
1Scientific Reports |          (2019) 9:9997  | https://doi.org/10.1038/s41598-019-46420-4

www.nature.com/scientificreports

HIV-1 tropism prediction by the 
XGboost and HMM methods
Xiang Chen1, Zhi-Xin Wang1 & Xian-Ming Pan2

Human Immunodeficiency Virus 1 (HIV-1) co-receptor usage, called tropism, is associated with disease 
progression towards AIDS. Furthermore, the recently developed and developing drugs against co-
receptors CCR5 or CXCR4 open a new thought for HIV-1 therapy. Thus, knowledge about tropism is 
critical for illness diagnosis and regimen prescription. To improve tropism prediction accuracy, we 
developed two novel methods, the extreme gradient boosting based XGBpred and the hidden Markov 
model based HMMpred. Both XGBpred and HMMpred achieved higher specificities (72.56% and 
72.09%) than the state-of-the-art methods Geno2pheno (61.6%) and G2p_str (68.60%) in a 10-fold 
cross validation test at the same sensitivity of 93.73%. Moreover, XGBpred had more outstanding 
performances (with AUCs 0.9483, 0.9464) than HMMpred (0.8829, 0.8774) on the Hivcopred and Newdb 
(created in this work) datasets containing larger proportions of hard-to-predict dual tropic samples in 
the X4-using tropic samples. Therefore, we recommend the use of our novel method XGBpred to predict 
tropism. The two methods and datasets are available via http://spg.med.tsinghua.edu.cn:23334/
XGBpred/. In addition, our models identified that positions 5, 11, 13, 18, 22, 24, and 25 were correlated 
with HIV-1 tropism.

Human Immunodeficiency Virus 1 (HIV-1) is a retrovirus which mainly infects T-lymphocytes, macrophages 
and dendritic cells1. HIV-1 enters into those host cells by chronologically interacting with primary receptors and 
co-receptors2. Fourteen co-receptors have been detected in vitro3. However, in vivo, the major co-receptors are 
CCR5 and CXCR44,5. Indeed, a vast majority of subtype B and probably all subtype C HIV-1 positive individuals 
are initially infected via CCR52. Viruses using CCR5 are known as R5 tropic, whereas viruses using CXCR4 are 
called X4 tropic. R5X4 or dual tropic viruses as a third class can bind to either CCR5 or CXCR46. For simplicity, 
X4 and dual tropic viruses are called X4-using tropic.

R5 tropic viruses start the HIV-1 infection7. This start is shown by the HIV-1 resistance in individuals where 
the function of CCR5 is disabled by a homozygous ccr5-Δ32 gene4,8,9. Besides, X4-using tropic viruses are asso-
ciated with disease progression, since those viruses emerge at the later stage of an infection in about half of the 
infected individuals2,8,10–12. Furthermore, Miraviroc (MVC), a CCR5 antagonist and the only FDA-approved entry 
inhibitor, binds to the hydrophobic transmembrane helices of CCR5 so as to allosterically inhibit viruses from 
entering13. It has been proved that MVC cannot transform R5 viruses into X4-using viruses14,15. Consequently, 
it becomes clear that tropism testing is necessary for several reasons: (1) To determine the illness progression2,11; 
(2) To decide whether MVC can be used10; and (3) To monitor changes in viral quasispecies in order to modify 
regimens in time4.

