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Abstract

In diseases such as cancer, patients suffer from degenerative loss of skeletal muscle (cachexia). 

Muscle wasting and loss of muscle function/performance (sarcopenia) can also occur during 

advanced aging. Assessing skeletal muscle mass in sarcopenia and cachexia is therefore of clinical 

interest for risk stratification. In comparison with fat, body fluids and bone, quantifying the 

skeletal muscle mass is more challenging. Computed tomography (CT) is one of the gold standard 

techniques for cancer diagnostics and analysis of progression, and therefore a valuable source of 

imaging for in vivo quantification of skeletal muscle mass. In this paper, we design a novel deep 

neural network-based algorithm for the automated segmentation of skeletal muscle in axial CT 

images at the third lumbar (L3) and the fourth thoracic (T4) levels. A two-branch network with 

two training steps is investigated. The network’s performance is evaluated for three trained models 

on separate datasets. These datasets were generated by different CT devices and data acquisition 

settings. To ensure the model’s robustness, each trained model was tested on all three available test 

sets. Errors and the effect of labeling protocol in these cases were analyzed and reported. The best 

performance of the proposed algorithm was achieved on 1327 L3 test samples with an overlap 

Jaccard score of 98% and sensitivity and specificity greater than 99%.
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1. Introduction

Measuring skeletal muscle mass is essential in many clinical conditions. Cross-sectional 

areas at the third lumbar vertebral level (L3) are considered to be linearly related to the 
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whole body muscle mass (Shen et al., 2004; Mourtzakis et al., 2008). The thoracic muscle 

cross sectional area from a single axial slice at the fourth thoracic (T4) to sixth thoracic (T6) 

is also correlated with the measure of muscle volume (Mathur et al., 2017). Conventionally, 

the segmentation is anatomic and is done by someone trained in anatomical radiology and 

the Hounsfield unit (HU) is used as a secondary element for segmenting skeletal muscle, 

adipose tissue, and bone on computed tomography (CT) images. The standard Hounsfield 

unit (HU) for skeletal muscle has overlapping values with HU of neighboring organs. 

Therefore, a segmentation based on thresholding with this range of values still needs manual 

correction. This leads to a time consuming and expensive overall process hence motivating 

the need for developing automated segmentation algorithms.

Muscle segmentation in L3 (Chung et al., 2009; Popuri et al., 2016) and in T4 (Popuri et al., 

2013) using a shape prior modeling approach has been previously reported. Kamiya et al. 

addressed the segmentation of individual muscle groups such as psoas major and rectus 

abdominis muscles from CT images by generating muscle group specific shape models 

(Kamiya et al., 2009; Kamiya et al., 2012). Another model-based approach for psoas major 

segmentation in CT images has been proposed in (Meesters et al., 2012) using a multi-atlas 

fusion based segmentation framework. Paraspinal muscle segmentation using fuzzy c-means 

clustering algorithm has been explored in (Wei et al., 2014). Finding the optimal features has 

always been a crucial step in automatic segmentation and design of hand-crafted features for 

model-based techniques. However, with deep neural networks, this step is eliminated as the 

network itself finds the most discriminant features based on the training ground truth labels 

and the chosen objective function.

Previous work on applying deep learning on segmentation of L3 CT images is limited. A 

convolutional neural network (CNN) (Goodfellow et al., 2016) approach for this specific 

task of skeletal muscle segmentation is a fully convolutional network (FCN) method (Lee et 

al., 2017). The structure of FCN is a popular network among semantic segmentation 

architectures, but it has limitations such as the spatial resolution reduction on final 

prediction. Despite the connections between decoder and encoder layers and merging the 

predictions from different pooling layers in the model suggested by Long et al. (Long et al., 

2015), there is still some loss of spatial information in the final prediction. Other recent 

publications have used CNN for segmentation of brain regions and tumor segmentation 

(Pereira et al., 2016; Havaei et al., 2017; Moeskops et al., 2016; Zhang et al., 2015; De 

Brébisson and Montana, 2015). CNNs were also used on CT images as for example pancreas 

segmentation in CT images (Roth et al., 2015), knee cartilage segmentation (Prasoon et al., 

2013) and cardiac CT angiography (Wolterink et al., 2016).

In this paper, a novel deep neural network-based algorithm is proposed for automatic 

segmentation of muscle tissue in abdominal and thoracic CT images. The main elements that 

were considered in this architecture were aligned to our goals of 1) keeping dense and fine 

information of the input image, and 2) reducing the generalization error. To achieve the first 

point, we benefited from two powerful existing architectures, the fully convolutional 

network (FCN) (Long et al., 2015) and the UNet (Ronneberger et al., 2015). Our second 

important objective was to reduce the generalization error. Most of the networks proposed 

for a specific medical image modality are not broad enough to include other sets of data 
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from other devices with different data acquisition settings. In order to overcome this 

problem, different generalization methods like the pooling layers, data augmentation, and 

early stopping were applied and investigated on three different datasets.

