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After extensive practice with motor tasks sharing structural similarities (e.g., different dancing movements, or different sword tech-
niques), new tasks of the same type can be learned faster. According to the recent “structure learning” hypothesis (Braun et al., 2009a),
such rapid generalization of related motor skills relies on learning the dynamic and kinematic relationships shared by this set of skills. As
a consequence, motor adaptation becomes constrained, effectively leading to a dimensionality reduction of the learning problem; at the
same time, adaptation to tasks lying outside the structure becomes biased toward the structure. We tested these predictions by investi-
gating how previously learned structures influence subsequent motor adaptation. Human subjects were making reaching movements in
3D virtual reality, experiencing perturbations either in the vertical or in the horizontal plane. Perturbations were either visuomotor
rotations of varying angle or velocity-dependent forces of varying strength. We found that, after extensive training with both kinematic
or dynamic perturbations, adaptation to unpracticed, diagonal, perturbations happened along the previously learned structure (vertical
or horizontal), and resulting adaptation trajectories were curved. This effect is robust, can be observed on the single-subject level, and
occurs during adaptation both within and across trials. Additionally, we demonstrate that structure learning changes involuntary
visuomotor reflexes and therefore is not exclusively a high-level cognitive phenomenon.

Introduction
The human motor system controls a large number of indepen-
dent degrees of freedom simultaneously and is capable of
learning a seemingly infinite amount of movement skills,
vastly surpassing such abilities of any man-made robot (Bern-
stein, 1967; Shadmehr and Wise, 2005). The computational
and neuronal mechanisms of human dexterity and adaptation
abilities remain elusive. It has been recently suggested that one
of the computational brain mechanisms allowing such a rich
movement repertoire might be structure learning (Braun et
al., 2009a; Shadmehr et al., 2010; Krakauer and Mazzoni, 2011;
Wolpert et al., 2011). Structure learning in this context means
learning the similarity of related motor tasks, thus constrain-
ing the distribution of likely control parameters and effec-
tively reducing the dimensionality of the control problem (see
Fig. 1; discussed below). As a consequence, later adaptation to
any motor task belonging to the same structure will be facili-
tated. Motor skills are never learned in isolation and natural
motor tasks are highly structured: when as babies we learn to
grasp or when as adults we learn to dance, we have to master a

rich set of different, but related, movements, performed in
various contexts and postures. The longer one is training, the
faster one can acquire new skills of the same type—a phenom-
enon known as learning to learn. Structure learning is a com-
putational mechanism that can explain the ability of learning
to learn (Braun et al., 2010).

It has been shown that structure motor learning can indeed
occur when learning visuomotor rotations (Braun et al.,
2009a), independent of the exact training regime (Turnham et
al., 2012). It has also been shown that structure learning leads
to optimal feedback corrections (Braun et al., 2009b) and
modifies prior expectations about sensorimotor transforma-
tions (Turnham et al., 2011). In addition to being discussed as
a theory of motor learning (Shadmehr et al., 2010; Krakauer
and Mazzoni, 2011; Wolpert et al., 2011), structure learning
might also play a pivotal role in human perception and cogni-
tion (Gershman and Niv, 2010; Tenenbaum et al., 2011). In
this study, we present new experimental evidence for the
structure learning hypothesis and in three experiments ad-
dress three different questions.

First, does structure learning influence adaptation to novel
tasks that were never practiced during training, and in partic-
ular to novel tasks that lie outside of the learned structure (Fig.
1)? Second, is structure motor learning a genuine feature of
motor control or is it a cognitive phenomenon? Third, does
structure learning play a role in learning dynamic tasks? Nat-
ural motor tasks often involve precise force control (e.g.,
steering a bicycle wheel, returning a tennis ball with a racket,
or leading a partner in tango); structure motor learning, how-
ever, has so far been investigated using only kinematic tasks.
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Materials and Methods
Thirty-four naive volunteers (23 males and 11 females) participated in
this study. Subjects gave informed consent and were paid for participa-
tion. All experiments received ethics approval by Imperial College
London.