In the last decades, two kinds of tropism testing methods, phenotypic and genotypic, have been developed. 
The phenotypic methods, such as ES-Trofile, are expensive, time-consuming, poorly accessible due to requiring 
specialized centers, and cannot provide consistent results when the viral load is below 1000 copies/ml16. Thus, the 
application of these methods is limited in clinical routines in Europe5,8. Instead, the genotypic tropism testing is 
a preferred method due to low cost, reduced turnaround time and great accessibility, even when the viral load is 
below 1000 copies/ml17. In contrast to phenotypic methods, genotypic methods are based on statistics or machine 
learning. These methods analyze the third variable (V3) loop of the viral glycoprotein gp120, which predomi-
nantly determines its tropism18. The earliest proposed genotypic method for prediction of X4-using tropism is 
the 11/25 rule. This rule is based on the presence of a positively charged amino acid in positions 11 or 25 of the 
V3 sequence19. Other genotypic methods such as WebPSSM20,21 and CM22 predict tropism based on scores that 
are calculated from position specific score matrices (PSSMs). In detail, WebPSSM constructs ungapped PSSMs, 
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while CM constructs gapped PSSMs and takes the 11/25 rule and net charge into consideration. Recently, many 
genotypic methods based on machine learning have also been published. The method Geno2pheno4 combines 
two machine learning approaches, support vector machine (SVM) and decision trees, and uses clinical informa-
tion such as viral loads and CD4-cell counts if available. Another method from the same laboratory, G2p_str23, 
combines SVM and Lasso regression and uses the amino acid structure feature. Hivcopred24 is based on SVMlight 
with the split amino acid composition feature. T-CUP225 employs random forests (RFs) with the structural infor-
mation of hydrophobicity and electrostatic potential. Currently, Geno2pheno is the most widely used method 
and the only genotypic method recommended for usage in clinical routines by the European Consensus Group5,8.

Genotypic methods can predict R5 viruses (~90%) accurately, but are inaccurate in the prediction of X4-using 
viruses (~50–70%)26. Thus, more accurate tropism prediction methods are required. Here, we present two meth-
ods, XGBpred and HMMpred. We analyzed the HIV-1 tropism prediction ability of our methods and compared 
them with the Geno2pheno, G2p_str, Hivcopred, CM and WebPSSM methods. The results show that XGBpred is 
robust with the hard-to-predict dual tropic sequences.

Methods
Datasets.  To construct the Newdb dataset, we extracted 6790 R5 tropic, 590 X4 tropic and 1125 dual tropic 
sequences from the Los Alamos HIV sequence database (http://www.hiv.lanl.gov/, last update: 10 Sep 2017). The 
tropisms of the sequences from the Los Alamos HIV sequence database have been phenotypically determined, 
none of them have been inferred from sequences. Then we removed sequences containing non-canonical res-
idues, reserved sequences with lengths between 31 and 39, and dislodged duplicated sequences to guarantee 
the high quality of genotype/phenotype pairs. This process finally generated 2335 R5 and 663 X4-using (245 
X4 and 418 dual) tropic sequences. The distribution of the six major subtypes in the Newdb dataset is shown 
in Table 1. To compare our methods with the Geno2pheno, G2p_str, Hivcopred, CM and WebPSSM methods, 
we used the datasets constructed in these studies, respectively. These datasets can be accessed in Supplementary 
Spreadsheet S1. The distributions of tropisms in different datasets are shown in Table 2.

Machine learning method: XGBpred.  Extreme gradient boosting (XGboost), like RFs used by T-CUP225, 
is an ensemble algorithm of decision trees27. The ensemble works by combining a set of weaker machine learning 
algorithms to get an improved machine learning algorithm in overall. The main difference between XGboost 
and RFs is the way of sampling. RFs are based on uniform sampling with return. Instead, XGboost gives higher 
weights to the wrongly predicted samples in the current weaker leaner, and then these samples will be paid more 
attention when training the next weaker leaner. In addition, XGboost adds regularization to avoid overfitting. 
Therefore, XGboost is a more complicated algorithm than RFs, and thus always outperforms.

Because XGboost is designed for vectors, it is necessary to convert V3 loop string sequences of different 
lengths to numerical vectors. For this task, we used many kinds of features to describe the characteristics of 
protein sequences, such as split amino acid composition24, dipeptide composition28, and net charge or hydro-
path29. We also proposed an additional set of features: the alignment score. The 35-dimensional alignment 
scores were generated by scoring alignments using the block substitution matrices BLOSUM62, BLOSUM90 
or BLOSUM10030, and the alignments were generated by aligning sequences to the consensus sequence with 

Subtype Number (Ra, Xb, Dc) Percentage

B 1503 (1209, 93, 201) 50.13%

C 511 (460, 26, 25) 17.04%

D 233 (120, 52, 61) 7.77%

01_AE 213 (149, 45, 19) 7.10%

A 155 (140, 5, 10) 5.17%

02_AG 124 (50, 3, 71) 4.14%

Table 1.  Distribution of the six major subtypes in the Newdb dataset. Notes: aThe number of R5 tropic 
sequences. bThe number of X4 tropic sequences. cThe number of dual tropic sequences.