2. Methods

2.1. CT data variability

The novel deep neural network-based segmentation algorithm proposed in this manuscript is 

designed for muscle segmentation on L3 and T4 axial slices taken from CT images. A 

normal L3 axial slice taken from a CT image comprises four major compartments namely 

skeletal muscle (SM), visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and 

inter-muscular adipose tissue (IMAT) as shown in representative images from several 

individuals in Figure 1. The top row shows the raw CT L3 images, the middle row shows 

segmentation of the above-mentioned four regions in different colors and the bottom row 

shows the skeletal muscle outline only highlighting the challenge of considerable variability 

observed across individuals.

2.2. Dataset

Three datasets from L3 slices of CT scan and a single T4 CT dataset are used in this paper. 

The ethics approval for the study was provided by the institutional review board. The first 

database of L3 CT images were acquired at the Cross Cancer Institute (CCI), University of 

Alberta, Canada. This dataset consisted of 1075 abdominal and 709 thoracic axial CT 

images taken at the L3 and T4 level respectively from patients with head, neck and lung 

cancers. The abdominal images were obtained from 670 patients and the thoracic images 

were obtained from 334 patients. Manual segmentation of the muscle and fat regions were 

available for all the images in the Dataset-1. The manual segmentation was performed by a 

single expert operator using Slice-O-Matic V4.3 software (Tomovision, Montreal, Canada). 

645 samples from Dataset-1 used for training the network and other 430 samples were used 

as the first test set.

Dataset-2 of L3 CT images comes from the ”C-scan Study” of patients diagnosed with stage 

IIII invasive colorectal cancer who had a surgical resection at Kaiser Permanente Northern 

California (KPNC) between 2006 and 2011 (Caan et al., 2017). Participants (male/female) 

were taken from range of race/ethnicity and body mass index (BMI) categories. A trained 

researcher quantified the muscle tissue discriminating components using Slice-O-Matic 

Software version 5.0. This dataset includes 5101 images, 3774 of which were used for 

training the network and the rest 1327 images used as the second test set.

Dataset-3 of L3 CT images is from female patients in the ”B-scan Study” aged 18 to 80 

years diagnosed with stage II or III invasive breast cancer at KPNC between January 2005 

and December 2013 (Caan et al., 2018). Two trained researchers quantified the cross-

sectional area of muscle using Slice-O-Matic Software version 5.0. This dataset includes 

3003 images, 1802 of which were used for training the network and the rest 1201 images 

used as the third test set.
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2.3. Feature Learning

Deep convolutional neural networks learn the task specific features during the training 

process. The main elements of a CNN are convolution layers (LeCun et al., 1998). Each 

layer is trained (Rumelhart et al., 1986) to finally extract the relevant features.

An activation function is applied on the output feature map on each layer, to find the non-

linear transformations. Rectified linear unit (Nair and Hinton, 2010) and sigmoid are two 

types of these activation functions that are employed in the proposed networks.

2.4. Network Architecture

The proposed architecture is inspired by the FCN (Long et al., 2015) and the UNet 

(Ronneberger et al., 2015) models. The segmentation masks generated from these models 

showcase the strengths and weaknesses of these two architectures. The FCN estimates the 

coarse muscle tissue features, while the UNet shows better performance in extracting the 

finer boundaries at the expense of more false positive regions in some irrelevant places. The 

logic behind combining these two models into one architecture was to harness their 

individual strengths while mitigating their collective drawbacks. Figure 2 presents a 

schematic depiction of the model. The proposed architecture consists of three major parts 

and three predictions. While only the final prediction from the last layer is considered as the 

network’s predicted map, the two other predicted masks were used for computing the loss. 

These predictions are discussed in sections 2.4.1, 2.4.2 and 2.4.3. Figure 3 illustrates 

different layers and their details.

2.4.1. First prediction—The first prediction is the summation of predictions from 

pooling layers of the encoder. The encoder part of the network is a FCN. The architectures 

of FCN with VGG16 (Simonyan and Zisserman, 2014) blocks and different strides has been 

studied by Lee et al. (Lee et al., 2017), and the best results were found with stride-two model 

for muscle segmentation task. Based on the procedure for FCN with 16 pixel stride (Long et 

al., 2015), a convolution layer with 1 × 1 filter was added on top of all pooling layers. The 

prediction taken from the two pixel stride layer, is generated by summing the output of all 

pooling layers with the final output. This requires up-sampling for upper layers so that they 

reach the same size as the previous layer. Finally, to get the original image size the 

prediction was up-sampled once more.