Experimental setup. Subjects were looking in 3D glasses (NVIS nVisor
SX) and were operating a handle of a 3D manipulandum (Sensable Phan-
tom 1.5 HF) to move a cursor in virtual reality space (see Fig. 2 A). 3D
glasses were tilted downward by �30° so that subjects could lean on them
with their forehead. Phantom movements were also tilted by 30°, and to
move the cursor along the z-axis subjects had to move their hand 30°
downward (these tilts are not shown in Fig. 2 A). Subjects were told to
hold the Phantom handle as they normally hold a pen, and we made sure
that their arm was moving freely during the experiment (i.e., it was not
lying on the knee). All the distances given below are measured in hand
space.

Task. Subjects had to make repeated straight movements from a start-
ing position to a single target and then back (see Fig. 2 A). Throughout all
experiments, there was only one single target used, located 10 cm away
along the z-axis (radius 1 cm). Subjects were instructed to make move-
ments back and forth between the starting position and this single target
as straight as possible and reach the target in the time window of 400 – 600
ms. They heard a low beep if the movement was too slow and a high beep
if it was too fast, but all trials were used for the analysis, regardless of their
movement duration. After the target appeared, subjects had to wait for
the go cue (target color change) for a random time between 500 and 1000
ms before starting the movement. If they started the movement (speed
exceeded 4 cm/s) before the go cue, they had to return to the starting
position and start the trial again. To end the trial, subjects had to position
the center of the cursor inside the target for 500 ms.

Data recording and analysis. All position and force data were recorded
in some sessions with 200 Hz and in some sessions with 60 Hz. We
resampled all the data to 100 Hz with cubic spline interpolation, and then
low-passed it with 10 Hz cutoff (third-order Butterworth filter). Velocity
was calculated from the resulting position data by a difference filter.
Movement onset was detected for every trial as a time point when the
speed first exceeded 4 cm/s (excluding false starts before the go cue).
Initial movement direction was measured as the difference between hand
position at movement onset and hand position 200 ms afterward. For
comparison, maximum speed in the first experiment was reached on
average (�SD) at 238 � 65 ms. Late movement hand position was mea-
sured at 400 ms after movement onset.

Experiment 1 (visuomotor rotations): paradigm. One group of six sub-
jects was trained with horizontal visuomotor rotations, and another
group of six subjects with vertical ones (see Fig. 2 A). We call a rotation
“horizontal” when the cursor displacement happened in the horizontal
plane (note that this is a rotation around the vertical axis), and vice versa
for the “vertical” rotations. For both groups, the angle of rotation was
changed in blocks of five trials, pseudorandomly selected from the set of
{0, �10, �20, �30°}. The experiment went on for 3 consecutive days to
increase the amount of training before the probing phase on day 3 (for a

scheme, see Fig. 2 B). On day 1, subjects had to complete 100 standard
trials to familiarize themselves with the setup, and then the learning
started with maximum rotation angle increasing by 10° every 100 trials,
so that the full range of angles was covered only during trials 300 – 400
(total number of trials on day 1 was 400). Day 2 followed the same
scheme but with the familiarization block reduced to 30 trials (total
number of trials, again 400); it took subjects �30 min to complete the
sessions on the first 2 days. The experimental session on day 3 consisted
of 1050 trials with short breaks after every 210 trials and took subjects
around �1.5 h to complete. Structure exposition with horizontal/vertical
rotations continued throughout the session, interspersed with 16 prob-
ing blocks (the first probing block occurred only after the first 250 trials
were over). Each probing block consisted of 5 trials with a constant
diagonal rotation and was preceded by 10 and followed by 5 washout
trials (no rotation). We used 4 different diagonal rotations (�30° for two
diagonal axes; see Fig. 2 A), and each of them was presented 4 times in
pseudorandom order (16 probing blocks in total). Full range of horizon-
tal/vertical rotation angles was covered between every two probing blocks
(30 trials).

The pseudorandom sequence of rotation angles was constrained such
that no change of angle between subsequent blocks was �30°, to prevent
large switches of rotation that could be confusing to subjects. This led to
block-to-block lag 1 autocorrelation of 0.55 and trial-to-trial lag 1 auto-
correlation of 0.91 (measured on day 3, when the full range of rotations
from �30 to 30° was covered). As rotation angle was fixed during each
block of five trials, trial-to-trial autocorrelation was much higher than
block-to-block one.