Dataset R5

X4-using

SumX4 Dual

Newdb 2335 245 418 2998

G2p_str23 973 94 121 1188

Hivcopreda 24 1768 246 321 2335

CM22 2354 277 48 2679

WebPSSM21 228b (47c) 51b (24c) 279b (71c)

Table 2.  Distribution of tropisms in the different datasets. Notes: aRemoved 31 duplicated sequences from the 
original Hivcopred dataset which are marked as not only R5 tropism but also X4-using tropism. bTraining set. 
cValidation set.
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35 residues by the means of Needleman-Wunsch (Version: EMBOSS: 6.6.0)31. For the XGBpred method, we 
tested these different features and their combinations to find the optimal model to discriminate R5 and X4-using 
sequences.

Statistics method: HMMpred.  Hidden Markov model (HMM) is a finite model applied in time series 
and linear sequences. Just as the PSSM profile, HMM also can be used to describe protein families. The HMM 
profile described by state-transition and symbol-emission probabilities performs better than PSSM in terms of 
sequence alignment and homology recognition because it can deal with gaps in protein families better by hidden 
state chains32.

HMM profile construction.  We used the maximum likelihood estimation method to establish R5 and X4-using 
specific HMM profiles from R5 and X4-using tropic multiple sequence alignments generated by ClustalO33, 
respectively. In addition, we simply assigned columns that had more than half gap characters as insertion states. 
The structure of HMM that we used was no transition allowed from Dj to Ij or from Ij to Dj+1 (This kind of struc-
ture performed better than the full structure, as shown in Supplementary Table S1). M, D, and I denote match, 
deletion and insertion states, respectively.
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Where in, k and l are indices over states M, D, or I; a is an amino acid symbol or gap; âkl means the estimated 
probability of transiting from state k to state l, ê a( )k  means the estimated probability of emitting residue a at state 
k, and Akl and Ek(a) are the corresponding frequencies. In order to avoid the zero probability which represents it 
cannot happen in the future, we applied the Laplace’s pseudo-count rule that added one to each frequency.

Sequence-profile alignment.  We employed Viterbi algorithm34, a dynamic programing algorithm, to get two 
alignment scores SR5 and Snon-R5. Those alignment scores represent the optimal state pathway scores from the R5 
and X4-using HMM profiles, respectively. the final score was defined as:

= − −S SS (3)R non R5 5

Then the given sequence would be classified as R5 tropic if the final score S is higher than a threshold, other-
wise it would be classified as X4-using tropic.

Ten-fold cross validation.  The widely-used 10-fold cross validation was used to evaluate the performance 
of our methods in this study, where the sequences were divided into 10 subsets randomly, one subset was used 
as the testing set, and the others were used as the training set. After ten repetitions, the final performance was 
average of the performances of those ten subsets.

Evaluation parameters.  For evaluation, we used sensitivity, specificity, accuracy and Matthew’s correlation 
coefficient (MCC). In particular, MCC is robust even when the size of classes varies widely35. An MCC value ‘0’ 
corresponds to a completely random prediction, while ‘1’ corresponds to a perfect perdition. These parameters 
were calculated using the following equations:

=
+TP FN

Sensitivity TP
(4)

=
+FP TN

Specificity TN
(5)
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Accuracy TP TN
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where TP is the number of true positives, FP false positives, TN true negatives and FN false negatives. We 
regarded R5 tropic samples as positives in this study.