2.4.2. Second prediction—Based on the fully convolutional encoder-decoder model 

(Ronneberger et al., 2015), the skip connection between encoder layers and decoder layers 

with the same level is an important feature of this architecture. These connections translate 

the spatial information on the earlier encoder layers to the decoder and result in fine 

boundaries in the generated mask.

The encoder blocks consist of two convolution layers with the same number of feature 

channels followed by a max-pooling layer. ReLu is the activation function of all convolution 

layers in this part of the network. The decoder blocks also consist of two convolution layer 

followed by a transpose convolution layer. Applying the transpose convolution layer, the 
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feature maps from the previous layers in each step were up-sampled to reach the original 

input dimension.

2.4.3. Final prediction—In this part of the network the first two predictions were 

concatenated and were given as input to the three parallel dilated convolution layers with 

different rates. Dilated convolution is a convolution layer that can be used instead of pooling 

layer such that the receptive field is increased without increasing the parameters or reducing 

resolution (Yu and Koltun, 2015). The reason of employing dilated convolution in this 

architecture is the vast range of variation in the input data. Obesity and muscle wasting are 

two factors that can cause considerable variation in the size and thickness of the muscle 

tissue even in similar sex and age ranges. An automatic segmentation architecture robust to 

these variations and not restricted to a special group subjects is the goal.

2.5. Training

The proposed network is trained in two steps. First, the encoder-decoder part is trained on 

the training set and then the full network shown in Figure 3 is trained while the encoder-

decoder layers are initialized by the trained model in the previous step. For the other layers, 

random initialization was considered. In Dataset-1 and Dataset-3, 60% of the data is used for 

training and the rest was segregated for testing. In Dataset-2, 80% of the total data is used 

for training and the rest for testing. In every training iteration, 20% of the training data is 

used for validation and hyper-parameter optimization ensuring a complete separation of the 

validation data from the testing data.

Encoder-decoder training.—Dice coefficient is a similarity measure that quantifies the 

similarity between two images. The loss function chosen for training is the negative of the 

Dice coefficient.

Full network training.—The full network’s loss function is the cross-entropy loss. The 

cross-entropy loss is calculated for first, second and final map prediction. Then the weighted 

summation of these three losses is the network’s total loss. The best performance was 

achieved while training the network with the loss weight vector of [0.2, 0.2, 1] for the first, 

second and final prediction map, respectively. The Adam optimizer was used in both steps of 

the training.

2.6. Experiments

2.6.1. Pre-processing—CT images are stored in DICOM format. The normal images’ 

sizes are 512 by 512. In this step the DICOM images are converted to grey scale PNG 

images. All images were standardized so that their pixel value lie in the range of [0,1].

2.6.2. Data augmentation—Data augmentation reduces the possibility of over-fitting 

and improves the generalization of the network. In data augmentation, the available training 

samples are modified and then added to the dataset. The pixel classes should be invariant to 

the transformations applied on the data. Random rotation, horizontal and vertical flip are the 

transformations used in this paper on the training dataset which increased the number of 

samples by 4. Augmentation is only done on the training set and not the validation data.
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2.6.3. Implementation

Spatial pooling layer.: In order to keep the resolution and expand the receptive fields, 

dilated convolution is used in the last layer of the network. Since the goal is pixel wise 

segmentation, it is crucial to use techniques that preserve the resolution and learned features 

in the deeper layers of the network. Different dilation rates were applied on the input image 

of the spatial pooling layer, as the result three dilation rates of 4, 6 and 8 with the filter size 

of 3 × 3 form the spatial pooling layer.

Early stopping.: In addition to data augmentation, early stopping was added to our training 

process as another factor to reduce generalization error. In early stopping, the number of 

training epochs is considered as a hyperparameter which is related to the validation loss. In 

this process, the validation loss is monitored and the model with the lowest validation loss is 

stored. After each update on the best model, the network continues training for another 

limited number of iterations and if the validation loss does not improve, the training process 

terminates.

2.6.4. Post-processing—The skeletal muscle on CT images is found to range between 

[−29, 150] HU in intensity. This is used in the post processing steps to remove pixels that 

classified as muscle but are outside this intensity range.

2.6.5. T4 muscle segmentation—The T4 dataset includes 709 images. Since 

significantly more data from L3 datasets was available, transfer learning is applied for 

training the networks trained on L3 images for muscle segmentation at the T4 level. Transfer 

learning is based on the assumption that learned features from the training process for L3 

muscle segmentation are relevant to the required features for T4 muscle segmentation. 

