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Abstract
Despite being widely used in reporter technologies, bioluminescent systems are largely understudied. Of at least forty dif-
ferent bioluminescent systems thought to exist in nature, molecular components of only seven light-emitting reactions are 
known, and the full biochemical pathway leading to light emission is only understood for two of them. Here, we provide 
a succinct overview of currently known bioluminescent systems highlighting available tools for research and discussing 
future applications.
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Introduction

Having evolved independently dozens of times, biolumines-
cence provides living organisms with a tangible advantage 
in certain ecological contexts. The ability to emit light in 
darkness has been observed in about 10,000 species from 
800 genera, although this may well be an underestimation 
(Haddock et al. 2010). The exact benefit of light emission in 
various environments is far from being clear for a number of 
species, however, in most cases bioluminescence is thought 
to serve the purpose of visual communication to scare off 
predators, attract prey or in courtship behaviour (Ellis and 
Oakley 2016; Wainwright and Longo 2017; Verdes and Gru-
ber 2017; Labella et al. 2017).

Evolution has stumbled upon and fixed numerous bio-
chemical solutions for bioluminescence demonstrating 
that the ability to glow is accessible to living organisms in 

various points of genotype space, from bacteria to fungi and 
animals. Various luciferins, the small molecules prone to 
light emission upon oxidation, have been derived by evo-
lution from unrelated biochemical pathways. Oxidation of 
these molecules is catalysed by non-homologous enzymes, 
luciferases, to create a palette of light-emitting reactions that 
are different in colour, catalysis rate, cellular localisation and 
dependence on ATP, NADH and other metabolites (Kaskova 
et al. 2016).

Although still largely understudied on a molecular level, 
hardly could such diversity of reactions with an easily meas-
urable output escape becoming an essential part of mod-
ern reporter technologies. Luminescent reactions, where 
structures of both luciferin and luciferases have been dis-
covered, are now utilised in vitro and in vivo in food test-
ing (Shama and Malik 2013), environmental monitoring 
(Girotti et al. 2008), diagnostics (Frank and Krasitskaya 
2014), drug screenings (Hasson et al. 2015; Kobayashi et al. 
2010; Lampinen et al. 1995), and various kinds of biomedi-
cal research. Detailed reviews on chemistry and diversity 
of luciferins (Kaskova et al. 2016), luciferases (Kotlobay 
et al. 2019), and ecology of bioluminescence (Haddock et al. 
2010; Widder 2010), as well as a comprehensive overview 
of all known bioluminescent systems (Shimomura and Yam-
polsky 2019), are available. In this article, we provide an 
intentionally succinct overview of light-emitting reactions 
where both luciferin and luciferase are known, highlighting 
their main features for practical applications.

We will group bioluminescent systems by structures 
of their luciferins, as these compounds are the principal 
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determinants of colour and properties of light-emitting reac-
tions. Of at least forty bioluminescent systems thought to 
exist in nature (Haddock et al. 2010), structures of only nine 
luciferins are known, for seven of which at least a single 
luciferase gene has been discovered (Fig. 1).

Main text

Coelenterazine‑dependent systems

The largest diversity of bioluminescent organisms is found 
in marine ecosystems. In the sea, it is often the same lucif-
erin, coelenterazine, that serves as a substrate for numerous 
independently evolved luciferases in phylogenetically distant 
groups of organisms. Coelenterazine is a modified tripeptide 
produced from one phenylalanine and two tyrosine residues, 
however, the genes involved in its biosynthesis, as well as 
the exact biosynthetic route, are currently unknown. Most 
of marine organisms do not synthesise coelenterazine them-
selves, instead, they obtain it from food—the likely reason 
for a remarkable convergent evolution of bioluminescence 
in marine ecosystems. All coelenterazine-dependent sys-
tems from nature emit blue light, with emission maxima 
within the 450–500 nm range, and do not typically require 
any cofactors except for oxygen. In some cases, the colour 
of bioluminescence is altered by a fluorescent protein that 
interacts with the luciferase. Other characteristics such 
as molecular weight, pH-sensitivity, thermostability and 
catalysis rates of luciferases vary dramatically among coe-
lenterazine-dependent systems. Below we highlight several 

practically important luciferases that utilize coelenterazine 
or its analogues.

•	 Renilla luciferase: a medium-sized (36 kDa) cytosolic 
protein from a coral that produces a steady luminescent 
signal. Early discovery (Lorenz et al. 1991), as well as 
the availability of engineered versions with increased 
brightness and red-shifted spectra (Markova and Vysotski 
2015), made this system popular for biomedical appli-
cations, in particular, in bioimaging and drug-screening 
(Hamdan et al. 2005; Prinz et al. 2006).

