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Abstract

Purpose of Review Type 2 diabetes (T2D), which accounts for the vast majority of diabetes cases, is essentially a diagnosis of
exclusion in current clinical practice. Therefore, it is not surprising that T2D is heterogenous in terms of patients’ clinical
presentation, disease course, and response to treatment. This review summarizes published attempts to improve diabetes sub-
classification, with a particular focus on the role of genetics.

Recent Findings A handful of diabetes subclassification schemas have been proposed using clinical data (patient characteristics
and laboratory values), with some subgroups associated with distinct management trends or complication risks. However,
phenotypically driven classifications suffer from dependencies on time of variable measurement and are not readily linked to
disease mechanism. Germline genetic data, in contrast, are essentially unchanged over a person’s lifetime and rooted in mech-
anism. Clustering of T2D genetic loci has identified at least five groupings of loci representing mechanisms of disease that may
aid in deconstructing heterogeneity of T2D, but further work is needed to determine clinical utility.

Summary Exciting progress in subclassification of diabetes has demonstrated initial steps in deconstructing disease heterogene-
ity. Incorporation of genetics into classification schemas will require additional research but has the potential to improve our

understanding and management of T2D, both as a single disease and as a part of an integrated metabolic disease network.

Keywords Type 2 diabetes - Subtypes - Genetics - Disease pathways - Polygenic risk score

Introduction

In current clinical practice, when a patient develops ele-
vated blood glucose indicative of diabetes, the diagnostic
process of determining the diabetes “type” typically in-
volves initially assessing for causes other than type 2
diabetes (T2D). For example, detection of autoantibodies
may point to type 1 diabetes (T1D) or latent autoimmune
diabetes in adults (LADA) or the presence of glucocorti-
coids on the medication list might suggest
glucocorticoid-induced hyperglycemia. If a specific rea-
son for hyperglycemia is not identified, a patient will
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generally then be considered to have T2D. Indeed, in
practice, T2D is a diagnosis of exclusion, yet it currently
is estimated to account for approximately 90% of all
cases of diabetes [1]. It is not surprising, therefore, that
T2D is a highly heterogenous condition with patients
varying considerably in clinical presentation and re-
sponse to treatment [2]. The heterogeneity observed
among patients with T2D likely reflects variable contri-
butions from diverse genetic and environmental factors
[3], and ongoing efforts have aimed to utilize clinical
and molecular data to develop a rational and reproduc-
ible categorization of diabetes. The goal of such subclas-
sification is not only to refine patient diagnosis but also
to better inform clinical management, specifically as it
relates to prevention of diabetes complications. This re-
view will summarize the diabetes-subtyping schemas that
have been proposed as tools for deconstructing the het-
erogeneity of disease, with a particular focus on the role
of genetics and its potential to shape our understanding
and management of T2D, both as a single disease and as
a part of an integrated metabolic disease network.
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Evidence for Type 2 Diabetes Constituting
“Multiple Diseases”

The stereotypical phenotype of a patient with T2D is someone
obese with evidence of insulin resistance; however, diabetol-
ogists know well that not all patients with T2D fit this mold.
Likewise, not all patients with presumed T1D present with
diabetic ketoacidosis (DKA) and have positive islet autoanti-
bodies [1]. This recognition of disease heterogeneity has
prompted several efforts to refine the classification of
diabetes.