In contrast to the four threshold-dependent parameters, the receiver operating characteristic (ROC) curve, a 
threshold-independent parameter, illustrates the trade-off between sensitivity and specificity at various threshold 
settings. In this study, we used the area under the curve (AUC) to measure a predictive power, where 0.5 means a 
random method, and 1 means a perfect method36.
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Results
Performance on the Newdb dataset.  The feature set and the model that gave the strongest predictive 
power for the XGBpred and HMMpred methods were found, respectively (Supplementary Tables S1 and S2). 
The performances of the two methods on the Newdb dataset in a same 10-fold cross validation test are shown in 
Fig. 1A and Table 3. XGBpred had a higher specificity, accuracy, MCC and AUC than HMMpred when having 
the same sensitivity. Furthermore, the specificity of XGBpred was higher than 80% (84.62%) at the sensitivity of 
91.78%. Results from the two methods were highly consistent: they predicted same tropisms for 87.96% of total 
samples, and achieved 96.70% sensitivity, 83.39% specificity and 93.93% accuracy.

Considering the poorer performance of HMMpred, the score distributions of the two methods were plotted 
(Fig. 1B). As depicted, the scores of dual tropic sequences mostly placed in the middle of the scores of X4 and 
R5 tropic sequences. Furthermore, HMMpred generated higher scores for a considerable number of dual tropic 
samples than XGBpred. This phenomenon illustrates that it is hard for dual tropic sequences to be correctly clas-
sified, especially by HMMpred.

The performances of the two methods for the six major subtypes (subtypes B, C, D, 01_AE, A and 02_AG) 
in the Newdb dataset were analyzed due to the sequence divergence among different subtypes and the different 
number of sequences in each subtype (Fig. 1C). HMMpred for subtypes B and D showed much lower AUCs 
(0.8942 and 0.8839) than for subtypes C and 01_AE (0.9369 and 0.9486). The reason was that subtypes B and 
D contained more hard-to-predict dual tropic sequences (Table 1). This also resulted in a low AUC (0.5887) for 
subtype 02_AG, and a higher AUC (0.9029) for subtype A than for subtype D (0.8839) generated by HMMpred. 
In contrast, the performance of XGBpred was not so deeply influenced by dual tropic sequences. XGBpred had 
higher AUCs for the top four most common subtypes (subtypes B, C, D and 01_AE) than for subtypes A and 
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Figure 1.  Performance of the XGBpred and HMMpred methods on the Newdb dataset. (A) ROC curves on the 
Newdb dataset in a same 10-fold cross validation test. The legend lists AUCs and specificities at the sensitivity 
of 91.78% which is plotted as the dashed black line. (B) Distribution of V3 loop sequence scores calculated from 
XGBpred and HMMpred on the Newdb dataset. The score distribution of the R5 tropic sequences is shown in 
blue, that of X4 is carmine and that of dual is yellow. (C) ROC curves of XGBpred and HMMpred for the six 
major subtypes. The legend lists AUCs and mAPs.
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02_AG. In addition, The V3 loops of subtypes 01_AE and 02_AG come from subtypes E and A, respectively37,38. 
This can also further lead to the weaker predictive power for subtypes A and 02_AG as it is a trickier task to deter-
mine tropism for subtype A than the other subtypes39,40. Besides, the large biases existed between the number of 
R5 and X4-using samples for subtypes C and A (Table 1). Therefore, we also reported the mean average precision 
(mAP) of the two classes (Fig. 1C). AP is the areas under the precision-recall curve for a certain class. The bigger 
the mAP is, the better the method preforms. The mAPs and AUCs demonstrated the same tendency for the pre-
dictive power of our methods. Among all subtypes, just as AUCs, XGBpred and HMMpred showed the highest 
mAPs (0.9646, 0.9491) for subtype 01_AE. Moreover, for both XGBpred and HMMpred, the divergences between 
AUCs and mAPs for subtypes C and A were biggest. This may arise from the large biases between the amount of 
R5 and X4-using samples.

