diseases. The SDFN initially identified the local 

lung regions of the entire CXR image by a segmentation model and post-processing. Then 

the discriminative features of the entire CXR images and the local lung region images were 

extracted separately and fused for the final prediction. Using the NIH benchmark split on 

Chest X-ray 14 Dataset, our experiment demonstrated that the proposed method achieved 

more accurate disease classification performance as compared with the available methods 

and more reliable lesion detection performance compared to the traditional method.
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Highlight:

• A novel CNN framework that utilized both holistic and local features of chest 

X-rays.

• A segmentation model with additional post-processing were used to 

intelligently crop the local lung region image.

• The developed framework consistently improved the AUCs of all 14 diseases 

compared to the state-of-art CheXnet.

• Generated more accurate and reliable class activation maps compared to the 

existing methods.
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Fig. 1. 
Examples illustrating the entire CXR images in the Chest X-ray 14 Dataset, where (a) has an 

irrelevant object and (b)-(d) have misalignment as indicated by the arrows.
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Fig. 2. 
The pipeline of the proposed SDFN. FC represent fully-connected.
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Fig. 3. 
Remove the false positive segments.
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Fig. 4. 
Illustrating the procedures to create a bounding box for the segmentation results associated 

with false negative regions. (a) the lung segmentation results (in red), where part of the lungs 

is not identified, (b) the removal of the smaller regions, (c) the bounding box (in green) of 

the lung regions after the application of a mirroring operation, and (d) the expansion of the 

bounding box.
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Fig. 5. 
The flowchart illustrating the generation of the class activation map (CAM) for the proposed 

SDFN method.
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Fig. 6. 
Examples demonstrating the lung segmentation and the identified lung region images. Top: 

some original CXR images in the Chest X-ray 14 Dataset. Middle: the lung segmentation 

results (in red) and the identified bounding boxes of the lung regions (in green). Bottom: the 

identified lung region images.
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Fig. 7. 
Examples demonstrating the identified bounding boxes of the lung regions with false 

positive/negative regions. Top: original CXR images. Middle: the identified lung 

segmentation results (in red) and the post-processed bounding boxes (in green). Bottom: the 

identified lung region images.

Liu et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
ROC curves of the proposed SDFN and the fine-tuned DenseNets trained on the entire CXR 

images and lung region images over 14 pathologies.
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Fig. 9. 
Examples illustrating the detected lesion regions using the traditional method (i.e., fine-

tuned DenseNet-121 trained solely on the entire CXR images) (top) and our proposed SDFN 

(bottom). The red represents high activation and the blue represents low activation. The blue 

boxes are the lesion regions annotated by a board certified radiologist.
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Table I.

Performance summary (AUC scores) of existing approaches and our proposed SDFN using the NIH 

benchmark split

Wang et al. [11] Yao et al.[14] Gündel et al.[16] Entire CXR Lung region Proposed SDFN

Atelectasis 0.700 0.733 0.767 0.762 0.773 0.781

Cardiomegaly 0.814 0.856 0.883 0.878 0.868 0.885

Effusion 0.736 0.806 0.828 0.822 0.827 0.832

Infiltration 0.613 0.673 0.709 0.693 0.670 0.700

Mass 0.693 0.777 0.821 0.791 0.807 0.815

Nodule 0.669 0.724 0.758 0.744 0.759 0.765

Pneumonia 0.658 0.684 0.731 0.707 0.708 0.719

Pneumothorax 0.799 0.805 0.846 0.855 0.851 0.866

Consolidation 0.703 0.711 0.745 0.737 0.738 0.743

Edema 0.805 0.806 0.835 0.837 0.831 0.842

Emphysema 0.833 0.842 0.895 0.912 0.909 0.921

Fibrosis 0.786 0.743 0.818 0.826 0.825 0.835

Pleural Thickening 0.684 0.724 0.761 0.760 0.783 0.791

Hernia 0.872 0.775 0.896 0.902 0.912 0.911

Mean 0.740 0.761 0.807 0.802 0.804 0.815

*
Entire CXR and Lung region represent the fine-tuned DenseNets trained on the entire CXR images and local lung region images respectively.
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