In 2003, Maldonado et al. presented the “AB” scheme,
which was proposed to categorize patients presenting with
DKA [4], and provided a useful construct for illustrating the
diversity of these patients, who traditionally would have been
assumed to have T1D. In 103 patients of various ethnic back-
grounds who were admitted to the hospital with DKA, the
authors assessed for presence of islet autoantibodies (A+/—)
and evidence of beta-cell functional reserve (B+/—). They
found that 50% of the patients were A—B+, 22% A—-B-,
17% A+B—, and 11% A+B+ [4]. With only 17% of patients
displaying antibody positivity and reduced beta-cell function-
al reserve (typical of T1D), the majority of these patients did
not fit with the classic phenotypic picture associated with
DKA. Furthermore, the substantial representation beyond
both A—B+ (typical of T2D) and A+B— (typical of T1D)
clearly demonstrated that patients with diabetes developing
DKA did not fit neatly into well-established disease categories
and that different pathophysiologies underlay their diabetes
[5]. Of additional note, individuals in the B+ and B— groups
also differed significantly by age of onset, glycemic control,
and duration of insulin dependence, suggesting that recogni-
tion of subtype had clinical implications [4]. The utility in
capturing beta-cell function in classifying diabetes “types”
was also supported by a “beta-cell centric classification sche-
ma” later proposed by Schwartz et al., which conceptualized
at least 11 pathways causing beta-cell dysfunction, each of
which the authors envisioned could be targeted using a tai-
lored treatment strategy [2].

Diversity among clinical phenotypes leading to develop-
ment of diabetes was also evidenced in the work of Hulman
et al. analyzing multi-point oral glucose tolerance tests
(OGTT) in 5861 individuals without diabetes for whom lon-
gitudinal data was available. While typically only the fasting
and two-hour time points of the OGTT are considered for
diagnosing diabetes in non-pregnant adults, this analysis in-
corporated a third 30-min time point and fit latent class mixed-
effects models across the three time points to identify four
distinct glucose trajectory patterns [6]. Of particular interest
was a subgroup (group 3) comprising 13% of individuals who
had non-elevated 2-h glucose values, but elevated 30-min
values; after up to 13 years of follow-up, individuals in group
3 were found to have a fourfold increased risk of developing
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diabetes and almost twofold all-cause mortality risk compared
with individuals with similarly low 2-h glucose values, but
who had non-elevated 30-min glucose readings (group 1).
Compared with group 1, group 3 had similar insulin sensitiv-
ity, but reduced first-phase insulin response [6]. Further work
will clarify how these subgroups, particularly group 3, relate
to disruption of specific mechanistic pathways.

A large-scale data-driven approach to subclassify T2D
was undertaken by Li et al. using electronic medical record
data for 2551 individuals with T2D and 73 clinical features
for topology-based patient-patient network generation [7].
Three distinct subgroups of T2D emerged, which appeared
to have distinct additional disease risks and also unique
genetic associations. Limiting the translatability of the
findings, however, the study did not include replication
of these subgroups in another dataset, and classification
of a non-study patient into one of these three groups would
not be straightforward. Additionally, it is unclear how to
interpret the three groups in terms of underlying disease
mechanism or relevance to patients in so far as
actionability. Future work might also benefit from inclu-
sion of ancestral background in the modeling approach to
ensure that the specified subgroups do not simply represent
categorization of patients by ancestry. Nevertheless, this
work provided an exciting example of the potential of
large-scale data and machine learning approaches to sub-
type complex disease.

Most recently, Ahlqvist et al. developed a new frame-
work for characterizing adult onset diabetes based on six
clinical metrics measured in Scandinavian individuals at
the time of diabetes diagnosis: glutamic acid decarboxyl-
ase (GAD) antibody, age, body mass index (BMI), hemo-
globin Alc, homeostatic model assessments of beta cell
function (HOMAZ2-B), and insulin resistance (HOMA2-
IR) [8++]. By applying k-means and hierarchical clustering
algorithms, they identified five reproducible subgroups of
patients: a severe autoimmune form (capturing T1D and
LADA), a severe insulin-deficient form, severe insulin-
resistant form, mild obesity-related form, and mild age-
related form. The subgroups differed in terms of escalation
of therapy and complications; for example, individuals in
the severe autoimmune and severe insulin deficient clusters
had the shortest times to sustained insulin use, and those in
the severe insulin resistance cluster had the highest risk of
developing chronic kidney disease. In a selected set of
known T2D-associated genetic loci, at least one variant
(rs7903146 in TCF7L2) had significantly different effects
across the clusters, potentially supporting that the clusters
are rooted in different biological disease processes [8e].

