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The Mechanism of Orientation Selectivity in Primary Visual
Cortex without a Functional Map

David Hansel !> and Carl van Vreeswijk!
"Laboratory of Neurophysics and Physiology and Institute of Neuroscience and Cognition, University Paris Descartes, 75270 Paris, France, and
?Interdisciplinary Center for Neural Computation, The Hebrew University, Jerusalem, 91904, Israel

Neurons in primary visual cortex (V1) display substantial orientation selectivity even in species where V1 lacks an orientation map, such
as in mice and rats. The mechanism underlying orientation selectivity in V1 with such a salt-and-pepper organization is unknown; it is
unclear whether a connectivity that depends on feature similarity is required, or a random connectivity suffices. Here we argue for the
latter. We study the response to a drifting grating of a network model of layer 2/3 with random recurrent connectivity and feedforward
input from layer 4 neurons with random preferred orientations. We show that even though the total feedforward and total recurrent
excitatory and inhibitory inputs all have a very weak orientation selectivity, strong selectivity emerges in the neuronal spike responses if
the network operates in the balanced excitation/inhibition regime. This is because in this regime the (large) untuned components in the
excitatory and inhibitory contributions approximately cancel. As a result the untuned part of the input into a neuron as well as its
modulation with orientation and time all have a size comparable to the neuronal threshold. However, the tuning of the FO and F1
components of the input are uncorrelated and the high-frequency fluctuations are not tuned. This is reflected in the subthreshold voltage
response. Remarkably, due to the nonlinear voltage-firing rate transfer function, the preferred orientation of the F0 and F1 components

of the spike response are highly correlated.

Introduction

Since its discovery by Hubel and Wiesel (1959), orientation se-
lectivity (OS) in primary visual cortex (V1) has been studied
extensively in cat and monkey (Campbell et al., 1968; Schiller et
al., 1976; Sclar and Freeman, 1982; Li and Creutzfeldt, 1984;
Skottun et al., 1987; Douglas et al., 1991; Carandini and Ferster,
2000; Ringach et al., 2002; Volgushev et al., 2002; Monier et al.,
2003; Nowak et al., 2008). In these animals, anatomically close V1
neurons have similar preferred orientations (PO), giving rise to
orientation maps (Hubel and Wiesel, 1968; Blasdel and Salama,
1986; Mountcastle, 1997; Tsodyks et al., 1999). Current theories
of OS assume that, as a correlate of orientation maps, neurons
with similar POs have a higher probability of connection (Ben-
Yishai et al., 1995; Sompolinsky and Shapley, 1997; Hansel and
Sompolinsky, 1998; Ferster and Miller, 2000; McLaughlin et al.,
2000; Persi et al., 2011).

However, sharp selectivity is also observed in species (e.g., rat,
mouse, or squirrel) whose V1 has no orientation map and neu-
rons with very different POs are intermixed (Dréger, 1975; Bous-
field, 1977; Métin et al., 1988; Girman et al., 1999; Ohki et al.,
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2005; Van Hooser et al., 2005; Niell and Stryker, 2010; Runyan et
al.,2010; Bonin et al., 2011; Tan etal., 2011). How can neurons be
sharply tuned to orientation if V1 has such a salt-and-pepper
organization?

Intuitively, sharp OS should be impossible in a salt-and-
pepper network if connectivity depends solely on anatomical dis-
tance. If a cell has K inputs with random POs, the modulation
with orientation of its total feedforward and recurrent inputs
scale approximately as 1/ \/I? relative to their means. This suggests
that, for large K “The mixed, salt-and-pepper arrangement of
preferred orientation in rodents [. . . ] argues for specific connec-
tivity between neurons” (Ohki and Reid, 2007). In this case, the
mechanism underlying OS should be similar to that with an ori-
entation map. We will say that a network with such a connectivity
has a functional map.

The evidence for functionally specific connectivity in V1 of
rodents is mixed. Fine scale functional networks (Yoshimura and
Callaway, 2005; Yoshimura et al, 2005) and orientation-
dependent connectivity (Ko et al., 2011) have been reported.
However, Jia et al. (2011) and Hofer et al. (2011) found that
neurons in layer 2/3 in mice V1 integrate inputs with a broad
range of POs. This prompted us to reconsider networks in which
connectivity depends solely on anatomical distance to disconfirm
the intuition that selectivity is necessarily weak in such networks.
Rather, in a conductance-based model, we show that when the
network operates in a regime where excitatory and inhibitory
inputs are balanced, the neurons can be sharply selective even if
the connectivity is random. Our theory allows us to make testable
predictions about the subthreshold voltage and spike response of
neurons in V1 without a functional map.
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Table 1. Gating variable of the conductance-based model,
x.(V) = a/(at, + B and 7(V) = 1/(ax, + B,) (inms)
X B

0.1(V + 30)
1 —exp( — 0.1(V + 30))

h 0.7exp( — (V + 58)/20)
0.1(V + 34)

1 — exp( — 0.1(V + 30))

X Q.

(V + 55)/18)
10

exp(— 0.1(V +28)) + 1
1.25exp( — (V + 44)/80)

dexp( —

A brief account of this study has been presented in abstract
form (van Vreeswijk and Hansel, 2011).

Materials and Methods

The model network
We model a network of layer 2/3 neurons in primary visual cortex with a
salt-and-pepper organization that receives input from excitatory cells in
layer 4, with a drifting grating as visual stimulus. The network consists of N,
excitatory and N; inhibitory neurons arranged on a square patch of size L X
L, where Lis ~1 mm. We denoteneuroni = 1,2, ..., N, of populationA =
E I with neuron (i, A). Its position, {x }/‘} is given by x' = iL/\N,
= 1},L/\/17A, wherei, = i — 1(mod \/NA) andi, = [(i — 1)/\7%\7;
Here | x] is the largest integer =x. We choose N, such that \]7\7 isan integer,
so that i, and i, both take the values 0,1, . \ZI\TA — 1. For most of the
simulations performed in here we take N = 40,000 and N; = 10,000. We
assume that the network does not have a functional map. Hence, the recur-
rent connectivity in layer 2/3 is random with the connection probability
solely dependent on anatomical distance. The layer 2/3 neurons also receive
inputs from layer 4 neurons with random POs.

Single neuron dynamics. Single neurons are described by a modified
Wang-Buzsaki model (Wang and Buzsédki, 1996) with one compartment
in which sodium and potassium currents shape the action potentials. The
membrane potential of neuron (i, A), V?, obeys

av;

P A A A A A
Cm dt - 7IL,i - INu,i - IK,i - Iudapt,i + Iinput,i’ (1)

where C,, is the capacitance of the neuron, It ; = —g(V} — V) is the
leak current and If;pu,, is the total external input into the neuron.

The other terms on the right side of Equation 1 are the voltage-dependent
sodium and potassium currents which are responsible for the spike genera-
tion and an adaptation current I’, apt;» We will leave off the subscript i and
superscript A in the description of these currents for ease of reading. They
are given by Iy, = gnah(V — Vi) Ik = gn'(V — Vi) and
Liope = gadap,z(V — V). Theactivation of the sodium current is assumed to
be instantaneous, 71..(V) = «,(V)/(a,(V) + B,(V)). The kinetics of the
gating variable /1 and  are given by (Hodgkin and Huxley, 1952)

dx
= a1 =0 — BV @
withx = h, n,and «,, (V)and B,( V) are nonlinear functions of the voltage
given in Table 1.

The dynamics of the gating variable, z, of the adaptation current, are

dz  z.(V)—z
=== 3)
Tadapt
with 7,,,,, = 60 ms and
V) = ! 4
z(V) = 1 + exp( —0.7(V + 30))’ (4)

The parameters of the model are gy, = 100 mS/cm?, Ve = 55 mV,
g = 40mS/cm’, Vx = —90 mV, V, = —65 mV, and C,
= 1uF/cm’. The conductance of the leak current is g
= 0.05 mS/cm*andg; = 0.1 mS/cm’ for the excitatory and the inhib-
itory neurons, respectively. This corresponds to resting membrane time
constants of 20 and 10 ms respectively, in accordance with standard
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values (Somers et al., 1995). Excitatory neurons have an adaptation cur-
rent with g4, = 0.5 mS/cm’. Since fast spiking cells do not show spike
frequency adaptation (Connors et al., 1982), we assume that inhibitory
neurons in our model do not have an adaptation current.

The external input current into neuron (i, A) comprises the following
three terms:

I?npurx Iquecx + Iffl + Ib i (5)

where I, ; denotes the synaptic current due to the recurrent interactions
in layer 2/3, Iffl represents the feedforward input from layer 4 into layer
2/3, and I}, is a background input due to the interactions of the local
circuit we model with other cortical regions.

Background input. We assume that the background input is generated
by a large number, K, of neurons we do not explicitly model. These
neurons fire in a Poissonian manner with a constant rate Rj. The incom-
ing spikes from the background are filtered through a synaptic response
kernel described by an instantaneous rise followed by an exponential
decay with time constant 7 ,,.

