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Brief Communications

Intermittent Visual Feedback Can Boost Motor Learning of
Rhythmic Movements: Evidence for Error Feedback Beyond
Cycles
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Movement error is a driving force behind motor learning. For motor learning with discrete movements, such as point-to-point reaching,
itis believed that the brain uses error information of the immediately preceding movement only. However, in the case of continuous and
repetitive movements (i.e., thythmic movements), there is a ceaseless inflow of performance information. Thus, an accurate temporal
association of the motor commands with the resultant movement errors is not necessarily guaranteed. We investigated how the brain
overcomes this challenging situation. Human participants adapted rhythmic movements between two targets to visuomotor rotations,
theamplitudes of which changed randomly from cycle to cycle (the duration of one cycle was ~400 ms). A system identification technique
revealed that the motor adaptation was affected not just by the preceding movement error, but also by a history of errors from the
previous cycles. Error information obtained from more than one previous cycle tended to increase, rather than decrease, movement
error. This result led to a counterintuitive prediction: providing visual error feedback for only a fraction of cycles should enhance
visuomotor adaptation. As predicted, we observed that motor adaptation to a constant visual rotation (30°) was significantly enhanced by
providing visual feedback once every fourth or fifth cycle rather than for every cycle. These results suggest that the brain requires a
specific processing time to modify the motor command, based on the error information, and so is unable to deal appropriately with the

overwhelming flow of error information generated during rhythmic movements.

Introduction

Motor learning is thought to proceed through iterative correc-
tions of motor commands, based on movement error (Shadmehr
etal., 2010). For motor learning involving discrete movements, a
mathematical model, based on the assumption that the brain uses
information from only the immediately preceding movement,
has successfully explained trial-by-trial behaviors that are ob-
served when a novel environment is imposed (Thoroughman
and Shadmehr, 2000; Donchin et al., 2003; Cheng and Sabes,
2006; Nozaki and Scott, 2009). System identification studies, ex-
amining more general trial-dependent relationships between
movement errors and perturbations (Scheidt et al., 2001, 2012),
have indicated that although the movement correction may be
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influenced by information obtained beyond a single trial, the
effect of the immediately preceding movement error is dominant.

In theory, using movement error to drive motor learning re-
quires proper association between each movement error and a
corresponding motor command. This requirement is generally
guaranteed for motor learning with discrete movements, in
which the intertrial interval (ITI) time is sufficiently long for the
process to modify the motor command based on the error infor-
mation. However, the brain receives a ceaseless flow of error
information for rhythmic movements, which are another funda-
mental and extensive class of behaviors (Hogan and Sternad,
2007), so an accurate temporal association between the motor
commands and the resultant movement errors becomes a chal-
lenging task for the brain to perform.

We have previously reported that the performance of motor
adaptation to a visual rotation deteriorated with regard to rhyth-
mic reaching movements, compared with a discrete reaching
movement with ITIs of >1 s with respect to the rate of error
reduction and converged plateau level (Ikegami et al., 2010). This
implies that the impaired motor learning for rhythmic move-
ment may be attributed to the degraded temporal association
between the motor commands and the resultant movement er-
rors. To examine this possibility, we used a system identification
technique to clarify how the visual error information obtained
from a cycle of rhythmic movements was used to correct the
movements of subsequent cycles during visuomotor adaption of
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rhythmic reaching movements. The identified model for visuo-
motor learning demonstrated that the correction of a movement
was based on the error information from not only the previous
cycle, but also from earlier cycles. Furthermore, the error infor-
mation of more than one previous cycle increased, rather than
decreased, movement error. This finding inevitably led to a coun-
terintuitive prediction: providing visual feedback on fewer cycles,
rather than every cycle, should enhance visuomotor adaptation,
because the harmful effect of visual information from several
previous cycles can be removed. We examined this prediction by
ensuring that participants adapted rhythmic movements to a
constant visual rotation with visual feedback for every cycle or
with intermittent visual feedback (once every 2—5 cycles). As pre-
dicted, the visuomotor learning performance was enhanced in
the intermittent visual feedback condition (once every fourth and
fifth cycles), indicating that the effect of the error feedback goes
beyond that of one cycle in visuomotor learning with rhythmic
movements.