•	 Gaussia luciferase: a small (20 kDa) secreted protein pro-
duced by a small crustacean from the group Copepoda, 
with high catalysis rate and exceptional thermostability. 
The activity of the protein depends on the formation of 
disulfide bonds making it unsuitable for certain heter-
ologous systems. The signal of Gaussia luciferase scales 
linearly with the number of cells being assayed (Tannous 
et al. 2005; Chung et al. 2009) making this system useful 
for monitoring tumor progression and drug response.

•	 Nanoluc luciferase: an engineered variant of a luciferase 
from the shrimp Oplophorus gracilirostris. This small 
(19 kDa) protein utilises a cell-permeable coelenterazine 
analogue, lacks disulfide bonds, and produces a bright 
signal suitable for a broad range of applications. Fusions 
with fluorescent proteins result in bright engineered bio-
luminescent constructs with red-shifted spectra facilitat-
ing single-cell and whole-body bioluminescent imaging 
in vivo (Saito et al. 2012). One of the drawbacks of this 
system is the high cost of reagents.
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Fig. 1   Structure of luciferins from bioluminescent systems with known luciferases
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Cypridina luciferin‑based system

Another modified tripeptide emitting blue light is cypridina 
luciferin, a metabolite found in the ostracod Cypridina and 
bioluminescent midshipman fish, Porichthys. Although 
the biosynthesis of this compound is also unknown, it 
was shown to be produced from tryptophan, isoleucine, 
and arginine (Oba et al. 2002). Among other applications, 
the Cypridina system has been widely used in bioimaging, 
in studies of circadian rhythms (Yamada et al. 2013; Wata-
nabe et al. 2010; Noguchi et al. 2012), and in immunoassays 
(Miesenböck and Rothman 1997; Wu et al. 2007, 2009).

D‑luciferin‑dependent systems

Another practically important group of bioluminescent 
reactions, the most thoroughly studied one, has evolved in 
several lineages of beetles, including fireflies, click beetles 
and railroad worms. These reactions utilise a stable and non-
toxic compound (Deluca 1976; Tiffen et al. 2010) known 
as d-luciferin to emit yellow, orange and in some cases red 
light, and represent another intriguing example of an inde-
pendent origin of the same bioluminescent system (Fallon 
et al. 2018). Most luciferases oxidizing D-luciferin are pro-
teins of ~ 60 kDa that depend on ATP and Mg2+ to catalyze 
a reaction similar to that of aminoacyl-tRNA synthetases 
and acetyl-CoA ligases. Dependence of light emission on 
the concentration of ATP has allowed to use the system as 
an ATP indicator in a variety of applications ranging from 
studies of cancer metabolism (Patergnani et al. 2014) to 
monitoring bacterial contaminants in water (Frundzhyan and 
Ugarova 2007) and diagnostics based on levels of ATP in 
blood (Abraham et al. 2003). Practically important enzymes 
include:

•	 Firefly luciferase: very popular as a reporter molecule due 
to the early discovery, high quantum yield of biolumines-
cence, availability of thermostable mutant variants with 
enhanced spectral characteristics and ease of production 
in bacteria. Firefly luciferase has been extensively used in 
various in vitro and in vivo systems to detect pathogenic 
bacteria (Abe et al. 2012; Nakamura et al. 2011) and 
viruses (Zammatteo et al. 1995; Minekawa et al. 2013), 
to quantify protein–protein (Arai et al. 2002; Hattori et al. 
2013; Radeck et al. 2017) and protein–ligand (Shekhawat 
and Ghosh 2011) interactions, and to assay metabolites 
involved in cell communication and cell signaling (Luker 
et al. 2008), among other applications.

•	 Click beetle luciferases: the second most popular group 
of D-luciferin-dependent luciferases is derived from the 
click beetle Pyrophorus plagiophthalamus. This species 
emits light using four types of luciferases with emission 
maxima ranging from green (540 nm) to orange-red 

(593 nm). The color variability, tolerance to a wide range 
of pH conditions and the availability of engineered vari-
ants make click beetle luciferases attractive for numerous 
applications (Hall et al. 2018). Engineered variants are 
available commercially, for example, Chroma-Luc lucif-
erases offered by Promega.

Tetrapyrrole‑based luciferins

Dinoflagellates (protists) and Euphausiids (krill) utilise two 
very similar tetrapyrrole-based luciferins and form another 
large group of bioluminescent species. In dinoflagellates, 
bioluminescence is localised in special organelles, scintil-
lons, and occurs as flashes of light triggered by electrical or 
mechanical stimulation. It is thought to serve as a defense 
mechanism making their attackers visible and attracting the 
attention of predators from higher trophic levels (Haddock 
et al. 2010). In Euphausiids, light emission occurs in com-
plex organs with specialized lenses and ability to focus, yet 
the exact ecological role of this adaptation is unclear (John-
sen 2005). Luciferases from Dinoflagellates and Euphausiids 
are rarely used as tools in research due to the unavailability 
of synthetic luciferin.