Applying the same data-driven approach as Ahlqvist
et al. [8+], a subsequent study by Dennis et al. was per-
formed using two large existing trial datasets of individuals
with T2D randomized to metformin, sulfonylurea, or
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thiazolidinedione therapy [9]. The authors generated the
same five clusters as previously observed in Ahlqvist
et al. and found that these clusters differed in terms of
glycemic progression, incidence of kidney disease, and
glycemic response to medications. However, importantly,
they noted that the observed differences between clusters
could be better captured by other simple continuous fea-
tures. For example, compared with analyses using the clus-
ters, a model using only age at diagnosis similarly ex-
plained glycemic progression, and baseline-estimated glo-
merular filtration rate was a better predictor of time to
chronic kidney disease. Similarly, a simple model incorpo-
rating sex, age at diagnosis, baseline BMI, and baseline
HbAlc outperformed the clustering approach with regard
to predicting treatment response. The authors therefore ar-
gue that “precision medicine in type 2 diabetes is likely to
have the most clinical utility if it is based on an approach of
using specific phenotypic measures to predict specific out-
comes, rather than assigning patients to subgroups”
[9].While this approach of using specific phenotypic mea-
sures for targeted clinical queries has pragmatic appeal,
there may be benefits still to recognizing subcategories of
disease, such as elucidation of underlying pathophysiology
and development of novel targeted treatments.

Can the “Multiple Genes” Contributing to T2D
Aid Subclassification?

Identification of subtypes of disease or clinical predictors
rooted in mechanistic processes would lend themselves
naturally to the promise of precision medicine: the notion
that when a person's disease is not only well-characterized
clinically, but also has a well-understood etiological basis,
we can provide optimal, individualized management. T2D
has a strong genetic basis, with heritability estimates rang-
ing from 30 to 70% [10—-12]. These heritability estimates
capture genetic risk as well as shared familial, prenatal, and
postnatal environmental exposures. Like other complex
diseases, T2D is polygenic with thousands of germline
genetic loci estimated to contribute to disease, including
more than 200 that have been identified to date [13e°].
Large-scale studies have helped shape our understanding
of the genetic architecture of T2D, suggesting that com-
mon genetic variation is responsible for a significant pro-
portion of disease risk and that causal variants at each locus
are often non-coding, implicating a regulatory role [14ee,
15¢¢]. Given the non-coding nature of these genetic vari-
ants, it has been challenging to connect a given locus to
specific regulatory elements, relevant gene(s), and tissue(s)
[13ee, 15¢¢]; thus, translation of the hundreds of established
T2D genetic loci into improved understanding of disease
pathophysiology and clinical utility has been slow, leaving

the potential of genomic medicine in diabetes currently
unfulfilled. However, we are now in a time of unprecedent-
ed scale of genetic studies, access to large cohort and
biobanks linking phenotype to genotype, and emerging
technologies to interrogate genomics with high-
throughput assays.

Nevertheless, a critical question to consider is whether ge-
netics is relevant to T2D sub-classification. At this point in
time, broadly across all complex diseases, the role of germline
genetics (genetic variation that a person is born with and is
present in essentially all cells of the body) in subclassification
remains mostly speculative with few examples reaching pa-
tient care. It may be noted that genetics has found abundant
clinical utility for complex disease in the realm of cancer,
ushering highly effective targeted therapy; however, the gains
achieved there have been largely using somatic genetic se-
quencing (capturing genetic variation that has occurred in spe-
cific cells during a person’s lifetime) for molecular character-
ization of tumors to guide management [16]. Thus, given the
limited precedent for clinical use of germline genetics for
subtyping complex disease, it is worth reflecting on the lines
of evidence supporting why genetics is not only relevant to
T2D subclassification but also offers benefits beyond those
seen with solely phenotype-based approaches.