We model the background input current, I}, by

Ii= —g.®pV = V) + (1 —p)(V, -

RA
gaﬂ=§?K<R?4+ J:ﬁnaxﬂ>, (7)

where 1 (#) is a Gaussian noise with zero mean and temporal correlation
MO (t) = exp( — [t — ']/7,,)/27,,.

Note that the right side of Equation 6 comprises two contributions.
The first is proportional to the driving force, V&' — V. Thus it modifies
the input conductance of the neuron. This contrasts with the second
contribution which does not depend on the membrane potential of the
postsynaptic cell. We adopted this description to schematically incorpo-
rate the fact that the change in input conductance induced by a synapse
depends on its location on the dendritic tree. Proximal synapses which
substantially affect the neuron’s input conductance are represented by
the first contribution. The second contribution accounts for the synapses
which are distal and which affect the input conductance of the neuron
less. The ratio of these two contributions is p/(1 — p) with0 = p = 1.

Recurrent interactions. The current input into neuron (i, A) due to the
activation of recurrent synapses is

Tes = = 2" O0p(V! = Vi) + (1= p)(Vi = V)]
gAB( f) = gAB E C;‘}B; e (=T ,

Tsyn j=

with

(8)

where t’B ' is the time of the kth action potential fired by neuron ( j, B) and
C;® = 0,1 s the connectivity matrix.

The probability that neuron (j, B) is connected presynaptically to
neuron (i, A), i.e., that Cf}B = 1, falls off with the anatomical distance
between them according to a Gaussian profile. To correct for boundary
effects induced by the finite size of the patch we assume periodic bound-
ary conditions. The connection probability PAB is given by

Py¥ = Z,G(x! — x},0)G(y! — yi,0), (9)

where G(x, o) is the periodic Gaussian with period L and standard devi-
ation o, G(x,0) = 2;__, exp( —[x — kLT/20%)/( 727) The pref-
actor Z is such that 3,_, v, PAB = K. Therefore, the total number of
inputs a neuron receives from other neurons of a given population, is K
on average.

The strength of the interactions between two neurons is characterized
by the conductance g,. As justified (see Results) we parameterize g,p
such that it scales with K as

8us = (10)

%S

where G, is independent of K.
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The feedforward input. We assume that layer 4 has N excitatory neu-
rons which are orientation selective and fire Poissonianly. For a stimulus
grating with contrast C%, orientation 6 and temporal angular frequency
w, the firing rate, R{f , of excitatory neuron i in layer 4 (neuron (4, ff)) is
given by

RJ =R + R{(C) £:(0) gi(1). (11)

Here RY is the background rate and R{(C) = Rflog,(C + 1) is the ampli-
tude of the response to the stimulus. We assume that normalized tuning
curves, f;, are heterogeneous. For simplicity we also assume that they are
symmetric around a randomly chosen PO Af. Therefore f(0) = 1

+ 3¢, fcos2n(B — Af). The temporal modulation, g, of the response is
periodic with period 27/w and can be written as g() = 1

+ 37, g@Wcosn(wt — ¢f), where ¢ is the temporal phase of the neuron.
The statistics of the tuning curves is such that A is uniformly distributed
between 0 and a1, while £ has a root mean square (rms) value of f,,. Likewise
¢'ishomogeneously distributed between 0 and 27, and g™ has an rms value

8-
The feedforward input current into neuron (i, A) is given by

150, 1) = —g5.(6, )(p(Vi' — Vi) + (1 = p)(V; = V),
(12)

where g}} :(6, 1) is the total conductance resulting from all the feedforward
synapses on neuron (i, A). It satisfies

A N —
8}4},1'(0, 1) = ﬁ ngﬂz exp< — tT ]'k>, (13)

Tsyn j=1 k syn

where t;ff «1s the time of kth spike of neuron ( j, ff). The connection matrix
C,{}ff is random, with Cf}ff = 1 with probability ¢;K/Njy and C,{}ff =0
otherwise. Thus, on average, neuron (i, A) receives input from Kj
= ¢yK neurons in layer 4.
The strength of the feedforward input is characterized by the conduc-

tance g We parameterize it such that it scales with K as (see Results)
GA
- ji
5=

where GfA} is independent of K.
To speed up the simulations we make the diffusion approximation
(Tuckwell, 1988) for the total feedforward conductance, and assume that

7K/ Ny is sufficiently small that we can neglect correlations in the input
from layer 4. Accordingly we can write

t

g"6,1) = ;ﬁ f (Rl (6, ) + \RE (6, )i ()]
yn

(15)

Here 7 is a Gaussian white noise term and R’ is the sum of the rates of all the
excitatory layer 4 neurons that project to neuron (i, A), R, = EJ, Cﬁ}ﬁij
As we show below, we can approximate for R?,,, by

R, (8, 1) = c;K[RY + RI(C)] + \JeuKRY x! + Je;,KRY(C))

X [xf‘ + €421 ,c082(0 — A + puzs cos(ot — @)

+ %zﬁﬁos&@ + ot — ¢5) + Zic0s(20 — ot + <15§‘,,-)}]) (16)

where &, depends on the OS of the layer 4 neurons and w, on their
temporal modulation. The variables x7', z;,, A7, and ¢, are independent
and random, with }c’,4 drawn from the Gaussian distribution e ~*/2/ %,
2, drawn from the distribution p(z) = ze~*’%, A} is uniformly distrib-
uted between 0 and 7, while the variables ¢ ; are drawn from the uniform
distribution between 0 and 2.
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To interpret R, it is useful to first consider the case where there is no
temporal modulation of the layer 4 output (p, = 0). In this case, R}, has
a part which is not modulated with 6 that consists of a term proportional
to K which is the same for all neurons in population A and a term
proportional to \/I? which varies from cell to cell. The latter is due to the
variability in the number of feedforward inputs the neurons receive. On
top of this R?},, also has a part that is modulated with 0. This part is also
proportional to \/I? and it has its maximum for 8 = Af which differs
from neuron to neuron. The amplitude of the modulation also varies
from neuron to neuron.

With temporal modulation of the layer 4 response, R, is more complex.
Apart from a modulation with 6, the R/, is now also modulated with the
time, ¢. Like the modulation with orientation, the temporal modulation is of
order \/I? with variable amplitude across neurons. It can be decomposed into
a part that is independent of 6 and a part that is modulated with#. It can be
shown that the latter part is largest at a stimulus orientation A,A which is
uniformly distributed between 0 and, and is not correlated with Af, the PO
of the time average of R(},,. This is remarkable since we assumed that for
excitatory layer 4 neurons all the temporal Fourier components have exactly
the same orientation tuning (Eq. 11).

To summarize, R}, has a component that scales as K which is
unmodulated with orientation and time and components which are
modulated with orientation and time which are of order \/E Thus,
even when the modulation of the layer 4 neurons’ response is strong,
R, and hence the total feedforward input into neuron (i, A) is only
very weakly modulated. Furthermore, the POs of the constant (F0)
and time modulated (F1) components of the feedforward input are
uncorrelated, which raises the question of to what extent the POs of
the FO and F1 components of the neurons’ response in layer 2/3 are
correlated.

Proof of Equation 16. To prove Equation 16 we write Rf,o, as

[n]) (lml)
ﬂ 8k
R]{?m = RJ(;f Ek Cﬁff + le‘f E ( Ek Cﬁ‘ffT

n,m

exp( — i[2nAf

+ m@ﬂ)) exp(i[2n0 + mot]), (17)

where, for notational convenience, we use ﬂo) = g}(o) = 2.

The population average, R},,, of R7,,, is obtained by averaging over the
connection probability, orientation tuning curves, temporal modula-
tion, and over the POs and temporal phases. Averaging over A" and ¢,
we obtain that R | satisfies

R}, = [R + RO INLCH) = c;K[RY + RI(C)],  (18)

where we use ( ) to denote averaging. For individual cells, Rém, deviates
from this average and we write it as

fo&m
Rl = Riyi + v%[ R (0, 0) + RI(C) 27! (n, m)

n,m

exp(i[2n6 + mwt])], (19)

where x(n,m) are random variables given by, xf(O, 0) =
[Ek Cj-?(ﬂ - cﬁK]/\% and xf‘(n, m = Zk C]?jf k‘”l) gﬂ"") exp( — 2nAf
+ m(ﬁ,ﬁ)/ﬁng‘n‘ \/?K for (n, m) # (0, 0).