Experiment 1 (visuomotor rotations): analysis. When plotting move-
ment directions (see Figs. 2– 4), we transformed them into azimuth-
elevation coordinates (see Fig. 2 A). The azimuth angle was calculated as
arctan(x/z) and the elevation angle as arctan(y/z); see Figure 2 A for axes
conventions. In the range of angles used in this study, our elevation is
only slightly different from the one usually used in spherical coordinates
and given by arcsin(y/r). We used our definition to make the transfor-
mation symmetric for x and y; as a result, diagonal rotation of 30° was
transformed into (22.2, 22.2°).

When plotting adaptation paths (see Figs. 3, 4), we subtracted baseline
movement directions for every subject. The baseline value was calculated
as the average over the last 5 trials of every 10 trial washout block preced-
ing probing blocks. The average (�SD) baseline initial direction over
subjects in azimuth-elevation coordinates was (�0.1 � 0.9, �2.8 �
4.5°), so the baseline elevation tended to be slightly negative (reaching
�9 and �12° for two subjects). For every subject, we subtracted this
value from all initial direction values. The same was done for late move-
ment hand positions as well, even though here the baselines were almost
negligible: (�0.1 � 0.5, 0.0 � 1.3°). When analyzing backward move-
ments, we also did baseline correction and had to exclude one of the
subjects who made extremely curved backward movements (baseline
elevation, 46°). Other subjects had initial direction baselines of (0.1 �
1.0, 0.0 � 3.0°).

To plot movement trajectories, we transformed each trajectory taken
from 200 ms after movement onset until entering the target into the
azimuth-elevation coordinates, resampled the resulting trajectory with
cubic splines to 20 points equally spaced in time, and then averaged
across trials and subjects. To represent the uncertainty, we took the SEM
along the direction of largest variance for every point and plotted it
perpendicular to the trajectory (see Figs. 3A, 4 D). No baseline correction
was done for the trajectories, and one can see on Figure 3A that trajecto-
ries tend to start below (0, 0), corresponding to the negative baseline
elevation.

Experiment 1 (visuomotor rotations): exponential fits and bootstrapping.
To fit trajectories to adaptation paths (shown with dashed lines on Figs.
3B and 4), we made exponential fits to learning curves separately in
azimuth and elevation directions, and then plotted the corresponding
trajectory. The sequence of errors was fitted with the following formula:
ei(t) � Rexp(�(t � d � 1)/ki), where i stands for either azimuth or
elevation, t is the trial number changing from 1 to 5, R is the azimuth/
elevation of the rotation angle (22.2°), d is the offset, and ki are time
constants. For the initial direction fits, the offset d was set to zero. We

Figure 1. Structure learning hypothesis predicts bent adaptation paths. Consider a space of
control parameters needed to solve different motor tasks. According to the hypothesis of struc-
ture learning, adaptation from a certain task (black filled circle) to another task (empty circle)
depends on what motor tasks were practiced before (belonging to the red or to the blue struc-
ture). The gray manifold represents the parameter subspace relevant for a particular
experiment.
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defined the learning speed �i as the amount of error (from 0 to 1) cor-
rected on each subsequent trial; straightforward calculation shows
that �i � 1 � exp(�1/ki). The least-squares fit (using the Levenberg–
Marquardt algorithm implemented in the MATLAB nlinfit function)
was done on the nonaveraged data, and the insets in Figure 4, A and B,
show learning speeds �i together with 95% confidence intervals.

Note that we follow the definition of learning speed used in the study
by van Beers (2009). Sometimes learning speed is defined simply as 1/ki

(and has then the dimension of trial �1), as for example in the study by
Huang et al. (2011). Although in the typical range of learning speeds
(0.1– 0.5) the resulting values are close to each other, they are still slightly
different and should not be confused.

To assess statistical significance of difference between two learning
speeds (for example, azimuth and elevation learning speeds for the same
group, or azimuth learning speeds between the two groups), we used the
bootstrapping technique. To calculate p values, we joined all the values
from two datasets and drew with replacement the same amount of values
for two bootstrapped datasets from the resulting distribution (this was
done separately for trials 1–5). Then we fitted the exponents, calculated
the learning speeds, and repeated this procedure 5000 times. The p value
equals the proportion of times when the difference between the resulting
learning speeds is larger than the difference obtained from the real data.
These values are shown with asterisks in the insets in Figure 4, A and B.