Materials and Methods

Participants. A total of 77 neurologically normal volunteers (18 females
and 59 males, aged 19—41 years) participated in one of three experi-
ments. Only one participant took part in both Experiments 1 and 3,
described below. All participants were right-handed, as assessed by later-
ality score (84.2 * 22.6; mean * SD) of the Edinburgh Handedness
Inventory (Oldfield, 1971), except for one male. They were all naive to
the purpose of the experiments, which were approved by the ethical
committee of the Graduate School of Education, The University of Tokyo, and
all participants signed an institutionally approved consent form.

Apparatus. Participants sat on a straight-backed chair while grasping
the handle of a robotic manipulandum with their right hand (Phantom
Premium 1.5HF; SensAble Technologies) in a darkened room. A spring
simulated by the device (1.0 N/mm) generated a virtual horizontal plane,
on which the handle movement was restricted. A projector was used to
display the position of the handle with a white cursor (diameter, 8 mm)
on a horizontal screen (45 X 60 cm), placed ~13 cm above the virtual
plane and ~15 cm below the shoulder. The screen board prevented the
participants from directly seeing their arm. Participants controlled the
cursor by the performance of rhythmic out-and-back movements (more
details below) between a start position and a target (diameter, 8 mm)
displayed on the screen. The start position waslocated ~25 cm in front of
the body in a midsagittal plane, and the target was 7 cm away from the
starting position. The starting position and the cursor were always visi-
ble. The position and velocity of the handle were A/D converted by 500
Hz and were stored for later offline analysis.

Procedure. Participants were instructed to move the cursor between
the start position and the target by performing straight, fast, and uncor-
rected out-and-back movements with a sharp reversal at the target. Be-
fore each trial, they were required to place the cursor at the start point,
following which the target appeared on the screen. The participants per-
formed the out-and-back movements repeatedly, without any breaks
between cycles, until the target disappeared (~2.5 Hz), and were in-
structed not to make any deliberate correction within each cycle. Move-
ment correction was allowed only at the turnaround point when the
inward movement turned outward. Before the experimental session, par-
ticipants practiced by synchronizing their movements with the beep of a
metronome at 2.5 Hz (~400 cycles). The metronome was turned off
during the experimental session so that there was no need to adjust the
movement with the sound by pausing or accelerating/decelerating the
movements.

Experiment 1. Experiment 1 was designed to examine the way in which
visual error modifies subsequent rhythmic movements by a system iden-
tification technique (Ljung, 1999). Eight participants performed contin-
uous, rhythmic, out-and-back movements for 60 s (i.e., ~150 cycles).
The cursor was displayed at the position obtained by rotating the handle
position around the start position at a random angle selected from a
Gaussian distribution (mean = 0° SD = 15°) for every cycle. The ran-
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dom sequence of the rotation was the same for all participants. Using the
sequences of the rotation and the movement errors, we identified the
system for motor learning of rhythmic movements (for more details, see
Identification of the motor learning system, below).

Experiments 2 and 3. Motor adaptation to a constant visuomotor ro-
tation was examined when visual feedback of the hand position, i.e., the
cursor, was provided either continuously (CON; Experiment 2) or inter-
mittently (Experiment 3). A total of 70 participants were asked to adapt
to a 30° counterclockwise (CCW) rotation under one of the following
five conditions: the visual feedback was provided during every cycle [Ex-
periment 2: CON condition (n = 20)] or once every two, three, four, or
five cycles [Experiment 3: INT2 (n = 10), INT3 (n = 10), INT4 (n = 10),
and INT5 (n = 20) conditions, respectively]. The experiment comprised
baseline (40 s, ~60 cycles) and rotation (100 s, ~250 cycles) sessions,
with 3 min rests between sessions. In the baseline session, the cursor was
displayed just above the handle position; in the rotation session, the
cursor was displayed at the position obtained by rotating the handle
position around the start position by 30° in the CCW direction.

Data processing. The handle position and velocity data were low-pass
filtered using the fourth-ordered Butterworth filter, with a cutoff fre-
quency of 30 Hz. The position at the peak outward handle velocity was
calculated for each cycle. The turnaround position for each cycle, in
which the direction of the handle movement switched from inward to
outward, was also detected. Ideally, this turnaround position would be at
the start position, but there was often a slight positional shift, due to the
difficulty in returning the handle to the start position in the absence of
visual feedback. The movement direction was defined as the direction
from the turnaround position to the position at the peak outward veloc-
ity of the handle, and the target direction was defined as the direction
from the start position to the target position. Movement performance
was evaluated by the directional error, defined as the angular difference
between the movement and target directions.