Therefore, fine-tuning the L3 trained model will help to generalize from only a few T4 

samples. The trained network with Dataset-2 from the L3 datasets was fine-tuned, with a 

different ratio of samples of axial CT slices, on the T4 training set.

3. Results

A few representative images taken from different subjects shown in Figure 1 indicate the 

presence of a broad range of variations on the tissue composition in these images likely 

influenced by gender, age, weight and different diseases. In addition to these variations, 

different acquisition procedures at different imaging centers may also add to the observed 

variability. Training a generalized model that can perform well across the range of observed 

variations necessitates gathering a database that includes these variations or to generate data 

considering these parameters in the data augmentation step.

The generalization to unseen images was investigated by training the proposed network on 

each of the three datasets separately and using subsets of the three datasets set aside for 

testing. The samples in these three datasets are from both men and women with different 

BMI ranges, and were acquired by different devices taken from different centers/imaging 

protocols. The performance, summarized in Table 1 shows that the model trained on 

Dataset-2 has the highest Jaccard score when tested on Dataset-1 and Dataset-2. For 
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Dataset-3, the best test performance was achieved from applying the model trained on 

Dataset-3 itself.

The best result observed is the mean Jaccard score of 98% along with over 99% Dice score, 

sensitivity and specificity that was achieved on 1327 L3 test samples showing very high 

performance on a significantly large number of images attesting to the robustness of this 

method. The reduction in performance in some cross-database experiments could be 

attributed to different manual labeling protocols followed for the datasets. Note that the test 

set is identical in bench marking the performance of the three separately trained networks, 

and some samples of segmented muscle maps for each of these three networks are shown in 

Figure 4.

The model trained on L3 images from Dataset-2 was further used for fine-tuning the 

network to segment the muscle on CT images at the T4 level. Five experiments with various 

percentages of training and test samples were conducted and the results are presented in 

Figure 5. In this Figure, the blue line is the distribution of Jaccard scores on the whole 

dataset of T4 with the trained model using L3 vertebral level images from Dataset-2 with no 

further training on T4 vertebral level images. The other four curves are the distribution of 

Jaccard scores when the L3-based model from Dataset-2 was refined using different number 

of T4 images in each experiment and tested on the remainder. As the number of training 

samples increase (number of test samples decrease), the model performance also tends to 

increase although even with a few training samples, the model tends to perform well.

In Figure 6 some samples of the predicted segmentation mask from the model trained with 

approximately 80% of T4 dataset and tested on the remaining unseen 20% of the database 

are shown.

4. Discussion

We developed a deep neural network-based segmentation algorithm inspired by models 

presented in (Ronneberger et al., 2015) and (Long et al., 2015). Important criterion for us in 

developing this architecture were to retain high spatial resolution, the smoothness of labeling 

within a given region and the accuracy of the boundary for small degenerated areas in the 

muscle.

Analysis of performance on Dataset-1.

The top row of table 1 shows the quantitative results of applying the three models trained on 

Dataset-1, Dataset-2, and Dataset-3 to the unseen test set 1 from Dataset-1. The performance 

on this test set was similar across models trained on Dataset-1 and Dataset-2 but slightly 

higher from the model trained on Dataset-2. Since Dataset-1 and Dataset-2 have the same 

labeling protocol, the model trained with a higher number of samples likely led to the 

observed better test results. Figure 7 illustrates the distribution of Jaccard overlap scores for 

each experiment as a histogram on the vertical axis. The three first graph on the left refers to 

the models’ performance on Dataset-1. Based on this plot, each sample in test set 1 has a 

Jaccard score above 0.84 irrespective of the applied training model. Moreover, this graph 

suggests that while the trained model on Dataset-1 and the trained model on Dataset-2 have 
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the same behaviour, the trained model on Dataset-3 has different distribution. This 

observation is also associated with the fact that Dataset-3 has a different labeling protocol. 

The key difference between the manual labels for Dataset-1 and Dataset-2 with Dataset-3 is 

that, while the tendon between vertebra bone and psoas muscle in Dataset-1 and Dataset-2 is 

segmented as muscle, in Dataset-3 it is tagged as back ground. Figure 9 shows a sample of 

this labeling variation criteria between Dataset-1 and Dataset-3. Figure 8 depicts the images 

corresponding to the six minimum scores achieved while testing on Dataset-1.

Analysis of performance on Dataset-2.

The middle row in table 1 summarizes the performance obtained while testing the networks 

on unseen samples in Dataset-2. These results indicate that the model trained on Dataset-2 

has the best Jaccard score for this test set. The model trained on Dataset-3 does not perform 

as well as the model trained on Dataset-1 and Dataset-2 (which offer similar performance 

due to similar labeling protocols). The three violin plots in the middle cluster in Figure 7 

compares the distribution of Jaccard scores from applying the three models on the test 

Dataset-2. This graph indicates that most results observed on this test set have Jaccard score 

of 90% or higher.