Experiment 2 (involuntary reflexes). Experiment 2 consisted of the
same training as Experiment 1 but a different probing phase on day 3. It
was performed by eight new subjects and seven subjects who had already
participated in Experiment 1 and who just did an additional experimen-
tal session (four of them performed it on the next day after finishing the
Experiment 1, and for three of them it was a month later); we did not find
a difference between the reflex forces of the new and the initial subjects
(see Fig. 5C, inset; the seven initial subjects are represented by the first
four bars in the vertical group, and the first three bars in the horizontal
group).

On the probing day, the structure exposition (horizontal/vertical ro-
tations) continued throughout the session, interspersed with eight prob-
ing batches. Each probing batch consisted of 18 error-clamp trials and
was always preceded by 10 washout trials. During an error-clamp trial
subjects’ movements were clamped in X and Y directions, so that they
could only move along the z-axis directly to the target (see the full de-
scription below). During some of the clamped trials, after the cursor
crossed 3 cm distance from the starting position, the cursor was smoothly
but very quickly displaced away from the z-axis and was then moved in
parallel to it for 130 ms before returning back (with total displacement
time being 230 ms) (see Fig. 5A). Probing trials were administered in
batches of 18 error-clamp trials with 40 trials in between probing batches;
each batch was a pseudorandom sequence of three jumps in each of
the four diagonal directions and six error-clamp trials without a jump
(see Fig. 5A). We took care that two jumps in the same direction never
happened in a row, and the pseudorandom sequence was different in
each probing batch. Every subject experienced 8 of the 18 trial prob-
ing batches (i.e., in total 96 trials with cursor jumps, with 24 of them
in each direction).

We recruited additional eight subjects to measure their voluntary re-
action time. These subjects had an additional experimental session after
the rest of the experiment; this session consisted solely of 10 probing
batches (exactly the same as before), and subjects were instructed to exert
some force in the direction of the cursor jump as soon as possible after
they saw a jump. After a subject reached the target and stayed there for
500 ms, the force channel was abruptly switched off and subject’s hand
made a swinging movement to the side in the direction of the cursor
jump. We disregarded the first two probing batches as subjects needed to
familiarize themselves with the task and used only the last eight of them
for our analysis.

To plot the average reflex forces (see Fig. 5 B, C), we did a subject-wise
baseline correction by subtracting the average force produced in the
error-clamp trials without cursor jumps [average across subjects: (0.00 �
0.03, �0.01 � 0.07) N]. When analyzing the temporal force profiles (see
Fig. 6), we did a trial-wise baseline correction, for every trial subtracting
the average force during the 50 –150 ms interval after the beginning of

cursor jump. According to the manufacturer, the 3D glasses have a
temporal lag of 16 ms, and we made the corresponding correction for
the data presented on Figure 6. All significance tests and calculations
of reaction times were done with the unsmoothed data resampled to
1000 Hz.

Experiment 3 (force fields). This was a variation of the visuomotor
experiment with velocity-dependent force fields used instead of visuo-
motor rotations. One group of eight subjects was trained with horizontal
force fields, and another group of six subjects with vertical ones (see Fig.
7A). During a force field trial, there was a force exerted on the subject’s
hand proportional to subject’s velocity along the z-axis; the coefficient of
proportionality we call “force gain.” This force always acted in the plane
perpendicular to the movement direction and was applied only after
movement onset (see Fig. 7A). For both groups, the gain was changed in
blocks of five trials, pseudorandomly selected from the set of {0, �2, �4,
�6, �8, �10} N � s/m (with no switches larger than 4 N � s/m; resulting
block-to-block lag 1 autocorrelation, 0.85; trial-to-trial lag 1 autocorre-
lation, 0.97). The peak speed during the movements was �0.25 m/s, so
subjects experienced average peak forces up to �2.5 N.