If cﬂK is large, but much smaller than Nﬁry the number of feedforward
inputs, kf‘ = E}_ Cf}ff received by neuron (7, A), takes the value k with
probability P(k) = [¢;K]‘e /¥ /k!, such that x(0, 0) is drawn from a
Gaussian distribution with mean 0 and variance 1. For (n, m) # (0, 0),
xf(n, m) is the sum of a large number of small contributions of
complex values with mean 0, and hence is drawn from a complex zero
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mean Gaussian distribution. The correlation between these variables
satisfies

Aff 1) £lpD flmD ;{lal)
uﬂmm@ww»—<zcﬂﬂﬁéﬁ&
v K fulfl8mla >

X exp( —i[2(n + p)AL + (m + @)

n|) £lp[) (|ml) (
N o (A Dy (gl gllaby .
KT fufel 88l

(exp( = i2(n + )AL + (m + QD). (20)

Averaging over A and ¢{ we obtain that these correlations are 0, for
(p, q) # (—n, —m), while (x;‘(n, m)xf( —n, —m)) satisfies
AP AP

fur &

N,
A Al _ . — Wy oafr
<xj (n, m)x]( n, —m)) = K Ci )

(21)

Since xf(n, m)and x'( — n, — m) are each other’s complex conjugate, we
can write x'(n, m) = z'(n, mexp(i}'(n, m)) and x'( —n, —m) =
zj‘(n, m)exp( — iqbf(n, m)), where z'(n, m) is a real variable drawn from
the distribution p(z) = ze */? and gbf(n, m) is a real variable drawn
from a uniform distribution between 0 and 2. Using this we obtain for
R;'A:mt as

Rl = GKIR] + Rl + \GKRx'(0,0) + \GKR](C)¢'(0,0) +
+ Zf,,zf(n, 0)cos[2n8 — ¢/ (n, 0)]
+ fg;é;*(o, n)cos[nwt — ¢(0, n)] +

i ﬁfm {z(n, m)cos(2n8 + mot — ¢ (n, m))

+ 2\ (n, — m)cos(2n® — mawt — ¢ (n, —m))}].

+

(22)

Assuming that OS and temporal modulation are not too strong, the
higher Fourier modes of the orientation tuning and temporal modula-
tion will be small, so that we can ignore terms with n and m larger than 1.
Thus we obtain Equation 16 with §, = f;and uy = g,. Note that under
the highly simplified assumptions we made here for the feedforward
connections, & and §; are the same. However, allowing for different Kﬁr
for the two populations or assuming different distributions of weights for
feedforward synapses in these populations will result in a difference be-
tween & and &. In our simulations we will therefore also explore the
effect of changing these variables independently.

Parameters (default set). Unless specified otherwise the recurrent con-
nectivity is K = 2000, the SD of the probability of connection is o
= L/5, and ¢ =0.1,50 that the feedforward connectivity is K= 200.
The parameters of the synapses are V, = 0 mV, V; = —80 mV, Gg =
0.15, Gjp = 045, Gg; = 2, Gy = 3ms * mS/cm’, 7, = 3 ms, Gj;
= 0.95,and G}f = 1.26 (units: ms + mS/cm?). Other parameters are as
follows: R, = 2 Hz and R; = 20 Hz. The period of the drifting grating is
500 ms (w = 4ms ).

The parameters of the background input also scales with 1/ VR In
our simulations we take g = 0.3/ \“]K g = 04/ \]I? in units of
ms + mS/cm? and R = R} = 2 Hz

Numerical procedure and analysis of the simulation results
Simulations. The numerical simulations were performed using a fourth-
order Runge—Kutta scheme to integrate the neuronal dynamics. The syn-
aptic interactions and the noise were treated at first order. The results
were obtained using a time step of 6t = 0.05 ms. Some of the simula-
tions were repeated with smaller time steps (6t = 0.025 or 0.0125 ms) to
verify the accuracy of the results.

Measures of selectivity. To compute the spike-tuning curves of the neu-
rons, we simulated the network for 25 s upon stimulation with 18 input
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angles from 0 to 180° at intervals of 10°. For each angle, the firing rate of
a neuron, r(0), was estimated by averaging its spike response over the
whole run (a short transient was discarded). We quantified the degree of
OS with the circular variance (Mardia, 1972)

. G
CircVar=1——,
Co

(23)
where ¢ is defined by Z, = X r(0)exp2ik0 = cexp2iV,. A flat tuning
curve (nonselective response) corresponds to CircVar =1 whereas for a
very sharply selective response CircVar is close to 0. The angle W, pro-
vides an estimate of the neuron’s PO.

The tuning curves of a large fraction of the neurons could be well
fited to a Von Mises function defined as VM(0) = r, +
r exp([cos2(0 —  6,,) 1]/D). We estimated the parameters
Tos 71> 0,0, D for each neuron by minimizing the quadratic error of the fit,
E =2 (r(0) - VM(0))?, where the sum is over the 18 orientations of
the stimulus. The quality of the fit can be estimated by evaluating the x*
distribution for 14 degrees of freedom (18 points minus 4 parameters)
(Press etal., 1992). We considered that the fit was good if the probability,
g, was larger than 0.05. The PO of a neuron is 6,,. We checked that when
the fit is satisfactory, 0, is very close to W,. We also evaluated the half-
width at half-max of the response above baseline from the formula (in
degrees) as follows

1+ exp; - 2/D))]. (24)

90
W = P cos”! [1 + Dlog(

Another measure of selectivity that is frequently used in experi-
mental studies is the orientation selectivity index (OSI), defined by
Rpa - Rurtho
Rpo + Rurrhv
preferred and orthogonal orientation, respectively.

In simulations in which the feedforward input varies sinusoidally with
time, the responses of the neurons are temporally modulated. Therefore
for each neuron we measured the mean (FO component) and the modu-
lation (F1 component) of the firing rate. The latter is the amplitude of the
first temporal Fourier moment of the response.

Comparing the tuning of layer 4 and layer 2/3 neurons. The rate of
excitatory layer 4 neuron (i, ff) satisfies Equation 11 with fi(§) = 1 +
= fMcos2n(@ — Afyandg(n) = 1 + DY gMcosn(wt — @f). The OS
and temporal modulation of the feedforward input is characterized by &,
and p,,, which are given by the rms value of £ and g\ respectively.

The level of orientation tuning of neuron (i, ff), fﬁ” ,can be related to its
circular variance, CircVar!, by £ = 2[1 — CircVar]. To compare the
degree of OS of layer 2/3 neurons in population A to that of the layer 4
neurons that project to them, we compare §, = 2\([1 — CircVar' ) to
& = 2.[[1 — CircVar"P), where CircVar! is the circular variance of
neuron (i, A) and the average is over population A.

Similarly, denoting by F1¥ and F07, the F1 and FO components of the
firing rate of neuron (i, ff), respectively, one has g’ = F17/F07. Hence
the degree of temporal modulation of population A in layer 2/3 can be
related to that of its layer 4 input, by comparing uy = {[F1//F0/]) and
e = V([Fl?/FO?F), where F1# and F0? are the amplitudes of the
modulation of the F1 and FO components of the firing rate of neuron (i,
A), respectively.

OSI = , where R,,, and R are the firing rates at the

ortho

Results

We model a network of layer 2/3 neurons in primary visual cortex
with a salt-and-pepper organization and without functional archi-
tecture. The neurons in the network receive input from excitatory
cells in layer 4, with a drifting grating as visual stimulus.

The network consists of Ny, excitatory and N, inhibitory neu-
rons arranged on a square patch of size L X L, where L is on the
order of ] mm. We denote neuroni = 1, 2, ..., N, of population
A = E, I with neuron (I, A). For the simulations reported about
here, we take Ny = 40,000 and N; = 10,000. The neuronal dy-
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A B
20 mv
I ) \f—

50 msec
o N
50 msec
Figure1.  Single neuron dynamics and properties of recurrent and feedforward inputs in the

model. A, B, Action potentials of an excitatory and an inhibitory neuron, respectively. C, D,
Unitary EPSPs (€) and IPSPs (D). The traces in red and blue correspond to excitatory and inhib-
itory postsynaptic neurons, respectively. The PSPs are faster when the postsynaptic neuron is
inhibitory. This is because inhibitory neurons have a larger leak conductance and thus a shorter
membrane time constant than excitatory neurons.

namics are described by one-compartment conductance-based
models in which sodium and potassium currents shape the action
potentials (Fig. 1A,B). For the details of the dynamics of the
neurons, see Materials and Methods.

The recurrent connectivity of the network is random with the
connection probability solely dependent on anatomical distance
according to Equation 9. A neuron receives on average K inhibi-
tory and K excitatory recurrent inputs. The interactions are me-
diated by synaptic conductance changes. The EPSPs and IPSPs
generated by these interactions are shown in Figure 1, C and D.
The amplitudes of the EPSPs are approximately 0.15 and 0.6 mV
for E to E and E to I synapses, respectively. The I to E synapses
generate [PSPs with a maximal hyperpolarization of 0.4 mV. The
IPSPs of I to I synapses are approximately 0.6 mV.

The input current into neuron (7, A) has three contributions.
One represents the total synaptic current due to the recurrent
interactions within layer 2/3. The second contribution, corre-
sponds to the feedforward input from layer 4 in V1. The third
contribution, the background input, represents the inputs com-
ing from other cortical regions not explicitly represented in the
model. The background and feedforward inputs are also modeled
as conductance changes (see Materials and Method).