Analysis of performance on Dataset-3.

Manual labeling for the Dataset-3 did not consider the tissue between the vertebra and psoas 

muscle as muscle. For this reason, the model trained on Dataset-3 has better performance on 

test set 3 as compared to the other two models due to learning the labeling in the ground 

truth for Dataset-3. The bottom row of table 1 demonstrates this observed performance. The 

ability of these convolutional networks to learn and recognize the nuances of manual 

labeling protocol and apply these on to the tested images is a testimonial to their inherent 

power and richness. However, despite the potential differences introduced by labeling 

protocol differences, these differences are minor and the predicted maps from all three 

trained models are potentially usable for assessing body composition with similar levels of 

accuracy. The three violin plots in the right cluster in Figure 7 further show the distribution 

of the Jaccard test scores from all three of trained models on the Dataset-3 showing slightly 

lowered performance of networks trained on Dataset-1 and Dataset-2 as compared to 

network trained on Dataset-3 itself. The majority of the segmentations obtained for the 

unseen tested images still show a high Jaccard score of 90% or higher.

Analysis of performance for T4 muscle segmentation.

Figure 5 shows the result of five models on different test sets. The performance of this model 

fine-tuned on different number of samples was studied. For the first experiment, this model 

was applied without any fine-tuning on all 709 samples of T4. As it is shown in the Figure 5, 

this experiment showed poor results. In the second experiment although only 20% of the 

data was used for fine-tuning, the Jaccard score increased to 94%. This increase in the score 

on tested samples indicates that even with a limited number of T4 slices the network could 

learn the specific features of muscle region on T4 images.
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Comparison with existing models in literature.

To compare our model performance with the network proposed by Lee et al. (Lee et al., 

2017), the FCN-2S networks with VGG16 blocks, their best model, was trained on our 

dataset. To keep the training process the same as their method in the paper, labels with three 

classes namely muscle, inside the muscle and background were used. Moreover, the 

performance of the UNet model (Ronneberger et al., 2015) was tested on the Dataset-1. 

Also, the Jaccard score of 90.00 ± 7.9 was reported for the shape-prior model on Dataset-1 

(Popuri et al., 2016) and hence is directly comparable with our results of 96.34±2.77 on the 

same dataset. Table 2 shows the Jaccard score from applying these methods on a common 

test set of 430 samples. We observe that our proposed method has improved on these 

existing methods in terms of all the four metrics of Jaccard score, Dice score, sensitivity and 

specificity. These are likely due to novel combinations of generated segmentation masks in 

different levels of the network as shown in the schematic in Figure 3. Furthermore, using a 

twotailed t-test to compare pairwise the methods FCN-2S-VGG16, shape-prior model, UNet 

and our novel proposed method over the evaluation metrics, a statistically significant better 

performance is found (p < 0.0001).

Limitations.

Since features are not handcrafted, rather automatically learned during the training process, 

the performance of the model depends profoundly on the provided ground truth labels and 

their accuracy. Therefore, mistakes in the labeling process will transmit through to the 

network’s definition of skeletal muscle tissue and can result in the model making the same 

mistakes. Availability of standardized labels using a common protocol would help mitigate 

the errors due to protocol differences.

5. Conclusion

In this paper, we proposed a novel deep neural network-based segmentation algorithm for 

automatic muscle segmentation on L3 and T4 slices of CT images. The network was trained 

by applying a weighted loss from the predictions on different levels of the network Transfer 

learning was used to benefit from the training on the large number of L3 CT images 

available for segmenting the relatively smaller number of CT images at the T4 level. The 

generalization of the model was investigated using several experiments conducted on the 

three L3 datasets. The effect of training on a varying number of samples for fine-tuning the 

model for muscle segmentation on T4 slices was also studied. The results from these 

experiments suggest that: 1) deep learning-based segmentation models show promise to be 

robust; good performance on the data from the same training set and same data acquisition 

setting as well as samples from other CT devices for patients in various BMI or gender 

groups can be expected. 2) The labeling protocol used is an important factor in the 

performance evaluation of the trained models and some of the differences in performance 

can be attributed to differences in segmentation protocols. 3) Fine-tuning a model trained for 

L3 muscle segmentation on a few samples of T4 slices for the task of T4 muscle 

segmentation was found to provide satisfactory performance.

Dabiri et al. Page 9

Comput Med Imaging Graph. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

National Cancer Institute grants R01CA175011 and R01CA184953 supported the C- and B-SCANS studies, 
respectively. Dr. Cespedes Feliciano was supported by K01CA226155.