To probe subjects’ internal model, we used an error-clamp technique
(Scheidt et al., 2000; Smith et al., 2006). During an error-clamp trial
subjects’ movements were restricted in X and Y directions by the ma-
nipulandum, which was applying a returning force of a very stiff spring
(spring constant k � 5000 N/m) whenever subject tried to deviate from
the Z direction. The force was applied only after movement onset. As a
result, subjects moved in a “channel” leading the hand straight to the
target, and deviation from the z-axis did not exceed 1 mm (due to spe-
cifics of our experimental software, the force channel started working
only �50 ms after movement onset). We assumed that the restoring force
applied by the manipulandum was equal to the force with which subject
was pressing on the channel walls. For every error-clamp trial, we esti-
mated subject’s horizontal/vertical gains by regressing the horizontal/
vertical force outputs to the velocity profile between force onset and the
moment of target disappearance (or the moment when the cursor left the
target for the first time, if that was earlier) (see Fig. 7A). As during
error-clamp trials lateral deviations from straight movement are negligi-
ble, these trials are known not to interfere with the learning process
(Scheidt et al., 2000).

Before the probing phase (i.e., during random horizontal/vertical
force field exposure), the last trial of every block (every fifth trial) was
error clamped. The experiment went on for 3 consecutive days, exactly as
the visuomotor experiment, with �30 min sessions on the first 2 days
and �1.5 h session on day 3 with short breaks every �15 min. The session
on the last day consisted of continuing exposure to the horizontal/verti-
cal force fields, interspersed with four probing batches. Each probing
batch (always preceded by a 10 trial washout) consisted of 20 probing
“triplets” (Sing et al., 2009) with three to five washout trials in between.
Each triplet consisted of an error-clamp trial without any additional force
field, followed by a velocity-dependent force field trial with a force in one
of the four diagonal direction and a gain of 5 N � s/m, and another error-
clamp trial without additional force field. Every subject experienced 80 of
these probing triplets in total, with 20 of them in each diagonal direction.
Across the 20 probing triplets within a probing batch, the sequence of
diagonal force directions was pseudorandom with two succeeding trip-
lets always having different force directions.

Of 14 recorded subjects, 4 were excluded from the analysis (see Figs. 7,
8), as they did not show consistent learning during the training phase. In
contrast to the 10 “good” subjects (see Fig. 7B), these 4 subjects showed
highly asymmetric adaptation patterns during the training phase, with
force responses strongly biased upward (2 subjects in the vertical group)
or rightward (2 subjects in the horizontal group). To quantify this asym-
metry for every subject, we calculated the adaptation value (see Fig. 7B)
separately for the forces up and down (left and right) and took the ratio of
these values as the “skewness of adaptation” index. For the 10 good
subjects, this index was 1.3 � 0.2 (average � SD), and for the 4 excluded
subjects, it was 3, 4, 5, and 20. As a consequence, these subjects showed
poor adaptation during probing, with two of them showing no adapta-
tion at all. However, even if these subjects were included in our analysis,
the average results would have stayed the same: structure-specific differ-
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ences in adaptation between the two groups (see Fig. 8 B) remain highly
significant ( p � 10 �7).

Results
Experiment 1: visuomotor rotations
Subjects were looking in 3D glasses and were operating a 3D
manipulandum to move a cursor in a virtual reality space (see
Materials and Methods). They had to make repeated 10 cm
straight arm movements from a starting position to a single target
within 400 – 600 ms and then back (Fig. 2A). After familiarization
with the task, one group of subjects was trained with horizontal
visuomotor rotations, and another group with vertical ones. For
both groups, the angle of rotation changed every five trials, ran-
domly selected from the set of {0, �10, �20, �30°}, and the
training continued on 3 consecutive days with �30 min of train-
ing on the first 2 days and �15 min on the last day (Fig. 2B). Note
that there was only one single target used throughout all the
experiments presented in this manuscript, in contrast to the more
common situation when subjects are making center-out reaches
to different targets; our subjects were making movements back
and forth between the starting position and the single target (Fig.
2A), and it was only the perturbation that was varied.

We used two different measures to assess subjects’ movement
adaptation: initial hand direction and late movement hand position,
measured at 200 and 400 ms after movement onset. Both measures
were converted into the azimuth-elevation coordinates (Fig. 2A), so
that (0, 0) corresponds to a movement straight to the target along the
z-axis. Figure 2, C and D, shows initial hand direction and late move-
ment hand position in the last trial of every five trial training block on
day 3, averaged over subjects and over training blocks with the same
rotation angle. To quantify the amount of adaptation achieved at the
end of training on day 3, we regressed these positional measures
(azimuth for the horizontal, and elevation for the vertical group) to

the ideal values of {�30. . . �30°}, so that perfect adaptation would
be measured as 100%. For the initial hand directions, adaptation was
51 � 15 and 67 � 10% (horizontal/vertical groups) and for the late
movement hand positions 80 � 9 and 85 � 6% (all values obtained
by robust regression; mean � SD over subjects). Adaptation was
higher for the late movement due to feedback corrections: by 400 ms,
subjects have already corrected some part of their initial error. Feed-
back corrections also caused the SDs (size of the filled ellipses in Fig.
2C,D) of the late movement positions to be smaller than those of
initial directions.