The feedforward input is an essential component of our
model. To implement it we assume that layer 4 has N excitatory
neurons, which are tuned to orientation. The PO of a layer 4
neuron is uncorrelated with its position, because of the salt-and-
pepper organization of the network. For the same reason, a cell in
layer 2/3 receives inputs from a set of layer 4 neurons with ran-
dom POs. A given layer 2/3 neuron is connected on average to
Ky = czK layer 4 neurons as depicted schematically in Figure 2.

Because of the law of large numbers, summing c;K inputs which
are selective with random POs results in a total feedforward input
whose average over orientation is proportional to K and whose mod-
ulation with orientation is smaller than this average by a factor \]IE
(Fig. 2). As a result, the total layer 4 input into a layer 2/3 neuron has
an untuned component which is much larger than its tuned compo-
nent. This is the case even iflayer 4 neurons are sharply tuned. These
considerations can be formalized (see Materials and Methods) to
compute a mathematical formula for the total change in conduc-
tance induced in layer 2/3 neurons by their feedforward inputs when
the visual stimulus is a drifting grating.
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The mechanism for orientation selectivity: a

qualitative explanation

The goal of this paper is to show how sharp OS emerges in a
network with salt-and-pepper organization with a connectivity
which depends solely on the anatomical distance and not on the
functional properties of the neurons. To this end, we first assume
that the layer 4 neurons, which project to layer 2/3, are all com-
plex cells. Later in the paper, we will consider the case where
simple cells are also included.

In this situation, the feedforward input does not display tem-
poral modulation and the parameter w (see Eq. 16) is zero. Ac-
cordingly, the time averaged total feedforward conductance, gf} o
of neuron (i, A), is simplified to

26) = ZlgKR] + RI(0)
+ \GKR] + RIO)x! + \GKRIC),7 cos2(0 — AD)],  (25)

where x? is a random variable drawn from the zero mean
Gaussian distribution with variance 1, z¢' is drawn from the
x-distribution with 2 degrees of freedom and the preferred
feedforward input orientation, Af‘, is drawn from the uniform
distribution between 0 and 180°.

This implies that the unmodulated part of the conductance is
larger than the modulated part by a factor on the order of V]I?. To
get a total synaptic feedforward conductance which is compara-
ble to the threshold, the synaptic strength, g;*, must be on the
order of 1/K. However, this would imply that the modulation
with orientation of the feedforward input is small. This would
lead to a very weak tuning of the cell’s outputs.

To get a strong OS for the neurons in the network, the modula-
tion of the feedforward conductance should be of the same order as
the threshold conductance (which is of order 1). Hence, the synaptic
strength should be of order 1/ \k However, this would make the
unmodulated part of the conductance larger than threshold by a
factor VZIE. In that case the cells would fire at close to the maximum
rate, unless the recurrent inputs prevent them from doing so.

Now consider a randomly connected network in which the
conductances of the feedforward connections scale as 1/K. The
neurons also receive recurrent inputs from, on average, K excit-
atory and K inhibitory cells. Because of the randomness of the
connectivity, these cells have randomly distributed POs. Assum-
ing that the strength of the recurrent synapses scales as 1/ \,ZI%, the
modulated part of the total excitatory and inhibitory conduc-
tances induced by these cells will be smaller than the average by a
factor \/I?, just as is the case for the feedforward conductance.
Hence, we have the following situation: the modulation of the
feedforward and the recurrent excitatory and inhibitory inputs
are all comparable to the threshold, but the unmodulated part of
each of these three components is much larger. However, if the
rates of the excitatory and inhibitory neurons are just right, the
large recurrent inhibitory component of the input will balance
the large total (e.g., feedforward plus recurrent) excitatory com-
ponent, leading to a net input whose tuned and untuned compo-
nents are both on the order of the threshold. In such a balanced
regime, the response will display substantial OS.

It has been shown (van Vreeswijk and Sompolinsky, 1996,
1998; Lerchner et al., 2004) that under general conditions, net-
works with strong recurrent excitation and inhibition automati-
cally settle into a balanced state without any fine-tuning of the
parameters. This explains how substantial orientation selectivity
emerges, in a robust manner, in a cortical network with salt-and-



4054 - ). Neurosci., March 21,2012 - 32(12):4049 — 4064

ave

gKffR

0 0 1

o]

0

Figure 2.

ave

Hansel and van Vreeswijk e Selectivity without Map

0 9 180 O 9 180

Schematic representation of the time-averaged feedforward conductance. K layer 4 neurons with random PO (left column) are connected to a layer 2/3 neuron. The total feedforward

conductance, averaged over orientation (middle, green) is the product of the synaptic conductance, g = g%.éthe averagefiringrate R,,,, = Rfof + R{’(C), and K. The total conductance (red)

is very weakly modulated with orientation. The typical amplitude of the modulation is on the order of

feedforward conductance will have very weak tuning.

pepper organization even though its connectivity is random and
depends solely on anatomical distance.

Orientation selectivity in a network with only complex cells
To assess this qualitative argument further we performed numer-
ical simulations of our model, assuming first that all the layer 4
neurons that project to the network are complex.

The spike response of the neurons is tuned
Despite the fact that the modulation with the stimulus orientation of

the feedforward input is weak, the response of the neurons is sub-
stantially selective. This is shown in Figure 3A where we plot the
voltage traces for one excitatory and one inhibitory neuron for stim-
uli at six orientations and 30% contrast. The spike response of the
excitatory neuron is substantial only for § = 30°, indicating a sharp
tuning. The spike response of the inhibitory neuron is also tuned,
although more broadly, with a maximal response for 8 =~ 10". Note
that with the scale of the y-axis used in this figure, the change in
average membrane potential upon presentation of the stimulus is
hardly noticeable.

The tuning curves of the spike responses of these two neurons
are plotted for three levels of contrast in the top left and bottom
right of Figure 3C, respectively. The PO is the same and the degree
of tuning is similar for all three levels of contrast. Figure 3, C and
D, also shows the tuning curves of three other excitatory and
three other inhibitory neurons. These plots suggest that the de-
gree of tuning is diverse across neurons. The tuning can be sharp
but also very broad, as in the case of neurons (190, E) and (38, I).
Also note the diversity in the maximal firing rate of the neurons.

The tuning properties of the single neuron spike response
are quantified in Figure 4. Figure 4 A plots the histogram of the

s (right). Thus even when the individual layer 4 neurons are sharply tuned, the total

V

CircVar. It is broad for the two populations, with an average
CircVar equal to 0.42 and 0.48 for the excitatory and the in-
hibitory populations, respectively. Thus with the parameters
used in these simulations, the neurons in both populations are
significantly tuned although the inhibitory neurons are
slightly less tuned than the excitatory ones.

Another measure frequently used to quantify neuronal selectivity
is the OSI (see Materials and Methods). The distributions of the OSI
for the two populations are plotted in Figure 3B. They peak near 1
because for a large fraction of the neurons the firing rate at the
orthogonal orientation is very small as, for instance, for neurons
(61, E), (150, E), or (32, I) (Fig. 3B,C). All these neurons have
their OSI = 1. Thus, OSI is not a very sensitive measure of OS.
For instance, neuron (85, I') is more broadly tuned than (61, E) or
(150, E). Yet its OSI is 0.9, close to that of (61, E) or (150, E).

The tuning curve of the neuronal spike response can be well
fitted by a Von Mises function, for a large fraction of the cells (see
Materials and Methods). For instance, for a contrast level of
100%, the fit is good for 88 and 74% of the excitatory and inhib-
itory neurons, respectively. These fractions are larger for lower
contrast levels. For neurons with a good fit one can compute a
width (TW) of the tuning curve after subtracting the baseline (see
Materials and Methods; Eq. 24). The histograms of this quantity
are plotted in Figure 4C: they are very similar for the two popu-
lations. Hence, the fact that CircVar is larger for the inhibitory
neurons compared with the excitatory ones can be explained, to a
large extent, by the trend of the inhibitory neurons to exhibit
higher baseline activity.

Finally, the diversity in the maximum firing rates of the neu-
rons is clear from Figure 4 D. For the two populations the histo-
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see Materials and Methods.

gram is skewed. The maximum firing rate for inhibitory neurons
tends to be larger than for excitatory neurons.

Orientation selectivity is contrast invariant

We also investigated whether the contrast affects the tuning
properties of the neurons. Figure 5A plots the comparisons of the
TW for low (10%), medium (30%), and high (100%) contrasts.
The TW is approximately contrast invariant for most of the neu-
rons whose tuning curves can be well fitted with a Von Mises
function at all three contrasts. The CircVar is bit more sensitive to
contrast (Fig. 5B). In fact, there is a slight tendency for CircVar to
decrease with contrast.