Bacterial bioluminescent system

All bioluminescent bacteria utilise the same unique mecha-
nism for light emission, where photons are produced in a set 
of reactions requiring flavin mononucleotide (FMN), myris-
tic aldehyde, oxygen and nicotinamide adenine dinucleotide 
(NADH). In the course of reactions, myristic aldehyde is 
oxidised and is thus known as luciferin, although the true 
light source in bacterial bioluminescence is the FMN deriva-
tive. Bacterial luciferases consist of two polypeptide chains 
that form a complex (75 kDa) and are encoded in the lux 
operon together with enzymes catalyzing luciferin biosyn-
thesis. In most cases, bioluminescence is blue (~ 490 nm), 
however, both natural (Daubner et al. 1987) and engineered 
(Ke and Tu 2011) red-shifted versions of the bacterial sys-
tem exist.

The full pathway of luciferin biosynthesis has been 
known since late 80 s making the lux operon the only geneti-
cally encodable bioluminescent system available in the last 
three decades (Meighen 1991). This allowed to use the sys-
tem to engineer autonomously glowing organisms, including 
other bacteria (Belas et al. 1982; Francis et al. 2000), yeasts 
(Gupta et al. 2003), mammalian cell lines (Patterson et al. 
2005), plants (Krichevsky et al. 2010) and others. However, 
no brightly bioluminescent multicellular organisms have 
been created, perhaps due to toxicity or inefficiency of the 
system in eukaryotes (Hollis et al. 2001). Consequently, in 
most applications of the system, living bacteria are utilised 
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as a light source. Among the main applications of the system 
are the studies of antimicrobial drugs, bacterial infections 
and environmental monitoring (Björkman and Karl 2001). 
The brightest version developed to date is iLux (Gregor et al. 
2018).

Fungal bioluminescent system

In 2018, a biochemical pathway generating bioluminescence 
in fungi has been described in its entirety, providing the first 
genetically encodable pathway from eukaryotes (Kotlobay 
et al. 2018). Fungi utilise a simple α-pyrone 3-hydroxyhis-
pidin that is oxidised by an insoluble luciferase in a reac-
tion that only requires oxygen and results in the emission of 
green light (~ 520 nm). The wild-type Neonothopanus nambi 
luciferase, nnLuz, is functional in a variety of heterologous 
systems, with the performance similar to that of the firefly 
luciferase (Kotlobay et al. 2018), (Sarkisyan, unpublished 
data). It has been shown that the expression of as few as 
three genes from the fungal bioluminescent system is suf-
ficient to engineer other glowing eukaryotes.

Final remarks

With no bioluminescent system suitable for any task and 
application, different light-emitting reactions occupy differ-
ent niches in modern reporter technologies. In bioimaging, 
where applications of bioluminescence and fluorescence-
based approaches overlap, the former is used in experi-
ments that require high dynamic range, low background or 
deep-tissue imaging. Toxicity assays and studies of bacterial 
biology are typically based on the bacterial bioluminescent 
system while drug screenings often employ D-luciferin-
dependent or coelenterazine-dependent systems. When 
selecting a luciferin–luciferase pair for a particular applica-
tion, several criteria have to be taken into account includ-
ing thermostability, pH optimum, protein size, cellular or 
extracellular location, aggregation properties, emission 
wavelength, intensity, rate of the reaction or dependence on 
ATP and other cofactors.

A recent discovery of a eukaryote-friendly genetically 
encodable pathway in fungi may stimulate the development 
of new bioluminescence-based technologies that would not 
require addition of the substrate. Expression of the fungal 
bioluminescent system may result in the generation of auton-
omously glowing animals and plants where light emission 
would be used to visualise development, report physiologi-
cal changes, signal progression of pathological states, or 
simply serve esthetic purposes (Reeve et al. 2014; Kotlobay 
et al. 2018; Landau et al. 2009). We also envision that the 
discovery of the fungal pathway has the potential to bring 
autonomous bioluminescence beyond the use in reporter 

technologies towards engineering of light-based communi-
cations between cells, organisms or living and non-living 
systems.

The potential of bioluminescence-based tools in synthetic 
biology has only been marginally explored. Given the prac-
tical importance of light-emitting reactions, general appeal 
of glowing organisms and the scope of available methods 
in organic chemistry, metabolomics and genetics (Garrido-
Cardenas and Manzano-Agugliaro 2017; Kaskova et al. 
2016), the field of bioluminescence is surprisingly under-
studied. At the same time, with new insights into the pho-
tophysics, genetics and ecology of bioluminescence being 
made every year, engineering new light-emitting and light-
communicating living systems is becoming more accessible 
than ever before.
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