Adaptation paths
On the third day, we tested how both groups were adapting to four
novel, diagonal, rotations of 30° by interspersing continuing exposi-
tion to horizontal/vertical rotations with 5 trial probing blocks, al-
ways preceded by 10 washout trials without rotation. Every subject
experienced 16 probing blocks in total: 4 repetitions of each of the 4
diagonal rotations (administered in pseudorandom order). Ideal
hand directions needed to perfectly compensate for these rotations
are shown on Figure 2 with four black crosses.

Figure 3A shows trajectories of subjects’ hand movements on
trial 1 of every probing block, averaged over subjects and repeti-
tions. Trajectories were cut from 200 ms after movement onset to
the moment when the cursor entered the target. All trajectories
started at around (0, 0) point, showing that subjects could not
predict the direction of the diagonal rotations. All trajectories
finish near the corresponding cross, as subjects had to bring the
cursor to the target to finish the trial. For all four probing direc-
tions, the trajectories were markedly different between the two
groups: for the vertical group, they were bent toward the vertical
axis, and for the horizontal group, toward the horizontal one (see
below for statistical tests).

y

x

z

A B

C D

Figure 2. Visuomotor experiment. A, Subjects were instructed to make fast straight movements between a starting position and a single target (there were no other targets used throughout the
experiment). One group of subjects experienced horizontal, and another group vertical, visuomotor rotations, with the angle of rotation randomly chosen from the set {�30, �20, �10°} in blocks
of five trials (structure learning period). For this and subsequent figures, hand directions were transformed into azimuth-elevation coordinates; the blue (red) dots show ideal hand directions
corresponding to different horizontal (vertical) visuomotor rotations. The crosses correspond to visuomotor rotations used for probing after 3 days of training. Below, A subject is holding 3D
manipulandum and wearing 3D glasses. B, Paradigm scheme, showing 3 days of experiment (see Materials and Methods). The shaded area shows the exposure to horizontal/vertical rotations, with
its width corresponding to the maximal rotation angle (first 10°, then 20°, then 30°). Four different geometric symbols represent four different diagonal rotations used for probing (4 times each). C,
Initial hand directions measured at 200 ms after movement onset, on the fifth trial of every structure learning block on the third day of training before probing, in blue for the horizontal group and
in red for the vertical one (group averages). The small empty ellipses show SEM, and the large filled ones show SD (N � 30 for each ellipse). The average amount of adaptation for each group is shown
as a percentage value. D, The same as above, but for the late movement hand positions, measured at 400 ms after movement onset.
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Figure 3B shows the evolution of the
late movement hand positions over the
course of five trials of every probing block;
we refer to trajectory of this evolution as
“adaptation path.” Again, in every direc-
tion, the adaptation paths were bent to-
ward the learned structure. Hand
directions of the horizontal and the verti-
cal group were significantly different for
all 4 diagonal rotations and all 5 trials (20
comparisons in total; p � 0.001 for 17,
p � 0.01 for 1, p � 0.05 for the remaining
2 tests; Mann–Whitney–Wilcoxon test,
applied after projecting 2D data onto 1D
line perpendicular to the perturbation)
(for a scheme, see Fig. 4F).

As directional errors under a fixed 2D
visuomotor rotation are known to
decrease approximately exponentially
(Krakauer et al., 2000), we made separate
exponential fits to the sequences of azi-
muth and elevation errors for each of the
adaptation paths. For every path, this fit
was done with three parameters: speed of
azimuth learning, speed of elevation
learning, and the initial offset from the maximal error (see Mate-
rials and Methods for details). The dashed lines on Figure 3A
show the adaptation paths corresponding to each fit.