Comparison with other methods.  In this section, to evaluate our methods, we compared with the pre-
viously published methods Geno2pheno, G2p_str23, Hivcopred24, CM22, and WebPSSM21 by implementing our 
methods in a 10-fold cross validation test on the datasets used in these published methods, respectively. The 
exception was WebPSSM21 where we used the training set from WebPSSM to model our methods in a 10-fold 
cross validation test and used the validation set from WebPSSM to test (Table 3).

First when comparing with the Geno2pheno and G2p_str methods23, XGBpred and HMMpred achieved 
AUCs of 0.8952 and 0.9002, respectively. Our methods had higher AUCs than Geno2pheno (0.860) and G2p_
str (0.892). In addition, XGBpred and HMMpred achieved specificities of 72.56% and 72.09% at the sensitivity 
of 93.73%. The specificities were obviously higher than the specificities of Geno2pheno (61.6%) and G2p_str 
(68.6%) at the same sensitivity. Second, when comparing with the Hivcopred method24, XGBpred had a higher 
AUC (0.9483) than Hivcopred (0.904), but HMMpred had a low AUC (0.8829) as on the Newdb dataset. Third, 
when comparing with the CM method22. Our methods were as accurate as the CM method on the CM dataset 
which only contains a small amount of hard-to-predict dual tropic samples (Table 2). Finally, when comparing 
with the WebPSSM method21, although the WebPSSM dataset is small, XGBpred had a higher AUC (0.9043) than 
WebPSSM (0.881), and HMMpred presented a similar AUC (0.8678) with WebPSSM.

Feature importance analysis.  Given the high performance of XGBpred presented in the previous sub-
sections, we discussed which features XGBpred provided with its predictive power (Fig. 2). We did not analyze 
the feature importance on the WebPSSM dataset as it contains few training samples (Table 2). In the XGBpred 
method, the feature alignment score in the 5th position of the V3 loop appeared in the top three most important 
features on all datasets. Interestingly, amino acid Tyr in position 5 appeared more frequently in X4-using tropic 
than in R5 tropic sequences (Supplementary Fig. S1). Currently, X4-using tropism can be predicted by the 11/25 
rule19. However, since position 5 was as same important as positions 11 and 25, the pragmatic 11/25/5 rule was 
proposed to predict a virus as X4-using tropic by the presence of a positively charged amino acid in positions 11 
or 25, or by the presence of amino acid Tyr in position 5 of its V3 loop. Compared with the 11/25 rule, the 11/25/5 
rule reduced sensitivities by 1.29%, 1.03%, 1.14% and 1.19% on the Newdb, G2p_str, Hivcopred and CM datasets 
while increasing specificities by 7.39%, 5.11%, 6.34% and 10.77%, respectively. The 11/25/5 rule also had higher 
accuracies and MCCs than the 11/25 rule on the four datasets, which indicates the influence of amino acid Tyr 
in position 5 with regard to viral tropism (Supplementary Table S3). In addition to positions 5, 11 and 25, posi-
tions 13, 18, 22 and 24 also ranked in the top ten most important features on the four datasets. Two exceptions 
were position 18 ranked 21st on the G2p_str dataset, and position 22 ranked 14th on the CM dataset. Indeed, all 
the positions that we identified as correlated with HIV-1 tropism are exactly in accordance with the results from 