Neurons integrate inputs from cells with all preferred orientations
Figure 6A plots the tuning curve of the spike response for a
sharply tuned excitatory neuron [neuron (71, E), tuning curve in

m

0 60 120180 0 60 120180

(85,1) (38,1)

O 60 120180 0 60 120180
Orientation (deg)

The response of the neurons is orientation selective. A, B, Traces of the membrane potential of an excitatory (4) and
aninhibitory (B) neuron for a stimulus with contrast level, C = 30%, presented at 250 ms (arrow) at six orientations. €, D, Tuning
curves of four excitatory (€) and four inhibitory (D) neurons at 10% contrast (blue), 30% contrast (green), and 100% contrast (red).
The stimulus was presented at 18 orientations (every 10°). For each presentation, the firing rate was estimated from the spike
response averaged over 25s. The neuronsin the upper leftin Cand lower rightin D are the same as those in A and B. For parameters
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(38,1) the center] together with the tuning
curves of eight of its presynaptic neurons.
The PO and the degree of tuning of these
neurons are diverse. In fact, the distribu-
tion of the POs over all neurons presyn-
aptic to this excitatory neuron is almost
homogeneous as shown in Figure 6B.
Moreover, the distribution of the Circ-
Var of these neurons is the same as the
one computed for the whole network as
shown in Figure 6C. Therefore, despite
the spatial structure of the connectivity,
the probability that two neurons are
connected does not depend on their
functional properties. This is a conse-
quence of the lack of correlations be-
tween the POs of the feedforward input
and the pattern of the recurrent
connectivity.

The network operates in the

balanced regime

The mechanism for sharp OS described
above assumes that the network operates in
the balanced regime. That this is indeed the
case in our model is depicted in Figure 7.
Figure 7A plots the membrane potential of
neuron (3, E) in response to a stimulus at its
preferred (6 = 50° red) and orthogonal
(6 = 140°, black) orientations. The spike’s
tuning curve of this neuron is plotted in Fig-
ure 8C. To demonstrate the balance of exci-
tation and inhibition in the input into this
neuron we blocked its voltage-dependent
sodium current to suppress the large rapid
variations in the synaptic currents due to the
driving force during action potentials. The
corresponding voltage traces are shown in
Figure 7B.

Figure 7, C and D, plots the excitatory
(red trace), the inhibitory (blue trace) and
the net synaptic currents. Upon a visual
stimulus (> 125 ms), the excitatory as well
as the inhibitory currents are large, but their
sum, i.e., the net input current into the neu-
ron, is much smaller than the two contribu-
tions taken separately. Therefore excitation
and inhibition balance. Despite the fact that
the mean net current is below the neuron’s
threshold, if the sodium currents are not blocked the neuron fires
action potentials (Fig. 7A). This is because the fluctuations in the
synaptic input can bring the voltage above threshold. In the ab-
sence of the stimulus (¢ < 125 ms), excitatory and inhibitory
currents also balance, but, as expected, they are smaller than dur-
ing stimulation. Importantly, at the time the stimulus switches
on, the inputs increase rapidly within a few milliseconds and the
response of the neuron is very fast (Fig. 7A, time at which the first
spikes are fired in the red trace). This fast response to changes in
inputs is another signature of the balanced regime in which the
network operates (van Vreeswijk and Sompolinsky, 1998).

The balance of excitation and inhibition is in fact a feature of
all the neurons in our network. It is demonstrated for another
neuron [neuron (98, I)] in Figure 7E-H.
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We have seen that the tuning proper- A
ties are highly heterogeneous across neu- 33—
rons. This diversity is a consequence of the
heterogeneities in the feedforward exter-
nal inputs combined with the network dy-
namics. The heterogeneities in the
feedforward input alone are not sufficient
to generate such a diversity since they are 1
much smaller, by a factor VR than the
population average input. However, their
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effect is amplified by the recurrent dy- 0
namics. This is one of the hallmarks of a 0
network operating in the regime of bal-
anced excitation and inhibition (van
Vreeswijk and Sompolinsky, 2005). C
Another hallmark of the balanced re-
gime is the high irregularity of the neuro-
nal action potential discharges. Indeed,
the neurons fire very irregularly in our
network. This is shown in Figure 7I where
we plotted the coefficient of variation of
the interspike interval distribution for
each neuron. They are sharply peaked at
CV = 0.95 for the excitatory population
and around CV = 1 for the inhibitory 0 I
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one, indicating the high variability of the 0
discharges of all the neurons.

Mean subthreshold voltage is tuned to
orientation, but voltage fluctuations
are not
The tuning curves of the mean and fluc-
tuations of the membrane potential of a
neuron do not only depend directly on
the synaptic input, but are also affected
by the tuning curve of the spikes. This
effect is stronger for the fluctuations. To
suppress this effect one may consider clipping the spikes.
However, we found that the results are strongly dependent on
the voltage at which this clipping is performed (results not
shown). Therefore, to study the tuning of the subthreshold
voltage we blocked the sodium current in a small population
of neurons (200 excitatory and 200 inhibitory neurons) as we
did above to demonstrate the balance of excitation and inhi-
bition. For these neurons we computed the tuning curves of
the mean voltage and voltage fluctuations. Three examples
(two well tuned cells and one broadly tuned one) are shown in
Figure 8. For all three examples there is clear orientation tun-
ing of the time-averaged voltage with a PO which is the same as
the PO of the spike response. Its tuning is broader than for the
spikes. Remarkably, the voltage fluctuations are not tuned
with orientation. Their SD is almost the same at all
orientations.

These results can be explained as follows. For a constant firing
rate of the layer 4 neurons, the total feedforward conductance
into neuron (i, A) is

Figure 4.

€70,1) = gl R7,.(0) + \RL,(0)ni(1)], (26)

where 1 (t) is a zero-mean Gaussian variable with temporal cor-
relation (n(Hn(t')) = exp( — [t — ¥'|/7,,)/27,, (see Eq. 15).
Using Equation 16 we can write R?,,,(0) as

15 30 45 0
TW (deg)

Diversity of spike response properties. 4, Distribution of the circular variance, CircVar. Average CircVar are 0.42 and
0.48 for the excitatory and inhibitory populations, respectively. B, Distribution of the 0SI. Average 0SIs are 0.85 and 0.78 for
excitatory and inhibitory populations. €, Distribution of the TW (see Eq. 24). D, Distribution of the maximum firing rate, R .. A-D,

50 100
Rmax (Hz)

1 max

Excitatory population in red; inhibitory population in blue. All the histograms were computed from the responses of the neurons to
a stimulus with a 30% contrast, presented at 18 orientations (every 10°), for 25 . R, was computed as the largest firing rate out
of the responses at the 18 orientations. In 4, B, D all neurons are included. Only neurons with a tuning curve well fitted to a Von
Mises function are included in C.

cyKIRY + RI(O)] + euK[RY + RI(C)]x}
+ g KRI(C))€azicos2(0 — AY),  (27)

with x/' drawn from the Gaussian p(x) = e *7?/ \’%’ Z* drawn
from the distribution p(z) = ze */? and A? drawn from the
uniform distribution between 0 and .

Using gj} = Gj}/ \’]K we see that the total feedforward conduc-
tance, averaged over time, contains an orientation-independent
term which is large (proportional to VVI@ and which is the same
for all neurons in population A. It also contains an orientation-
independent part and a part which is modulated with 6, both of
order 1 and both varying from neuron to neuron. The recur-
rent excitatory and inhibitory conductances also have three
parts with similar features. Considering the sum of all these
inputs, and its net effect on the membrane potential of a layer
2/3 neuron in which the spikes have been blocked, the time
average voltage must be tuned with orientation in a way which
is heterogeneous across neurons in the same population. This
is what is observed in Figure 8.

Let us now consider the variance of the temporal fluctua-
tions in the feedforward conductance. It also has three com-
ponents with the same features as those we just described for
the time average. However, they are smaller than the mean by
afactor on the order of \,'llz Similarly, the three components of
the temporal fluctuations of the recurrent excitatory and in-
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4.8 Hz as compared with 4.65 Hz for Q =
2 and 4.6 Hz for the default (Q = 1). The
corresponding values for the inhibitory
. %: population are 8.1, 8.05, and 7.85 Hz.

All the information on the orientation

o oo
" of the stimulus is conveyed to the network
A V.. primarily by the very weak modulation
o e 8 with orientation of the feedforward in-
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puts. Therefore, the degree of selectivity of
the neurons must depend on the tuning
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amplitudes, &, &, of these modulations.
This is confirmed by Figure 10 A, where
the distributions of the CircVar are plot-
ted for three valuesof & = & = & As €
decreases, the whole distribution shifts to
the right, ie., neurons become less
selective.

If we reduce the tuning amplitude to
zero for the inhibitory population alone
(& — 0) while keeping &; unchanged, the
tuning of the inhibitory neurons is con-
siderably reduced. This contrasts with the
excitatory neurons whose tuning is essen-
tially not affected (Fig. 10 B). It should be
stressed that the selectivity of the inhibi-
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Figure5.  Contrastinvariance of the tuning of the spike response of the neurons. The stimulus was presented at 3 contrast levels:

low, € = 10%; medium, C = 30%; high, C = 100%. 4, Scatter plots of the TW at different contrasts. Two thousand excitatory (red)
and 2000inhibitory (blue) neurons chosen at random among those for which the tuning curve is well fitted by a Von Mises function
are included. B, Scatter plots of the CircVar at three contrasts for 2000 excitatory (red) and 2000 inhibitory (blue) neurons chosen

atrandom.

hibitory conductances are smaller than their counterparts in
the temporal mean by a factor \,rR In the net input, the fluctu-
ations of the feedforward, recurrent excitatory, and recurrent
inhibitory conductances sum their contributions. This results in
an order 1 contribution to the temporal fluctuations in the mem-
brane potential which is the same for all cells in a given popula-
tion and which is not modulated by the orientation. As for the
heterogeneities in the voltage fluctuations and their modula-
tion with the orientation, they are induced by the much smaller
heterogeneous and tuned part of the input fluctuations which are of
order \,’712 smaller, and hence are not noticeable. This explains why
the SD of the voltage is untuned and why it is the same for all neurons
in the same population (Fig. 8).