References

Caan BJ, Cespedes Feliciano EM, Prado CM, Alexeeff S, Kroenke CH, Bradshaw P, Quesenberry CP, 
Weltzien EK, Castillo AL, Olobatuyi TA, Chen WY, 2018 Association of muscle and adiposity 
measured by computed tomography with survival in patients with nonmetastatic breast cancer. 
JAMA Oncol. 4.

Caan BJ, Meyerhardt JA, Kroenke CH, Alexeeff S, Xiao J, Weltzien E, Feliciano EC, Castillo AL, 
Quesenberry CP, Kwan ML, Prado CM, 2017 Explaining the obesity paradox: The association 
between body composition and colorectal cancer survival (C-SCANS Study). Cancer Epidemiol. 
Biomarkers Prev. 26.

Chung H, Cobzas D, Birdsell L, Lieffers J, Baracos V, 2009 Automated segmentation of muscle and 
adipose tissue on CT images for human body composition analysis, in: Med. Imaging 2009: 
Visualization, Image-Guided Procedures, and Modeling, International Society for Optics and 
Photonics. p. 72610K.

De Brébisson A, Montana G, 2015 Deep neural networks for anatomical brain segmentation, in: Proc. 
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshop, pp. 20–28.

Goodfellow I, Bengio Y, Courville A, 2016 Deep Learning. MIT Press http://
www.deeplearningbook.org.

Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H, 
2017 Brain tumor segmentation with deep neural networks. Med. Image Anal. 35.

Kamiya N, Zhou X, Chen H, Hara T, Hoshi H, Yokoyama R, Kanematsu M, Fujita H, 2009 Automated 
recognition of the psoas major muscles on X-ray CT images, in: 2009 Annu. Int. Conf. IEEE Eng. 
Med. Biol. Soc, IEEE pp. 3557–3560.

Kamiya N, Zhou X, Chen H, Muramatsu C, Hara T, Yokoyama R, Kanematsu M, Hoshi H, Fujita H, . 
Automated segmentation of recuts abdominis muscle using shape model in X-ray CT images, in: 
2011 Annu. Int. Conf. IEEE Eng. Med. Biol. Soc, IEEE pp. 7993–7996.

Kamiya N, Zhou X, Chen H, Muramatsu C, Hara T, Yokoyama R, Kanematsu M, Hoshi H, Fujita H, 
2012 Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: 
preliminary study. Radiol. Phys. Technol. 5.

LeCun Y, Bottou L, Bengio Y, Haffner P, 1998 Gradient-based learning applied to document 
recognition. Proc. IEEE 86.

Lee H, Troschel FM, Tajmir S, Fuchs G, Mario J, Fintelmann FJ, Do S, 2017 Pixel-level deep 
segmentation: Artificial intelligence quantifies muscle on computed tomography for body 
morphometric analysis. J. Digit. Imaging 30.

Long J, Shelhamer E, Darrell T, 2015 Fully Convolutional Networks for Semantic Segmentation, in: 
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit, pp. 3431–3440.

Mathur S, Rodrigues N, Mendes P, Rozenberg D, Singer LG, 2017 Computed tomographyderived 
thoracic muscle size as an indicator of sarcopenia in people with advanced lung disease. 
Cardiopulm. Phys. Ther. J. 28.

Meesters S, Yokota F, Okada T, Takaya M, Tomiyama N, Yao J, Liguraru M, Summers RM, Sato Y, 
2012 Multi atlas-based muscle segmentation in abdominal CT images with varying field of view, 
in: Int. Forum Med. Imaging Asia, pp. 16–17.

Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJNL, Isgum I, 2016 Automatic 
segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 
35.

Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE, 2008 A practical and 
precise approach to quantification of body composition in cancer patients using computed 
tomography images acquired during routine care. Appl. Physiol. Nutr. Metab. 33.

Dabiri et al. Page 10

Comput Med Imaging Graph. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.deeplearningbook.org
http://www.deeplearningbook.org


Nair V, Hinton GE, 2010 Rectified linear units improve restricted Boltzmann machines, in: Proc. 27th 
Int. Conf Machine Learning, pp. 807–814.

Pereira S, Pinto A, Alves V, Silva CA, 2016 Brain tumor segmentation using convolutional neural 
networks in MRI images. IEEE Trans. Med. Imaging 35.

Popuri K, Cobzas D, Esfandiari N, Baracos V, Jagersand M, 2016 Body composition assessment in 
axial CT images using FEM-based automatic segmentation of skeletal muscle. IEEE Trans. Med. 
Imaging 35.