Dataset Method Specificity Accuracy MCC AUC

Newdb
XGBpred 84.62% 90.19% 0.7310 0.9465

HMMpred 70.59% 87.09% 0.6247 0.8774

G2p_str23

Geno2pheno23 61.6% — — 0.860

G2p_str23 68.6% — — 0.892

XGBpred 72.56% 89.90% 0.6605 0.8952

HMMpred 72.09% 89.81% 0.6570 0.9002

Hivcopred24

Hivcopred24 81.44% 87.07% 0.67 0.904

XGBpred 87.13% 88.52% 0.7154 0.9483

HMMpred 71.08% 84.63% 0.5899 0.8829

CM22

CM22 92.92% 95.21% 0.885 0.97

XGBpred 93.85% 95.33% 0.8106 0.9809

HMMpred 89.54% 94.81% 0.7826 0.9635

WebPSSM21

WebPSSM21 83.3% — — 0.881

XGBpred 83.33% 83.10% 0.6419 0.9043

HMMpred 75.00% 80.28% 0.5693 0.8678

Table 3.  Performance of the XGBpred and HMMpred methods on the different datasets. Performance of 
XGBpred and HMMpred on the Newdb, G2p_str, Hivcopred, CM and WebPSSM datasets at the sensitivities of 
91.78%, 93.73%, 89.99%, 95.54% and 82.98%, respectively.
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Sander et al.41 who point to the residues 298 (3), 302 (7), 306 (11), 308 (13), 315 (18), 317 (20), 319 (22), 321 (24), 
322 (25) and 328 (32) are important for tropism. Furthermore, the feature importance distribution generated 
by XGBpred is a feasible method to judge whether a new discovered association pattern is of importance to 
co-receptor usage or not.

Discussion
In this study, we present two methods, XGBpred and HMMpred, for HIV-1 co-receptor usage prediction. 
XGBpred is based on machine learning, and HMMpred is based on statistics. XGBpred performed best on the 
Hivcopred and Newdb datasets containing larger proportions of hard-to-predict dual tropic samples in the 
X4-using samples, while HMMpred performed worst. In contrast, the predictive powers of the two methods 
were similar on the smaller G2p_str and CM datasets containing fewer dual tropic samples (Table 3). The poor 
ability of HMMpred to predict tropism stemmed from the high probability that HMMpred incorrectly predicted 
dual tropic samples as R5 tropic (Fig. 1B and Supplementary Fig. S2). The profiles used in HMMpred may not 
be meticulous enough. Several reasons may account for this phenomenon. Firstly, the two sequence families are 
highly similar since even one amino acid substitution may change their tropisms42,43. Secondly, the character-
istics of dual tropic sequences may be overwhelmed by R5 and X4 tropic sequences. Finally, the unavailability 
of X4-using tropic samples makes it uncertain to learn its accurate HMM profile. Moreover, as the number of 
samples increased, the gap of predictive powers between XGBpred and HMMpred became large (Tables 2 and 3). 
This corresponds to the fact that the machine learning based Geno2pheno method is more widely used than the 
statistics based 11/25 rule and WebPSSM. As a result, a machine learning based method, in particular XGBpred, 
is recommended to predict co-receptor usage as the number of samples continues to expand.

In an effort to further increase the predictive power, we also generated three meta methods by the means of 
stacking44. The scores generated by XGBpred, Hivcopred (SVMlight) and HMMpred were added as additional 
features to the new stacking based XGBpred models. Compared with the original XGBpred method, the new 
stacking-based XGBpred methods had slightly higher AUCs on the G2p_str dataset but lower AUCs on the other 
datasets (Supplementary Table S4). The poor performances of the meta methods may due to the poorer predictive 
abilities of Hivcopred and HMMpred than the original XGBpred method, and/or the dependence of the results 
generated by XGBpred, Hivcopred and HMMpred (Supplementary Table S5). This may stem from the fact that 
the V3 loop is not the sole determinant of viral tropism. Moreover, V1, V2, C4 and the bridge sheet regions of 
gp120 also have an impact on co-receptor usage45,46. To predict tropism, several methods gain a higher accuracy 
by employing other information in addition to the V3 loop, such as clinical information47, V2 loop sequences48 
and structure information23,25,41. Therefore, the stacking based method can be constructed to improve its predic-
tive power by combining methods with different kinds of information.

In summary, the two methods we developed performed comparably on the datasets containing less 
hard-to-predict dual tropic sequences, but XGBpred performed much better on the datasets with more dual 
tropic sequences. This means XGBpred is more robust to predict dual tropic sequences than other methods. Thus, 
we strongly recommend to use XGBpred to predict viral tropism. Our two methods have been implemented as a 
freely available webserver under http://spg.med.tsinghua.edu.cn:23334/XGBpred/.
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