What determines the degree of selectivity of the network?

The orientation selectivity of the neurons is a robust feature of
our model. Figure 9, A and B, depicts the robustness with respect
to independent changes in Gz and in Gj;. It shows that the Circ-
Var is only weakly affected if one changes the value of one of these
recurrent conductances by 10% while keeping all the other pa-
rameters unchanged. The effect on the average firing rates is more
substantial (Fig. 9A, B, captions). Changing G, or G, by 10% has
similar effects (results not shown).

The OS is very robust if all the synaptic strengths are changed
by the same factor Q. This is depicted in Figure 9C. For Q = 2, the
effect on the distribution of CircVar is very small. It is a bit larger
for Q = 4. The average firing rates are also very robust to this
change. For Q = 4, the average rate of the excitatory neurons is

tory neurons does not disappear com-
pletely when §& 0, because the
recurrent inputs they receive from the ex-
citatory cells are tuned. The difference in
selectivity in the two populations is also
clear in Figure 10C where the histograms
of the OSIs are plotted. However, it is clear
that all the neurons become nonselective
if§ = & = 0.

The weak tuning of the feedforward in-
put depends on the ratio &,/ \797< Hence, it is smaller if the
connectivity from layer 4 to layer 2/3 is larger. One may therefore
think that increasing K should reduce the degree of tuning of the
neurons. This is not true, as demonstrated in Figure 11 A. Here,
we simulated a network in which K is twice as large as in the
default case, keeping all the other parameters the same. It is re-
markable that the distribution of CircVar is almost unchanged
despite the fact that the modulation with orientation of the feed-
forward inputs is now reduced by a factor \,E. This is a conse-
quence of the scaling of the conductances with the connectivity
(Eq. 16). This guarantees that although the modulation with ori-
entation of the feedforward and recurrent inputs are reduced
relative to their untuned parts, the conductance change induced
by the modulation remains unaffected. Of course, the untuned

excitation and the untuned inhibition increases by a factor \5
However, because the network operates in the balanced state, the
net input is almost unchanged and comparable to the neuronal
threshold.

Finally, we investigated whether changing the footprint of the
recurrent connections controlled by the SD, o, of the probability
of connection (see Materials and Methods; Eq. 9) affects the se-
lectivity. To this end we simulated a network in which the prob-
ability of connection does not depend on their distance and we
compared the distribution of CircVar with the one obtained in
the default case (o = L/5). As depicted in Figure 11 B, the dis-
tributions are slightly shifted to the right. However, this is a finite
size effect since in a network with more neurons it disappears
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Figure 6.  Neurons integrate inputs coming from cells with all tuning properties. 4, Center, The spike tuning curve of neuron (71, £). Red (resp. blue) are the tuning curves of a sample of four
excitatory (resp. inhibitory) neurons presynaptic to neuron (71, £). Both PO and selectivity are diverse. B, Histograms of the POs of all excitatory (red) and inhibitory (blue) neurons presynaptic to
neuron (71, £). Black, Excitatory and inhibitory presynaptic neurons. €, Distributions of the CircVar of all excitatory (red) and all inhibitory (blue) neurons presynaptic to neuron (71, £). Black, The
distribution over all the neurons in the network. Note the similarity of the distributions. The stimulus contrast is C = 309%.

(results not shown). Therefore, the footprint of the recurrent
connections is not a major factor in determining the selectivity of
the neuronal response.

We have seen that the OS of the layer 2/3 neurons mainly de-
pends on &z and &. We now turn to the question of how the tuning of
these neurons compares to that of the neurons in layer 4. We can do
this by comparing £, to &,, which is twice the rms value of 1 —
CircVar (see Materials and Methods). The values of &; and £, for
different values of &; and & are given in Table 2 (all other parameters
have their default values). For & = & the tuning of the inhibitory
population is slightly less than that of the excitatory one and both
increase nonlinearly with &;. For weak tuning of layer 4 cells,
the layer 2/3 populations are more strongly tuned. This sharp-
ening is reduced if the tuning of the layer 4 neurons is in-
creased. When & = & = 1.2, the layer 2/3 excitatory
population is tuned as much as the layer 4 population. For even
stronger layer 4 tuning, the layer 2/3 cells are less tuned than the
neurons that project to them. Reducing & to 0 only marginally
decreases the tuning of the excitatory population, while the in-
hibitory tuning is strongly decreased, but the inhibitory neurons
do not become totally untuned, as we already observed (Fig. 10).

Network with input from layer 4 simple cells
As we have shown, the OS in layer 2/3 can be comparable to the OS
in layer 4. Is this also true for the temporal modulation of the re-
sponse in a network which the layer 2/3 neurons receive input from
complex as well as simple cells in layer 42

To answer this question we extend our model to include in-
puts from layer 4 simple cells. As before, neurons in layer 2/3
receive inputs from randomly chosen layer 4 neurons with a con-
nection probability ¢;K/Ny. These inputs are temporally modu-

lated at the frequency of the drifting grating. For neuron (3, ff),
the modulation is maximum at a phase, ¢/. This phase is ran-
domly distributed, from neuron to neuron. With these assump-
tions we can write the total feedforward conductance, g}} o
averaged over the rapid fluctuations as gj},,- = g}}Rﬁm, where R?,,,
is the average firing rate of all layer 4 neurons that project to
neuron (i, A). The latter can be modeled according to Equation
16 with w, # 0 (see Materials and Methods). The total feedfor-
ward conductance is more complicated than when there are feed-
forward inputs only from complex cells. In addition to
time=independent (F0O) terms, which have the same structure as
in the latter case, there are now two time-varying (F1) compo-
nents, oscillating with a period of 277/ w. These both are of order 1
and differ from neuron to neuron. One of these is independent of
the stimulus orientation, the other is tuned to the orientation. It
is noteworthy that the PO of the latter F1 component is uncorre-
lated with the PO of the FO component. The structure of the total
recurrent excitatory and inhibitory conductances have the same
features.

In the balanced regime the effect of the large component of the
total feedforward conductance, which is unmodulated with ori-
entation but also with time, is roughly canceled by the effect of its
counterparts in the recurrent inputs. Thus the net input into a
neuron has FO and F1 components which are independent of
orientation and FO and F1 components that are modulated with
orientation, and all have a magnitude comparable to the thresh-
old. This leads to a response of the network in which the activity
is both tuned to orientation and temporally modulated.

Figure 12 A shows the voltage trace of an excitatory neuron in
response to a drifting grating stimulus (C = 30%, temporal fre-
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Figure7.  Thenetworkisinabalanced state. A, Voltage traces of neuron (3, E) (the tuning curve of this neuron is plotted in Fig. 8€). A visual stimulation (30% contrast) is presented at t = 125 ms, at PO (red)
and orthogonal orientation (black). B, Voltage traces of neuron (3, E) under the same stimulation conditions but with the spikes blocked (g, = 0).C, D, The excitatory current (red), inhibitory current (blue),
and total synaptic current (black) into neuron (3, E) under the same stimulation conditions. In (€) the stimulus s at the PO of the neuron. In (D) it is at the orthogonal orientation. During stimulation the excitatory
andinhibitory currents are large: at PO the mean excitatory and inhibitory currentsare 13.5and — 12.8 mA/cm? respectively. At the orthogonal orientation theyare 10.4and — 10.4 mA/cm? The
meantotal currentsaremuchsmaller:0.7and0 - mA/cm?atthe preferred and orthogonal orientations, respectively. Before stimulation the currents are smaller: the mean excitatory and inhibitory currents
are2.7 mA/cm?and — 2.6 mA/cm?, respectively. E-H, The same as in A-D for inhibitory neuron (98, I) (the tuning curve of this neuron is plotted in Fig. 8D). Without stimulus: mean currents are
4.4 mA/cm? (excitation), — 4 mA/cm? (inhibition), and 0.4 mA/cm? (total). For a stimulus at PO they are 20.3 mA/cm? (excitation), — 19 mA/cm? (inhibition), and 1.3 mA/cm?
(total). For a stimulus at the orthogonal orientation: 18.2 mA/cm? (excitation), — 17.8 mA/cm? (inhibition), and 0.4 mA/cm? (total). /, Distributions of the coefficient of variations (CV) of the
interspike interval histograms with a stimulus with a 30% contrast (one orientation). Red. excitatory neurons; blue, inhibitory neurons. For each neuron the CV was computed from spike trains of 25 sin duration.
Only neurons firing =10 spikes during the trial (74% of the excitatory neurons, 83% of the inhibitory neurons) were included in these distributions.

and inhibitory inputs have approximately
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= 30 30 put which is much smaller. Note that the
T oscillations in these inputs are not dis-
220 20 cernible. This is because they are smaller
6:“ than the mean by a factor of order \k
210 10 Figure 12C shows the tuning curves of the
E FO and F1 components of the spike re-
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correspond exactly, they follow each other

E F reasonably closely. This is in contrast to

6 6 — the tuning of the FO and F1 components of

R the voltage, shown in Figure 12 D, which
41 are not obviously correlated.