First, the utility of genetics in T2D subclassification is
supported by the existence of monogenic diseases that
are frequently misdiagnosed as T2D. Indeed, dozens of
genes have been implicated in monogenic diabetes.
These conditions present clinically either with diabetes
being the predominant disease feature, as is seen with
forms of maturity onset diabetes of the young (MODY)
and neonatal diabetes, or with diabetes existing as part of
a syndromic presentation, as with mitochondrial diabetes
and Wolfram syndrome. The genotype-phenotype rela-
tionships for several monogenic diabetes conditions were
recently reviewed in guidelines published by the
International Society for Pediatric and Adolescent
Diabetes (ISPAD) [17¢¢]. Monogenic diabetes collective-
ly accounts for at least 0.4% of all diabetes cases, with
MODY being the most common type [17¢s, 18]. It has
been estimated that close to 80% of individuals with
MODY remain undiagnosed [19]; many are living with
a misdiagnosis of T2D, since the age of onset and clin-
ical features of patients with MODY can overlap with
T2D. Of course, the single pathogenic variants conferring
large disease risk seen in monogenic diabetes differ con-
siderably from the common genetic variation associated
with small incremental risk of T2D; however, the fact
that patients with MODY are frequently misdiagnosed
with T2D highlights that employing genetics to improve
detection of MODY (and other forms of monogenic dia-
betes) would reduce the heterogeneity of T2D (and T1D)
attributable to misdiagnosed monogenic disease.
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Second, and related to the first point, is that even
within categories of phenotypically defined disease sub-
groups, there may exist genetic heterogeneity that is clin-
ically important. There are numerous examples across
medicine of so-called phenocopies, diseases with indis-
tinguishable phenotypic characteristics, but with distinct
genetic causes (e.g., multiple endocrine neoplasia (MEN)
types 1 and 4). Within diabetes, MODY provides an il-
lustrative example: patients who are clinically similar in
terms of gross phenotypic and biochemical features (i.e.,
normal to low BMI, diabetes onset before age 30, pre-
served beta-cell function, and without evidence of auto-
immunity) may have monogenic diabetes caused by sev-
eral different genes, including most commonly GCK,
HNFIA, and HNF4A. While in expert hands, patients
with different genetic forms of MODY may be distin-
guishable based on careful, deep phenotyping, a genetic
diagnosis provides objective evidence of distinct disease
entities that can be phenotypically similar. Furthermore,
in the case of MODY, we are fortunate to have knowl-
edge that the implicated genetic alteration can guide
management (e.g., patients with GCK MODY are gener-
ally safe without diabetes treatment and those with
HNFIA/HNF4A can often be transitioned from insulin
to oral therapy with sulfonylureas) [18]. While we are
concerned with polygenic risk in T2D (rather than mono-
genic risk seen in MODY), clinically relevant genetic
heterogeneity may also exist within T2D disease sub-
types that are clinically indistinguishable. In these situa-
tions, it is possible that our current inability to recognize
heterogeneity within clinically similar appearing individ-
uals is due in part to relevant biomarkers being unknown
or unavailable, and genetics offers an agnostic as well as
relatively holistic diagnostic approach.

Third, genetics may guide disease management. In con-
trast to clinically defined subtype, a genetically defined
subtype of disease lends itself more readily to potential
mechanism-focused management strategies. Again, it is
important to note that single genetic perturbations associ-
ated with monogenic disease will typically impose greater
downstream consequences and impact on disease risk than
those associated with T2D (which have modest effect
sizes, generally OR < 1.2). However, it is possible that
there will be individuals in whom composite polygenic
risk impacts one or more specific disease pathways pro-
foundly, and thus, such pathways could be useful for
targeting management [20].