Identification of the motor learning system. We constructed a state space
model for the motor learning system of rhythmic movements as follows:

e, =X; TR (1)

Xy = aX; _Eiw: 1kn3i—n+1 (2)

These equations mean that the movement error e in the ith cycle is the
sum of the movement direction of the hand (or the internal state) X and
the imposed visual rotation R (Eq. 1), and that X in the next cycle is
determined as a result of the modification of X according to e (Eq. 2). The
constant « represents the spontaneous loss of motor learning and is
ordinarily close to 1 (Smith et al., 2006; Nozaki and Scott, 2009), the
constant k,, represents the degree of the internal state update to the move-
ment error for the nth previous cycle (hereafter referred to as error sen-
sitivity), and M is the model order. Differently from previous models
(Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Cheng and
Sabes, 2006), we assumed that the internal state referred to the move-
ment errors up to the previous M cycles. Unaltered proprioception in the
visuomotor learning task can reduce the k,, for large movement errors
(Wei and Kording, 2009), but the assumption that the k,, is constant (i.e.,
alinear system) is valid when the imposed visual rotation is small (Cheng
and Sabes, 2006), as in the present study.

Determination of model order and the confidence intervals of the param-
eters. The values of k,, were determined by fitting the model to the 100-
cycle sequences (from 11th to 110th cycle in Experiment 1) of the
rotation (R;, R,, ***) as an input, and averaging the movement errors
among participants (e;, e,, * * *) as an output for M = 1-9 using a least-
squares method. The fitting was conducted by changing the value of «
from 0.95 to 0.99 at intervals of 0.01. To identify the model, we examined
(1) Akaike Information Criteria (AIC) (Akaike, 1974), (2) whiteness of
theresidual, and (3) appropriate step response. The AIC was calculated as
AIC = Nlog(SSR/N) + 2 M, where N = 100 (the number of data points)
and SSR is the sum of squared residual between the model prediction and
actual data. A smaller AIC means a better model. The whiteness (i.e.,
absence of time correlation) of the time series of the residual was evalu-
ated using the Anderson test (Box et al., 1994). A lack of whiteness sig-
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Figure1.

Kinematics of rhythmic movement. a, b, Trajectories of 10 successive cycles of rhythmic movement (a) and profiles of the cursor’s position from the starting position and its movement

velocity (b) of a participant in Experiment 1. ¢, The cycle-dependent changes in movement distance and peak velocity averaged across all participants. Error bars are SD.

nifies that the identified model is not reliable. We also examined the step
response to confirm the validity of the model.

The confidence interval for each k,, was obtained as follows (Scheidt et
al,, 2012). The movement error sequence for each participant was fitted
into the model, with the M fixed to the value identified for the average
data. The 95% confidence intervals were obtained for each k, by the
mean and SE among eight participants as mean * 2.365 SE, where 2.365
is the critical value of the two-tailed ¢ distribution (5%) of seven degrees
of freedom.

Results

Kinematics features of rhythmic movement

The number of movement cycles performed during the rotation
session was 158.5 * 23.7 (Experiment 1; 60 s) and 271.5 = 24.3
(Experiments 2 and 3; 100 s), indicating that the participants kept
the predetermined tempo (2.5 Hz) without the metronome’s
sound. Movement was performed without a pause between cy-
cles, because the duration during which the movement velocity
was <5% of its peak value was <<2% of the total time. The move-
ment distance and velocity were also kept stable (Fig. 1); the
coefficient variations of the peak velocity and movement distance
were <9%. Furthermore, in Experiments 2 and 3, there were no
significant differences in the movement distance and peak veloc-
ity among the conditions (CON, INT2-5; p > 0.05 by one-way
ANOVA), indicating that the differences in motor learning per-
formance, if any, could not be explained by the differences in the
kinematics.