3 i 2 Figure 13 shows another example of
o5 the response of an inhibitory neuron to a

L drifting grating stimulus. The observed

P I P I B behavior for this cell is qualitatively the

0 60 120 180 0 60 120 180 0 60 120 180 same as that for cell (3, E) presented
Orientation (deg) above.

Figure 14 A shows the distribution of
CircVar for the FO and F1 components of

Figure8. Tuning properties of the membrane potential of the neurons. The stimulus has 30% contrast. A-C, Tuning curves of
the spikes for neurons (3, E), (98, 1), and (33, E). D—F, Tuning curves of the time averaged membrane potential (black) and of the ¢ .
SD of the voltage fluctuations (red) for the same neurons as in A~C. The voltage is measured relatively to the average membrane the spike responses of the excitatory neu-

potential without stimulation. rons. The broadness of these distributions
indicates a substantial heterogeneity in
quency of 2 Hz) presented at the neuron PO from t = 500 ms the tuning curves of both components.

onward. The subthreshold voltage weakly oscillates with a period ~ Figure 14 B shows the distribution of the ratio of the amplitudes
of 2 Hz. The synaptic currents into this neuron, when the sodium  of these F1 and FO components, both measured at their POs. This
current is inactivated, are plotted in Figure 12 B. The excitatory  distribution is broad and spans almost the whole range from 0 to
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2, indicating that there are neurons that
respond as complex cells and ones that re-
spond as simple cells. Nevertheless the
distribution is unimodal, so that the neu-
rons cannot naturally be classified as ei-
ther simple or complex. Most neurons
have a response that is between these two
ideal types. The distribution of the differ-
ence between the POs of the FO and F1
components is plotted in Figure 14C. For
almost all cells this difference is less than
20°. As for the degree of tuning, Figure
14D shows that there is a strong correla-
tion between the CircVar of these two
components. The features of the FO and
F1 components of the spike outputs of the
inhibitory population are similar (data
not shown).

In the results shown here, the orienta-
tion tuning and temporal modulation of
the population of layer 4 neurons that
provide input to the network is character-
izedby & = & = 12and pp =, = 1.
To compare this to the OS and temporal
modulation of neurons in layer 2/3, we
calculated &, and [, for the spike re-
sponse of both populations. For the FO
component we obtained & = 1.17 and
& = 1.06. For the temporal modulations
we obtained fiy = 1.03 and f; = 1.11.
Thus the OS of the two populations is
similar to that in the network that only
receives inputs from complex cells, while
both populations show a slightly higher
temporal modulation than layer 4 cells.

The examples in Figure 12D and Fig-
ure 13D suggest that in contrast to the
spike responses, the tuning properties of
the FO and F1 subthreshold voltages are
not correlated. This is confirmed by Fig-
ure 15. From Figure 15A it is clear that the
POs of the FO and the F1 components of
the voltage have no appreciable correla-

tions. Figure 15B shows that the modulations of the tuning curves
of these two components are also uncorrelated.
The lack of correlations between the tuning properties of the

Hansel and van Vreeswijk e Selectivity without Map

0.5 1 30
CircVar

0 0.5 1 30 0.5 1
CircVar CircVar

Figure9. Orientation selectivity is robust with respect to changes in the synaptic conductances. The contrast is 30%. A-C, the
distributions of CircVar are plotted in black for the default case. The average firing rates in that case are: 4.6 Hz for the excitatory
population and 7.8 Hz for the inhibitory one. The upper and lower parts correspond to excitatory and inhibitory neurons. 4, Red, the
distributions of CircVar are plotted for an increase of G, by 10%. The population average firing rates are 5 and 8 Hz for the
excitatory and the inhibitory populations. B, Red, the distributions of CircVar are plotted for an increase of G, by 10%. The
average firing rates are 7.3 and 8.3 Hz for the excitatory and the inhibitory populations, respectively. €, Multiplying all the
conductances by the same factor, Q, has only a minor effect on the average firing rates (see text) and on the distributions
of CircVar. Green, Q = 2;red: Q = 4.
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Figure 10.  The selectivity of the neurons in layer 2/3 depends crucially on the tuning amplitude (&, ) of the feedforward inputs
from layer 4. The contrastis C = 30%. 4, Distributions for the default case & = & = 1.2 (black), & = & = 0.8 (green),
and & = & = 0.4(red). B, Distributions of CircVarfor & = 1.2and & = 0. The population averages are 0.45 and 0.89
for excitatory and inhibitory neurons respectively. €, Histograms of the 0SI for &, = 1.2and & = 0. The average 05l is 0.84
for excitatory neurons and 0.22 for inhibitory ones. B, C, Histograms for excitatory neurons are in red and those for the inhibitory
ones in blue.

F0 and F1 components of the voltage is easy to understand. This
stems directly from the fact that the FO and the F1 components of
the feedforward input are uncorrelated. Note, however, that the
amplitude of the FO component is much larger than that of the F1
component. Why then is there a strong correlation between the
FO0 and F1 components of the neuronal output activity? This is a
consequence of the nonlinearity of the transfer function between
the membrane potential and the firing rate of the cells (Anderson
et al., 2000a; Hansel and van Vreeswijk, 2002; Miller and Troyer,
2002). Because of this, the orientation tuning of the F1 compo-
nent of the spikes is not only dependent on the tuning of the F1
component of the voltage but also on a nonlinear combination of
the modulation with orientation of the FO component and the
untuned part of the F1 component of the membrane potential.
Because the nonlinearity is strong, and the modulation of the FO
component of the voltage is much larger that the modulation of

0.5 1
CircVar

Figure 11.  The degree of orientation selectivity is almost independent of the connectivity
and of the footprint of the interactions. Black, Default case. A, Multiplying the connectivity, £, by
a factor of 2 (red) has only a minor effect on the distribution of CircVar. B, The distribution of
CircVarinanetworkin which the probability of connectivity is independent of the distance (red)
is very slightly different from the one in the default case (o0 = L/5).
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Table 2. Comparison of the orientation tuning of the layer 4 input neurons (£; and
£) and the excitatory and inhibitory neurons in layer 2/3 (£, and £, respectively)

& & & &

0.4 0.4 0.63 0.52
0.8 0.8 0.99 0.87
1.2 1.2 1.22 1.10
1.6 1.6 139 1.27
1.2 0 117 0.24

)
>
w
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its F1 component (Fig. 15B) this nonlinear contribution substan-
tially affects the tuning of the F1 component of the spikes. This is
in contrast to the F1 component of the voltage whose contribu-
tion to the tuning of the FO component of the firing rate is very
small. Asa result, the FO as well as the F1 components of the spikes
are highly correlated with the FO component of the voltage as
shown in Figure 15, Cand D. They are hardly correlated at all with
the F1 component of the voltage (result not shown).

Discussion

We investigated the emergence of OS in
cortical networks without an orientation
map, in which the connectivity depends
on anatomical distance and not on func-
tional neuronal properties. We showed
that if the network operates in the bal-
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anced regime, neurons can be sharply
tuned to orientation, even though ana-
tomically close cells have very different
POs. Therefore, in contrast to conven-
tional wisdom, functionally specific con-
nectivity is not required for strong OS in
V1.

For a network to operate in the bal-
anced regime, the recurrent as well as the
feedforward inputs into the neurons have
| to be large compared with their thresh-
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Figure 12.

potential of the neuron without stimulus.
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Response of neuron (3, £) in the model with simple cells in layer 4. 4, Trace of the membrane potential when a
drifting grating with contrast 30% and temporal frequency 2 Hz is presented from t = 500 ms. The spikes were cutat —20mV. B,
Total excitatory (red), total inhibitory (blue), and net (black) inputinto neuron (3, £) when gy, = 0. €, Orientation tuning curves
of the FO (black) and F1 (red) component of the spike response. D, Orientation tuning curves of the FO (black) and F1 (red)
component of the membrane potential when the spikes are suppressed. The mean voltage is measured relative to the average

olds. Under very general conditions the
balance emerges from the recurrent dy-
namics of the network so that the net in-
putis much smaller than its excitatory and
inhibitory components. If a neuron re-
ceives its inputs from many cells with POs
randomly distributed, homogeneously,
between 0 and 180°, the orientation mod-
ulations of the total excitatory and total
inhibitory inputs are small compared with
their means. Hence, taken separately,
these inputs are weakly selective. How-

E -20 30 ever, when they are combined, the un-
o -40 tuned parts of the excitation and
g -60 0 inhibition balance. Therefore the mean
= 80 30 and modulation of the net input are of the
> 0 2000 4000 0 2000 4000 same order, resulting in selective neuronal
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tuned part of the input is amplified while
the untuned part is suppressed. As such it
is qualitatively different from the en-
hancement of OS only by suppression due
to untuned inhibition reported recently in
macaque V1 (Xing et al., 2011).