Finally, in contrast to many clinical and laboratory fea-
tures, germline genetic markers do not change throughout
a lifetime and are unaffected by treatments or disease
course. Thus, a test assessing genetic classification could
be applied at any time during disease course, including
years after initial diagnosis and medication initiation or
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even potentially prior to diagnosis such that a preventative
strategy could be employed.

How “Multiple Genes” Inform Understanding
of T2D Disease Pathways

What have we learned about T2D pathophysiology from the
era of large-scale genetic association studies? To date, impor-
tant windows into disease mechanisms have been elucidated
from either (1) select T2D loci containing genes already im-
plicated in diabetes pathophysiology, including PPARG,
HNFIA, HNF4A, KCNJ11/ABCCS, and GCKR, or (2) select
loci that have undergone elaborate follow-up fine-scale map-
ping and functional work, including SLC30A8, SLCI16A1l,
and TM6SF2 [15¢e, 21-27].

In particular, the evolving story of the TM6SF2 association
with T2D provides an elegant example of genetics enabling
discovery of a novel T2D disease mechanism. The CILP2
locus containing multiple genes, including 7M6SF2, was ini-
tially associated with T2D in a meta-analysis of T2D genome-
wide association studies (GWAS) published in 2012 [27].
Subsequently, exome chip analysis containing protein-
coding variants across the genome identified an amino acid—
altering variant in TM6SF2 p.Glul67Lys as significantly as-
sociated with T2D, and two variants resulting in amino acid
substitutions in this gene (p.Glul67Lys and p.Leul56Pro)
were driving the locus association signal [15¢¢]. The same
variant TM6SF?2 p.Glul67Lys was significantly associated
with non-alcoholic fatty liver disease (NAFLD) in an indepen-
dent exome-chip analysis [25]. The shared T2D- and NAFLD-
increasing allele of this variant was also associated with higher
circulating levels of alanine transaminase, a marker of liver
injury, and with lower levels of triglycerides [25]. Functional
experiments knocking down Tm6sf2 in mice [25] as well as
TM6SF?2 in human hepatoma cell lines [26] both supported
that reduced gene expression increased liver triglyceride con-
tent and decreased secretion of triglyceride-rich lipoproteins
from liver tissue, thus implicating 7TM6SF2 in liver fat metab-
olism. These exciting findings provided a novel disease path-
way of primary liver tissue origin leading to increased risk of
both T2D and NAFLD, demonstrating the power of genetics
to uncover disease mechanism.

While a growing number of causal genes have been confi-
dently connected to GWAS loci, the majority of T2D loci re-
main unmapped [13¢¢]. As an alternative strategy to connect
GWAS loci to mechanistic pathways, recent studies, including
work from our lab, have leveraged multiple variant-trait asso-
ciations to generate groups of related genetic variants and sub-
sequently infer disease pathways [15¢¢, 28-30]. As mentioned
previously, a major challenge in connecting GWAS loci to rel-
evant pathways is that the loci include dozens of variants highly
correlated with one another, most of which are non-coding.
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Thus, despite advances in fine-scale mapping [13ee, 15, 31],
for most T2D loci, we currently do not know which genetic
variants, regulatory elements, genes, or tissues are functionally
relevant. Multi-trait cluster analysis offers an opportunity to
bypass this missing information and connect variants directly
to pathways via the pattern of trait associations. In this ap-
proach, each T2D locus is represented by a variant associated
with T2D at genome-wide significance, and the diabetes-risk-
increasing allele is interrogated for its effect on multiple differ-
ent traits. A clustering approach can then be applied to group
variants together which share similar patterns of associations
across multiple traits. The two most recent clustering efforts
[15¢e, 29¢¢] have found that applying a “soft” clustering ap-
proach, where variants can belong to one or more clusters,
rather than a “hard” clustering approach [28, 30], which re-
quires that each variant only belong to one cluster, produced
more readily interpretable results. The “soft” clustering ap-
proach appears to be well-suited for modeling complex disease
biology, since it allows a given locus to impact one or more
genes, which in turn may alter one or more disease pathways.