System identification of motor learning for

rhythmic movements

In Experiment 1, participants tried to adapt rhythmic movements to
a visual rotation, the magnitude of which varied randomly from
cycle to cycle. By fitting the model (Egs. 1, 2) to the sequence of
imposed visual rotations and that of the movement errors averaged
across the participants, we identified error sensitivities k,, (n = 1-9)
when the model order was changed from M = 1to M = 9, and when
awas changed from 0.95t0 0.99. The AIC reached a minimum when
M = 6 (Fig. 2a) and the whiteness of the residual was statistically
confirmed only when M =5 (p < 0.05). Figure 2b demonstrates that

the prediction of the model was in accordance with the time series of
the movement errors averaged across participants. The AIC indi-
cates that M = 6 is the best choice, but the model predicted an
unusual adaptation pattern when a constant visual rotation was ap-
plied (Fig. 2c¢—e). This unusual step response was caused by the fact
that the sum of k,, was a negative value: According to Equations 1 and
2, the final plateau level of the error e, can be represented as
e, =1 - aR(Q—a+ >M_ k,),and therefore the negative sum
of k,, leads to e, > R, which does not make sense. Conversely, the
predictions using the M = 5 model fit the motor adaptation data
well, especially for & = 0.98, when a constant visual CCW rotation of
30° rotation was imposed (Fig. 2d). On the basis of these consider-
ations, we adopted a model with M = 5 and o = 0.98.

We refit the data with the model (M = 5 and a = 0.98) to
calculate the error sensitivities k,, for each participant. The 95%
confidence intervals for k,, k,, and ks, which were calculated from
their means and SE, did not contain zero (k, = 0.185 % 0.103,
k, = —0.063 * 0.049, ks = —0.037 * 0.030; Fig. 2f), indicating
that the motor learning system for rhythmic movements used the
error information obtained from up to five previous cycles to
modify the internal state of the current movement cycle. Signifi-
cant negative error sensitivities were unexpectedly found in the
second and fifth previous cycles, implying that the visual error
feedback that ceaselessly flows into the motor learning system
may contaminate the visuomotor adaptation of rhythmic move-
ments. In particular, the negativity of k, was robust and indepen-
dent of the model order M, and every identified model with M =
2-5 exhibited negative values for k,. Compared with the model in
which M = 1 exhibited a faster convergence, the negative sensi-
tivity in k, appeared to result in a slower convergence of the
learning curve similar to that observed in the experimental data
(Fig. 2c—e).

Effect of intermittent visual feedback on visuomotor learning
A prediction by the identified model is that intermittent visual
feedback can enhance motor learning performance due to the
suppression of the negative influence of the error feedback. To
test this prediction, we investigated the effect of intermittent vi-
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Results of system identification. a, The AlCas a function of model order M for @ = 0.95-0.99. b, The model prediction (o« = 0.98) for M = 5 and 6 was in accordance with the time

series of the movement errors averaged across participants. c— e, The cycle-dependent changes in the angular errors of the movement when a 30° CCW rotation was imposed (Experiment 2). Red
open circles represent the data averaged across participants (the angular errors of the baseline trials were subtracted). The model predictions were shown by solid lines when M = 1(c), 5 (d), and
6 (e) for o = 0.95-0.99. f, Error sensitivities for the model (M = 5 and o = 0.98). Error bars are 95% confidence intervals. *p << 0.05, significant difference from zero.
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sual feedback on motor learning perfor-
mance (Experiment 3). Each participant
was assigned to one of the conditions in
which they received visual feedback re-
garding their hand position from a cursor
only once every two, three, four, or five
cycles (INT2, INT3, INT4, and INTS5,
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respectively). 10
The motor learning performance (an s
average of the values obtained from the
101st to 200th cycle) under the continu- 0
ous feedback conditions in Experiment 2 0 2 4

(CON) was similar to the performance
observed under the INT2 and INT3 con-
ditions (vs CON, p > 0.05 by two-tailed ¢
test; Fig. 3). However, the motor learning
performance under the INT4 and INT5
conditions significantly improved (vs
CON, p < 0.01 by two-tailed ¢ test), even
though the amount of visual feedback was only <25% of the
CON conditions. These results clearly show that, as predicted,
intermittent visual feedback can actually boost the visuomotor
learning of rhythmic movements. It also suggests that the visual
error information provided within ~1.2 s (three cycles X 400
ms) after a cycle (i.e., CON, INT2, INT3) may have harmful
effects on the correction of the motor command in subsequent
cycles.

Figure 3.

Discussion
Decades of research indicate that information regarding move-
ment error is critical to learning and improving motor skills
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Effect of intermittent visual feedback on visuomotor learning. a, Learning curves as a function of block (each block
consists of 10 cycles) in Experiments 2 and 3. The data represent the angular errors averaged across participants (the angular errors
during baseline trials were subtracted). b, The bar graphs show the errors averaged from the 101st to 200th cycles (from 10th to
20th block). Error bars are SE. Horizontal lines indicate statistically significant differences (p << 0.01).