Popuri K, Cobzas D, Jagersand M, Esfandiari N, Baracos V, 2013 FEM-based automatic segmentation 
of muscle and fat tissues from thoracic CT images, in: 2013 IEEE 10th Int. Symp. Biomed. 
Imaging, IEEE pp. 149–152.

Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M, 2013 Deep feature learning for knee 
cartilage segmentation using a triplanar convolutional neural network, in: Int. Conf. Med. Image 
Comput. Comput. Assist. Interv. Springer, Berlin, Heidelberg, pp. 246–253.

Ronneberger O, Fischer P, Brox T, 2015 U-net: Convolutional networks for biomedical image 
segmentation, in: Int. Conf. Med. Image Comput. Comput. Assist. Interv, pp. 234–241.

Roth HR, Farag A, Lu L, Turkbey EB, Summers RM, 2015 Deep convolutional networks for pancreas 
segmentation in CT imaging, in: Med. Imaging 2015: Image Proc., International Society for Optics 
and Photonics. p. 94131G.

Rumelhart DE, Hinton GE, Williams RJ, 1986 Learning representations by back-propagating errors. 
nature 323.

Shen W, Punyanitya M, Wang Z, Gallagher D, St.-Onge MP, Albu J, Heymsfield SB, Heshka S, 2004 
Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-
sectional image. J. Appl. Physiol. 97.

Simonyan K, Zisserman A, 2014 Very deep convolutional networks for large-scale image recognition. 
arXiv preprint arXiv:1409.1556.

Wei Y, Tao X, Xu B, Castelein AP, 2014 Paraspinal muscle segmentation in CT images using GSM-
based fuzzy c-means clustering. J. Comput. Commun. 2.

Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I, 2016 Automatic 
coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural 
networks. Med. Image Anal. 34.

Yu F, Koltun V, 2015 Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:
1511.07122.

Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D, 2015 Deep convolutional neural networks for 
multi-modality isointense infant brain image segmentation. Neuroimage 108.

Dabiri et al. Page 11

Comput Med Imaging Graph. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights:

• A new convolutional neural network is presented that takes as input an axial 

slice from a CT image at L3 or T4 level and generates the muscle 

segmentation mask of the image in almost real time (it takes less than one 

second (~200ms) for the trained network to generate the muscle mask).

• The performance of the network on three large datasets is evaluated and 

demonstrates high Jaccard scores in the range of 0.96-0.98 on these datasets.

• We validated the model’s robustness by reporting the performance of the 

model on three different (and unseen) datasets generated by different CT 

devices and data acquisition settings, males and females, with a variety of 

muscle tissue shape and form, in various cancers attesting to the 

generalizability of the result.

• In total more than 9000 L3 images were used for investigating (train/test) the 

proposed model. This is considerably higher than the number of images used 

for validating the methods in other papers in the literature attesting to 

robustness of the results.

• The model trained on the large set of L3 is fine-tuned for T4 muscle 

segmentation. The model’s performance is investigated with various 

experiments considering different ratio of test and training images and we 

find that even with a small number of images at the T4 level, having a model 

trained at the L3 level provides a very strong initialization to develop an 

accurate model for the T4 level. This indicates future generalizability to other 

axial locations in the CT image stack.
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Figure 1: 
Illustration of variation of tissue types, specifically skeletal muscle tissue, in the dataset. Top 

row shows a CT image axial slice centered on the third lumbar vertebra (L3). In the middle 

row, the images corresponding to skeletal muscle (SM, red), vascular adipose tissue (VAT, 

yellow), subcutaneous adipose tissue (SAT, blue) and inter-muscular adipose tissue (IMAT, 

green) segments are illustrated. The bottom row shows the manual segmentations (taken as 

ground truth) for skeletal muscle tissue.
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Figure 2: 
Different steps of the proposed method are illustrated schematically. This model has three 

outputs, denoted as the first map, the second map and the final map (output).
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Figure 3: 
The proposed network architecture. Information flows from the left to the right of the 

network. Input image on the left is the gray scale CT slice and final map on the right is the 

segmentation mask. Colors of boxes indicate the type of layer in the network.
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Figure 4: 
Illustration of performance on some samples from the three datasets with networks trained 

on the training images of the corresponding dataset. The top row shows some L3 samples. In 

the middle row, their corresponding manual muscle segmentations are illustrated. The 

bottom row shows the overlay of the prediction mask with the trained model and the ground 

truth. Yellow regions are the pixels that are correctly classified as muscle. Red pixels are the 

pixels that are mis-classified as muscle and green pixels are the muscle pixels which are 

missed from prediction. Note that the predicted automatic segmentation performs well on a 

range of muscle profiles.
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Figure 5: 
The cumulative distribution function (CDF) plot of the Jaccard scores obtained from the 