In Udler et al., clustering of 94 T2D variants and 47 meta-
bolic traits using the soft clustering approach Bayesian non-
negative matrix factorization (bNMF) produced five groupings

Fig. 1 Based on the “Hallmarks of Cancer” presented in a landmark
cancer biology paper by Hanahan and Weinberg [32], the different
disease pathways contributing to diabetes are presented as the
“Hallmarks of Diabetes.” Pathways are separated into mechanisms

of genetic loci (Fig. 1), each with distinct tissue-specific en-
hancer and promoter enrichment based on analysis of
epigenomic data from 28 cell types [29+¢]. Two clusters
contained variant-trait associations indicative of reduced beta-
cell function, differing from each other by high vs. low proin-
sulin levels, suspected to represent defective insulin processing
vs. defective insulin synthesis, respectively. The three other
clusters of loci represent mechanisms of insulin resistance:
obesity-mediated (high BMI and waist circumference),
“lipodystrophy-like” fat distribution (low BMI, adiponectin,
and HDL-cholesterol, and high triglycerides), and disrupted
liver lipid metabolism (low-serum triglycerides). In line with
the prior discussion of functional work supporting the role of
TMG6SF?2 in liver fat metabolism, this locus was most strongly
weighted in the final liver lipid metabolism cluster. The clusters
were enriched for active regulatory elements in tissues which
were consistent with suspected pathways; for example, the de-
fective insulin processing cluster was most strongly enriched
for regulatory elements in pancreatic islet cells compared with
the other 27 cell types (P < 0.001), and the disrupted liver lipid
metabolism cluster was significantly enriched for elements in
liver tissue (P<0.001). The epigenomic data thus provided
additional support that these genetically informed pathways

leading either to insulin deficiency or insulin resistance; insulin-
independent mechanisms are not included here. The question marks
indicate that additional disease pathways are yet to be identified
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represent distinct disease mechanisms [29+¢]. Additionally, the
loci implicated in each cluster were differentially associated
with other metabolic diseases: the defective insulin processing
loci T2D-increasing alleles were most strongly associated with
stroke risk and the lipodystrophy loci T2D-increasing alleles
were most associated with increased systolic and diastolic
blood pressure [29+°].

Using another “soft” clustering approach called C-means,
Mahajan et al. similarly analyzed GWAS data for a set of 94
T2D association signals partly overlapping with those used in
Udler et al. [29+¢] and 10 T2D-related quantitative traits, iden-
tifying six variant clusters (shown in Supplementary Fig. 6b of
[15¢¢]). Five of the clusters broadly mapped to the same clus-
ters from Udler et al. described above. Thus, reassuringly, two
independent approaches of clustering T2D variant-trait asso-
ciations resulted in largely similar findings, suggesting robust-
ness in these genetically driven disease pathways.

In considering the role of genetics in elucidating disease
mechanisms, a conceptual model proposed for cancer biology
may be useful for diabetes biology. A landmark cancer biolo-
gy paper by Hanahan and Weinberg describing the pivotal
deregulated pathways underlying cancer development offers
a framework to deconstruct the intricacies of this complex
disease [32]. These functional pathways, termed the
“Hallmarks of Cancer,” can perhaps inspire us to conceptual-
ize the “Hallmarks of Diabetes” (Fig. 1), and consider how
defining key diabetes pathways may likewise eventually
guide disease classification and management. In the case of
cancer, perturbations of these pathways (typically via somatic
genetic alteration, potentially on a germline risk background)
induce tumor development and sustained growth. Different
cancers may display deregulation within specific functional
pathways, highlighting disease etiology and guiding treatment
selection. For example, tumors displaying deregulated apo-
ptotic pathways are often responsive to drugs that induce can-
cer cell apoptosis [33]; tumors with defective DNA damage
repair mechanisms may respond well to immune-directed
therapies [34] or drugs that exploit genomic instability [35];
and cancers with abnormal signaling pathways can respond to
kinase inhibitors [36]. Therefore, identification of key func-
tional pathways within such a framework can reduce disease
complexity, improve understanding of disease mechanism,
and inform the development and clinical use of targeted ther-
apies. By all means, cancer and diabetes disease biology have
important differences, and the discussion presented here of
diabetes biology is restricted to germline variation; however,
cancer serves as a powerful example of how a holistic ap-
proach to defining pathway deregulation can be integrated
with our understanding of genomic variation to transform
the treatment of disease. As we continue to identify the path-
ways, or hallmarks, of diabetes, we can start to ask whether
individuals develop disease predominantly through one or
multiple pathways and whether these pathways can be
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targeted for treatment. Moreover, if in fact most individuals
develop diabetes via deregulation of multiple pathways, as is
suspected [20], a “poly-pill”” combination therapy that targets
multiple pathways could be beneficial.