We investigated a network model of
layer 2/3 of V1 consisting of spiking neu-
rons. With synaptic parameters compati-
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Figure 13.

potential of the neuron without stimulus.
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Response of neuron (13, /) in the model with simple cells in layer 4. 4, Trace of the membrane potential when a
drifting grating with contrast 30% and temporal frequency 2 Hz is presented from t = 500 ms. The spikes were cutat —20mV. B,
Total excitatory (red), total inhibitory (blue), and net (black) inputinto neuron (3, £) when gy, = 0.C, Orientation tuning curves
of the FO (black) and F1 (red) component of the spike response. D, Orientation tuning curves of the FO (black) and F1 (red)
component of the membrane potential when the spikes are suppressed. The mean voltage is measured relative to the average

ble with experimental data (Holmgren et
al., 2003; Thomson and Lamy, 2007; Ma et
al., 2010), the network operates in an ap-
proximate balanced regime in which the
neuronal response is sharply selective
even though the feedforward inputs are
only weakly tuned. We showed that when
the average number of connections K is
doubled, and hence the modulation of the
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feedforward input is reduced relative to
the mean by a factor of \’E’ the degree of
tuning of the response of the neurons in
the network is not affected. We also
showed that the distance over which the
neurons form synaptic connections does
not affect OS. We verified the robustness
of the balanced regime and its OS with
respect to changes in synaptic conduc-
tances. Very recently, it was reported that
in mouse V1, E to I synapses have PSPs
3-10 times larger than E to E synapses
(Hofer et al., 2011). Taking such strong E
to I connections does not qualitatively af-
fect our results (data not shown).

Orientation selectivity is strongly de-
pendent on &, (see Eq. 16). We showed
that when &z and & are reduced together,
the degree of selectivity is decreased in
both populations. Reducing & alone
strongly decreases the tuning of the inhib-
itory population, while leaving the tuning
of the excitatory population almost unaf-
fected. In fact when we set & = 0, the OSI
and CircVar in both populations closely
match those reported in (Niell and
Stryker, 2008). Thus the tuning of the in-
hibitory neurons has only a minor effect
on the tuning of the excitatory cells. The
tuning of the inhibitory neurons does not
have to be broad to achieve strong OS in
the excitatory population.

The contrast invariance of OS reported
in species with a V1 orientation map
(Sclar and Freeman, 1982; Li and
Creutzfeldt, 1984; Anderson et al., 2000a;
Finn et al., 2007; Nowak and Barone,
2009) has been accounted for in network
models (Ben-Yishai et al., 1995; Somers et
al., 1995; Sompolinsky and Shapley, 1997;
Hansel and Sompolinsky, 1998; Troyer et
al., 1998; Ferster and Miller, 2000;
McLaughlin et al., 2000; Persi etal., 2011).
Invariance to contrast has also been re-
ported in species without an orientation
map (Van Hooser et al., 2005; Niell and
Stryker, 2008). In line with these reports,
we found in our model that the tuning
quality is similar at all contrasts. Both the
CircVar and the tuning width after sub-
tracting the baseline are close to contrast
invariant.

We also investigated the interplay be-
tween OS and temporal modulation of the
feedforward input from simple cells in layer
4. Because of the randomness of the tempo-
ral phase of these neurons, the total feed-
forward conductance is only weakly modu-
lated with time. In the balanced state this
modulation is amplified in the net input,
while the unmodulated part is suppressed.
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Figure 14.  Tuning properties of the spike response for the excitatory population in the model with simple cell inputs. A,
Distribution of the CircVar for the FO (black) and F1 (red) component of the response. B, Distribution of the ratio of F1/FO0. C,
Distribution of the difference in PO of the FO and F1 components of the spikes response. D, Scatterplot of the CircVar of the FO
component versus the CircVar of the F1 component.
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Figure 15.  Properties of the voltage response of the excitatory population and its relation to the spike response. A, Scatter plot of the
POs of the FO (V/;) and the F1 (V;) components of the voltage showing no correlations. B, Amplitude of the modulation with orientation of
the F1 component (V1) plotted against that of the FO component (V0) of the voltage. There is no correlation for this measure either. C,
Scatter plot of the PO of the FO component of the firing rate versus the PO of the FO component of the membrane potential. D, Scatterplot
of the PO of the F1 component of the firing rate versus the PO of the FO component of the membrane potential. The PO of both the FO and
F1 components of the spike response are highly correlated with the PO of the FO component of the membrane potential. For both, the
correlation with the PO of the F1 component of the membrane potential is not significant (data not shown).
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Thus the temporal modulation and the time average of the net input
are on the same order, and therefore the response of the layer 2/3
neurons is strongly modulated. Because of the randomness of the
connectivity, the PO of the FO and F1 component of the input are
uncorrelated. This is reflected in the subthreshold voltage response.
Nevertheless, the preferred orientation of the FO and the F1 compo-
nent of the neuron’s spiking is strongly correlated. This is because the
transfer function between voltage and firing rate is highly nonlinear.

The description of the feedforward input in our model is very
simplified. It only depends on the stimulus orientation and time.
This allowed us to understand the mechanism of OS, and its
interplay with temporal modulation. We did not consider other
features of the receptive fields, such as spatial and temporal fre-
quency tuning or direction selectivity. It is clear, however, that
the selectivity mechanism we described here can also accommo-
date these features.

Experimentally, the depolarization of the neurons upon visual
simulation can be as a large as 20 mV (Anderson et al., 2000a;
Contreras and Palmer, 2003; Monier et al., 2003; Nowak et al.,
2010; Jia et al.,, 2011). This is substantially larger than in our
model. However, such depolarizations are thought to result from
transitions of the cells from down to up states (Anderson et al.,
2000Db). Down states are presumably due to the anesthesia under
which experiments are performed. The neurons in our model
should be interpreted as always being in an up state.

Even with a salt-and-pepper organization the network con-
nectivity can depend on the POs of the neurons, i.e., the network
can have a functional orientation map. In contrast to the model
studied here, in such a network the neurons receive input pre-
dominantly from cells with similar POs and the mechanism that
gives rise to OS will be similar to that in networks with an ana-
tomical orientation map. Network models for OS with an orien-
tation map operating in the balanced regime have been proposed
(Marino et al., 2005; van Vreeswijk and Sompolinsky, 2005). In
such models the distributions of CircVar can be broad and
skewed and qualitatively similar to that observed in our network.

However, these two organizations can be differentiated using
intracellular measurements. Our model predicts that if there is no
functional map the FO and F1 components of the subthreshold
voltage are tuned but uncorrelated, and the high-frequency volt-
age fluctuations are untuned. In contrast, in a network with a
functional map, the FO and F1 components and the high-
frequency components of the voltage are all tuned and they all
have similar POs.

Measuring voltage fluctuations can also shed light on the ori-
gin of strong OS near pinwheels (Schummers et al., 2002; Marino
et al., 2005; Ohki et al., 2006) in the orientation map of cats and
monkeys (Blasdel and Salama, 1986; Bonhoeffer and Grinvald,
1991; Maldonado et al., 1997; Mountcastle, 1997). If the proba-
bility of connection depends mostly on the anatomical distance,
neurons near pinwheels will integrate inputs from cells with all
POs. Our work provides a natural explanation for this sharp tun-
ing. It also predicts OS for low frequency of the Fourier spectrum
of the voltage whether the neurons are near or far from a pin-
wheel. In contrast, for high frequencies the selectivity occurs only
far from pinwheels.

Orientation selectivity is present in mouse V1 as early as eye
opening (Rochefort et al., 2011). Our work provides a natural
explanation for this, since V1 operating in the balanced regime
already displays OS even if it has no functional orientation map.
For animals a few days older, the work of Jia et al. (2011) suggests
that neurons in layer 2/3 integrate spatially distributed inputs
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which code for many if not all stimulus orientations. In line with
this observation, Ko et al. (2011) have reported that E to I con-
nections are nonselective. However, they also reported twice as
many excitatory connections in pairs of similarly tuned pyrami-
dal cells than disparately tuned ones. This may be the result of a
relatively fast Hebbian learning process which can take place im-
mediately in a V1 network that already displays OS.

Very recently, Chen et al. (2011) measured calcium signals in
spines on pyramidal neurons in layer 2/3 of the mouse auditory
cortex. They found that inputs to neighboring spines are tuned to
sound with very different preferred frequencies. Nevertheless, the
responses of the neurons are sharply selective to frequency. The
ideas developed in this paper can readily be extended to explain
strong selectivity in primary auditory cortex or indeed other sen-
sory cortices.
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