(Thorndike, 1931; Trowbridge and Cason, 1932; Adams, 1971;
Schmidt and Lee, 2005). Previous studies generally assumed that
obtaining error information is always preferable for learning/
improving motor skills compared with not obtaining any feed-
back information (Shadmehr et al., 2010). However, considering
that the correction of motor command based on error informa-
tion is a physiological process that needs a certain amount of
processing time, we predicted that the correction is adversely
affected when the processing time is insufficient. Previous studies
have reported that motor learning during a discrete reaching task
deteriorated when the ITI was <1 s (Bock et al., 2005; Francis,
2005). Thus, we predicted that such impairment of learning with
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the shorter ITI should be the most prominent for rhythmic
movements without any break between cycles. Indeed, we have
shown that adaptation of out-and-back movements to a visual
rotation was worse when it was performed continuously (i.e.,
rhythmic movement) than discretely; the convergence of move-
ment error was slower, and the final plateau level of movement
error was greater (Ikegami et al., 2010).

Thus, a problem is how the motor learning system processes
the error information entering ceaselessly into the system during
such rhythmic movements. To investigate this issue, participants
adapted the rhythmic out-and-back movements to a visual rota-
tion, the magnitude of which randomly varied from cycle to cy-
cle, and the motor learning system (Egs. 1, 2) was identified using
a system identification technique (Ljung, 1999). In contrast to the
conventional model for discrete movement with sufficient
amount of IT], the identified model indicates that movement of a
cycle was corrected not only according to the error information
of the immediately preceding cycle, but also according to that of
more than one previous cycle (Fig. 2). This result suggests that the
temporally appropriate association between the motor command
and the resultant error is not guaranteed when the motor learning
system ceaselessly receives the movement error information.

More surprisingly, the movement error information of more
than one previous cycle can have a negative effect on the correc-
tion of the movement, as reflected by the negative value of the
sensitivity coefficient (Fig. 2f). Interestingly, such negative effects
will lead to a counterintuitive prediction: providing error infor-
mation in only a fraction of cycles rather than every cycle im-
proves the adaptation, because the negative influence of error
information from more than one previous cycle can be sup-
pressed. As predicted, we observed that providing visual feedback
once every fourth or fifth cycle, rather than every cycle, signifi-
cantly enhanced motor adaptation to a constant visual rotation in
terms of the final plateau level of the movement error (Fig. 3).
Longer training with CON condition would not decrease the
error to this level, because it remained unchanged by the exten-
sive training with >1000 movement cycles (Ikegami et al., 2010).
Notably, previous psychological studies (Winstein and Schmidt,
1990; Wulf and Shea, 2002) have demonstrated the beneficial
effects of a reduced frequency in error feedback on motor learn-
ing. These studies used a discrete movement task performed with
amuch longer ITI (e.g., 15-20 s). Furthermore, the enhancement
by reducing frequency in error feedback was observed only for
retention, while acquisition (e.g., the learning curve) was ad-
versely affected. Thus, their findings are not directly related to the
problem of temporal association of motor command with the
error information, as reported in the current study.

Huang and Shadmehr (2007) proposed that the motor learn-
ing system for discrete reaching movement uses memory trace of
error that decays with time to modify the motor command. Ac-
cording to this idea, when the ITI is not long enough, the motor
learning system cannot fully use the memory trace information,
resulting in the degradation of motor learning for shorter ITIs.
Our model implies the possibility that such a motor trace may
persist even across movements within a small time window (~1.2
s; 0.4 s for one cycle X three cycles), preventing proper temporal
association of motor commands with the resultant error and fur-
ther contributing to motor learning degradation. However, one
remaining puzzle is why such error feedback beyond cycles can
have a negative effect on motor learning. Although the neural
plasticity mechanisms underlying motor learning have been pro-
gressively elucidated in the cerebellum (Medina and Lisberger,
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2008) and vestibular nuclei (McElvain et al., 2010), little is known
regarding the time required for neural processing of an error
signal, or how the motor learning system processes an error signal
when it receives continuous neuronal inputs. Further physiolog-
ical and computational studies are required to elucidate the
mechanism underlying the error information beyond cycles and
its negative effect on motor learning, as found in the present
study.
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