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Reporting Summary

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

To the Editor –

Tiling screens that use CRISPR-Cas technologies provide a powerful approach for the 

mapping of regulatory elements to phenotypes of interest1–6. Here we present CRISPR 

screening uncharacterized region function (CRISPR-SURF), a deconvolution framework that 

can be used to identify functional regulatory regions in the genome from data generated by 

CRISPR-Cas nuclease, CRISPR interference (CRISPRi), or CRISPR activation (CRISPRa) 

tiling screens. CRISPR-SURF can be run as a stand-alone command line utility (https://

github.com/pinellolab/CRISPR-SURF) or as a web application (http://

crisprsurf.pinellolab.org/) (Supplementary Note 1).

The methodology underlying the CRISPR-SURF framework leverages the concept that 

single guide RNAs (sgRNAs) represent a functional readout for base pairs within the 

perturbation range. This range depends on the CRISPR screening approach used: CRISPR-

Cas nucleases introduce insertion and deletion (indel) mutations of varying lengths 

(typically < 30 bp, although potentially varying with cell type), whereas CRISPRi and 

CRISPRa strategies may remodel chromatin structure across hundreds of nucleotides. 

Importantly, each CRISPR technology offers its own advantage: CRISPRi and CRISPRa 

strategies increase the likelihood of detecting regulatory elements, given their larger 

perturbation ranges, whereas CRISPR-Cas nucleases provide higher resolution on the 

boundaries of regulatory elements, given their sharper perturbation windows. Because each 

sgRNA perturbs variable-size regions around its target site, the sgRNA data from CRISPR 

tiling screens can be seen as imprecise measurements of an underlying genomic regulatory 

signal. To address this variable, we model these imprecise measurements by means of a 

convolution operation that accounts for the perturbation profiles associated with different 

CRISPR technologies.

CRISPR-SURF deconvolves tiling screen data to find the genomic regulatory signal that best 

explains the observed sgRNA scores given the perturbation profile and sgRNA spacing (Fig. 

1). The CRISPR-SURF framework accounts for overlapping perturbation profiles between 

neighboring sgRNAs and leverages shared information to infer the underlying genomic 

regulatory signal even from noisy measurements. The exact sgRNA targeting coordinates are 

also taken into account, thus allowing for location-dependent statistical tests with a power 

that reflects the local density of sgRNAs in a region. This enables CRISPR-SURF to 

estimate perturbation-specific and position-specific statistical power for CRISPR tiling 

screens (Supplementary Note 2).
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We evaluated the performance of CRISPR-SURF by using three published CRISPR tiling 

screens spanning CRISPR-Cas91, CRISPRi2, and CRISPRa3 modalities. For all three 

datasets, CRISPR-SURF reliably identified all of the experimentally validated regulatory 

elements. CRISPR-SURF further identified potentially novel regulatory regions supported 

by both chromatin accessibility and epigenetic marks (Supplementary Notes 3 and 4, 

Supplementary Figs. 1–3). We elaborate on key differences between CRISPR-SURF and the 

analysis methods used in these previous studies in Supplementary Notes 5 and 6.

Furthermore, we carried out two matched CRISPR tiling screens using CRISPR-Cas9 

(SpCas9) and CRISPRi (dCas9-KRAB) on the BCL11A locus (Supplementary Note 7) and 

found that significant regions identified within previously validated functional enhancers1,7,8 

were narrower in the CRISPR- Cas9 screen than in the CRISPRi screen, consistent with the 

narrower perturbation profiles of CRISPR-Cas9 indel mutations compared with those of 

CRISPRi epigenetic modifications (Supplementary Fig. 4). In summary, CRISPR-SURF 

leverages the broad CRISPRi and CRISPRa perturbation profile for efficient enhancer 

discovery and the narrow CRISPR-Cas perturbation profile for high-resolution mapping of 

critical elements within enhancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. CRISPR-SURF deconvolution framework.
An illustration of the deconvolution based on sgRNA targeting positions, different 

perturbation profiles (CRISPRi/a and CRISPR-Cas), and enrichment scores.
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