As underlying disease mechanisms become elucidated, our
conceptualization of metabolic disease will expand. T2D is, in
a sense, an artificial construct based on a threshold chosen
against the continuum of hyperglycemia. Likewise, other met-
abolic diseases, such as obesity and hypertension, are based
on chosen thresholds for continuous traits (BMI and blood
pressure measurements). The cluster-defined pathways lead-
ing to increased T2D risk also appear to impact risk of other
metabolic conditions, raising the notion that shared disease
processes or “endophenotypes” may underlie metabolic dis-
eases (Fig. 2). As our knowledge of genetic variation
impacting metabolic diseases continues to grow, clustering
and other approaches will continue to refine our understand-
ing of these critical endophenotypes, such as dysregulated
insulin processing or unfavorable fat distribution.
Appreciating the molecular basis for shared risk among met-
abolic diseases might help improve disease screening among
unaffected individuals and also screening and/or preventative
steps to reduce complications among those with T2D.

Efforts to Use Genetics to Subtype T2D’s
“Many Diseases”

Identification of mechanistic disease pathways causing T2D
will no doubt be useful for improved understanding of patho-
physiology and drug development. Beyond these benefits, a
natural next question to ask is whether genetically defined
clusters of loci can identify subtypes of diabetes. Genotype
information could be used to identify individuals carrying
many alleles within a given cluster, potentially representing
multiple “hits” along a pathway. In this scenario, diabetes in
these individuals would be driven predominantly by one or
few pathways, and knowledge of the underlying disease path-
way(s) could guide management.

At this point in time, such a genetic cluster-based approach
to diabetes classification is not ready for application in the
clinic. Our group has shown, however, that genetically de-
fined subgroups of T2D can identify individuals with differing
phenotypic traits, thereby serving as an initial step in
deconstructing the heterogeneity of T2D [29+¢]. In Udler
et al., pathway-specific genetic risk scores (GRS’s) for the five
genetic clusters were generated for 17,365 individuals with
T2D, combined across four cohorts, to determine whether
individuals with the top 10% GRS uniquely for each cluster
would have clinical differences. The cut-off of top 10% was
arbitrarily chosen, and further work is needed to set more
clinically relevant thresholds; however, differences between
subgroups were observed using this 10% (“extreme”)
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Fig. 2 A future holistic vision for genetic variation contributing to
metabolic conditions via disease processes, termed endophenotypes.
Genetic variants shown at the bottom of the figure within DNA colored
in red contribute to multiple endophenotypes whereas those in pink
contribute to only one. It is hypothesized that across multiple metabolic

threshold. Indeed, those patients with T2D with extreme GRS
for the two insulin deficiency clusters had lower C-peptide
levels than all other individuals with T2D (P <0.01, com-
bined); those with extreme obesity cluster GRS had signifi-
cantly increased BMI, percent body fat, hip circumference,
and waist circumference (P values < 0.05); those with extreme
lipodystrophy cluster GRS had significantly decreased high-
density lipoprotein cholesterol, percent body fat, and BMI (P
values < 0.01); and those with extreme liver lipid metabolism
cluster GRS had significantly decreased serum triglyceride
levels (P=0.01). Thus, individuals with T2D and a GRS
uniquely at the top 10% of one cluster had representative trait
characteristics collectively distinguishing them from all other
individuals with T2D. Further work is underway to determine
whether those at the highest percentile of a cluster respond
differentially to any medications or are at differential risk for
complications of diabetes.