experiments on T4 dataset to assess sensitivity to number of T4 images used for refining the 

network that was trained on L3 images from Dataset-2. The Jaccard scores (μ ± σ) for each 

experiment is presented in the box to the right of the graph.
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Figure 6: 
Illustration of performance on the T4 dataset. Top row shows some T4 samples. In the 

middle row, their corresponding manual muscle segmentation are illustrated. Bottom row 

shows the overlaying result of the predicted map and ground truth. Yellow regions are the 

pixels that are correctly classified as muscle. Red pixels are the pixels that are mis-classified 

as muscle and green pixels are the muscle pixels which are missed from predicted map. Note 

that the predicted automatic segmentation performs well on a range of muscle profiles.
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Figure 7: 
Violin plot for all experiments. Cluster of three from the left shows the histogram of Jaccard 

scores taken from the results of testing the three networks on Dataset-1, Dataset-2 and 

Dataset-3, respectively. Yellow violin plots are the results from the model trained on 

Dataset-1. Red violin plots are the results from applying the model trained on Dataset-2 and 

green are the performance of the model trained on Dataset-3. Black bar is the marker for 

mean +/− standard deviation. The horizontal line at 90% indicates that the majority of 

samples have the test Jaccard score of 90% or higher.
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Figure 8: 
Images taken from Dataset-1 that presented with the poorest segmentation performance. 

Under each image is the Jaccard score corresponding to its predicted segmentation from 

network trained on Dataset-1 with manual ground truth. Yellow regions are the pixels that 

correctly classified as muscle. Red pixels are the pixels that mis-classified as muscle and 

green pixels are the muscle pixels which are missed from prediction.
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Figure 9: 
The top row is the illustration of the differences in the manual labeling protocol of Dataset-3 

and the other two datasets. The bottom row is the overlay of automated segmentation of 

samples images from Dataset-3 with the model trained on Dataset-2 and the ground truth 

segmentation for these images demonstrating the protocol-based discrepancy lowering the 

segmentation performance.
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Table 1:

The quantitative results of the three trained model on three test sets of L3 images. The second, third and the 

fourth rows from the top are the results of applying each of the three networks on the test samples set aside for 

Dataset-1, Dataset-2 and Dataset-3.

Test set
(Number of samples)

Training set
(Number of samples)

Jaccard Score Dice Coefficient Sensitivity Specificity

Dataset-1
(430)

Dataset-1 (645) 96.34 ± 2.77 98.11 ± 1.47 98.15 ± 1.63 99.81 ± 0.19

Dataset-2 (3774) 97.42 ± 1.95 98.68 ± 1.02 98.73 ± 1.01 99.86 ± 0.14

Dataset-3 (1802) 93.83 ± 2.93 96.79 ± 1.61 95.27 ± 1.72 99.84 ± 0.22

Dataset-2
(1327)

Dataset-1 (645) 96.83 ± 3.15 98.36 ± 1.76 98.24 ± 2.16 99.87 ± 0.16

Dataset-2 (3774) 98.27 ± 1.88 99.12 ± 1 99.29 ± 0.94 99.90 ± 0.12

Dataset-3 (1802) 94.47 ± 3.14 97.13 ± 1.79 95.37 ± 2.2 99.91 ± 0.15

Dataset-3
(1201)

Dataset-1 (645) 93.70 ± 3.22 96.70 ± 1.84 98.49 ± 1.99 99.62 ± 0.21

Dataset-2 (3774) 94.78 ± 2.53 97.29 ± 1.39 99.26 ± 1.55 99.64 ± 0.18

Dataset-3 (1802) 96.01 ± 2.39 97.94 ± 1.30 97.99 ± 1.31 99.84 ± 0.15
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Table 2:

The quantitative results of FCN-2S-VGG16, shape-prior model, UNet and the proposed network in this paper 

on Dataset-1. The pairwise two-tailed t-test demonstrated the significantly better performance of proposed 

method in comparison to the mentioned three methods.

Model Jaccard Dice Sensitivity Specificity

FCN-2S-VGG16 (Lee et al., 2017) 86.10 ± 6.10* 92.40 ± 3.74* 88.46 ± 5.23* 99.70 ± 0.28*

Shape-prior model (Popuri et al., 2016) 90.00 ± 7.9* 94.53 ± 5.06* 95.44 ± 6.60* 99.36 ± 4.12*

UNet (Ronneberger et al., 2015) 94.58 ± 3.80* 97.17 ± 2.09* 96.53 ± 2.36* 99.78 ± 0.23*

Proposed network 96.34 ± 2.77 98.11 ± 1.47 98.15 ± 1.63 99.81 ± 0.19

*
significant at p < 0.0001
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