Clinically relevant genetic subtyping for T2D might also
involve utilizing a GRS developed for predicting T1D risk. In
its most updated form, the 67-SNP T1D GRS was highly
discriminative for identifying individuals with T1D (area un-
der the receiver operator characteristics curve (AUC) of 0.92)
[37]. Additionally, a T1D GRS may have utility in identifying
individuals with later age onset T1D who are misdiagnosed as

diseases, thousands of distinct genetic signals contribute to dozens of
endophenotypes. The endophenotypes represent targets for therapy and
importantly targeting a given endophenotype may affect one or more
metabolic disease conditions

T2D [38] as well as predicting escalation to insulin therapy in
patients with presumed T2D with GAD Ab positivity [39]. In
the latter study, a 30-SNP T1D GRS was calculated in 8608
individuals diagnosed with T2D after 35 years of age and
treated without insulin for at least 6 months following diagno-
sis. The T1D GRS predicted progression to insulin use at five
years, but only in GAD-positive participants: probability of
insulin use (95% CI): 47.9% for high TID GRS (35.0%,
62.78%) vs. 27.6% for medium T1D GRS (20.5%, 36.5%)
vs. 17.6% for low-risk T1D GRS (11.2%, 27.2%); P=0.001
[39]. Interestingly, there was no association with insulin use at
5 years in GAD-negative individuals, which comprised the
majority of study participants (96.7%). One can imagine that
eventually, a more intricate model including T2D pathway-
specific GRS as well as T1D pathway-specific GRS may be
useful for improved modeling of diabetes subgroups.

Conclusion

Exciting progress has been made in exploring approaches to
“slice up” the large, approximately 90%, T2D portion of the
diabetes subtype pie. The clinically defined subgroups proposed
by Ahlqvist et al. [8<¢] will no doubt undergo deeper
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physiological and genetic characterization in the coming months,
potentially leading to increased appreciation of the underlying
mechanistic processes for each cluster. Additionally, with in-
creased awareness of monogenic diabetes and access to
genetic testing, the small slice of misdiagnosed monogen-
ic diabetes cases will be chipped away from the T2D
segment of the pie. It is likely that pathway-specific ge-
netic GRSs will be further developed with clinically rele-
vant thresholds determined, such that these “hallmarks of
diabetes” can be utilized to further chip away at the T2D
segment and guide management.

Challenges will remain. For example, placing a new
individual into clinically derived clusters, such as those
developed by Ahlqvist et al. [8<¢], is not straightforward
in practice, particularly if distributions of the various clin-
ical factors differ across populations (e.g., distributions of
BMI or HbAlc may differ in patients with diabetes in
Scandinavia compared with those in the USA). Applying
the method to populations of different ancestries and de-
velopment of online calculators will facilitate clinical
translation. Pathway-specific genetic risk scores, likewise,
have been developed based on data from individuals of
European ancestry, and availability of GWAS summary
statistics for analyses in diverse ancestral populations will
be necessary for GRSs to be developed for individuals of
non-European ancestry.

Finally, perhaps new approaches will be developed that
combine clinical and genetic characteristics into a single
model, ideally also incorporating environmental factors
such as dietary and lifestyle habits. While inclusion of
genetics into classification schemas will require additional
research, it has the potential to improve our understanding
and management of T2D, both as a single disease and as a
part of an integrated metabolic disease network.
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