As the adaptation paths were very similar in each of the four
quadrants (Fig. 3A,B), we flipped all of them to the first quadrant
to increase the sample sizes. Average movement trajectories are
shown on Figure 4D; the black ticks show the moment after
which the trajectories become significantly different (p � 0.05,
Mann–Whitney–Wilcoxon test applied as described above). Ad-
aptation paths corresponding to the late movement hand posi-
tions are shown on Figure 4A (p � 10�10 for each of five trials).
The inset shows learning speeds in azimuth and elevation direc-
tions for both groups, where each speed was calculated from the
exponential fit and is defined as the amount of error corrected on
each subsequent trial. The learning speed can range from 0 to 1,
with 1 meaning that the error disappears after the first trial. For
each group, the learning speed corresponding to the direction of
learned structure was higher than in the other direction, and also
than in the other group.

The same holds true for the adaptation paths corresponding
to the initial movement directions as shown on Figure 4B (p �
0.001 for trials 2–5), except for the first trial in which there is no
significant difference (p � 0.09) and the initial directions of both
groups were very close to (0, 0), as expected.

Finally, we analyzed the initial directions of the backward move-
ments, performed from the target back to the origin. These data were
contaminated by large outliers, so we excluded from the analysis all
trials in which the directional error exceeded 35° (7% of all the trials)
and one of the subjects. The results are shown on Figure 4C (p �
10�5 for each of the five trials). Note that the initial direction of the
backward movement on trial 1 is far from (0, 0) because by the time
of the first backward movement subjects have already partially
adapted to the rotation during the preceding forward movement
(Neitzel et al., 2009). Here, we are not providing an inset with esti-
mations of learning speeds because the learning was very slow (all
five ellipses for each group are very close to each other).

All the data described above were averaged across subjects. To
quantify the amount of adaptation path bending for each single

subject, we calculated the area between the late movement adap-
tation path (Fig. 4A) and the straight line representing the ideal
adaptation path (Fig. 4E). We normalized this value such that an
adaptation path going straight up and then straight to the right
would get a value of 1 and a path going straight to the right and
then straight up would get a value of �1. Note that this calcula-
tion was done on the raw data, and not on the trajectories given
by exponential fits. As shown on Figure 4E, for every subject in
the vertical group the bending degree is positive (mean � SD,
0.23 � 0.08), and for every subject in the horizontal group it is
negative (�0.24 � 0.09). This demonstrates that the effect of
structure-specific adaptation can be observed on the single-
subject level.

Finally, note that these results cannot be trivially explained by
incomplete washout. Our paradigm was constructed such that
every probing block was preceded by a 10 trial washout, which
was in turn preceded by either �20 or �20° rotation block, with
equal amounts of both cases for every probing direction. We
compared the initial hand directions for the last two washout
trials between all washout blocks preceded by a positive and by a
negative rotation. The difference was very small and insignificant
for both groups (0.1°, p � 0.4, for the horizontal group, and 2.1°,
p � 0.07, for the vertical one). To be additionally sure that this
small difference did not contaminate our results, we repeated the
analysis presented in Figure 4, separately for the subsets of prob-
ing blocks preceded by positive and negative rotations. In each
case, we calculated the mean degree of adaptation path bending
(compare Fig. 4E) and compared them between each other; there
was no difference at all (vertical group: 0.23 � 0.07 and 0.22 �
0.10, p � 0.8, Mann–Whitney–Wilcoxon test; horizontal group:
�0.28 � 0.12 and �0.21 � 0.07, p � 0.4). This proves that
adaptation path bending is not an artifact of a possibly incom-
plete washout, but a genuine effect of structure learning.

Experiment 2: involuntary reflexes
We conducted a second experiment in which subjects received
the same training as in Experiment 1, but with a different probing
phase on the last day: to test whether structure learning modifies

A B

Figure 3. Adaptation paths are bent toward the learned structure. A, Movement trajectories during the first trial of every
probing block, in blue for the horizontal and in red for the vertical group (group averages). Each trajectory starts near (0, 0) because
the diagonal rotation was switched on unexpectedly for subjects, and ends near the corresponding cross because subjects had to
reach the target to finish the trial. Trajectories are taken from 200 ms after movement onset until the moment when cursor entered
the target. The colored bands around average trajectories show SEM; N � 24 for each trajectory. B, Late movement hand positions
(400 ms after movement onset) across probing trials, with color (dark to light) showing trial number (1–5) during a probing block.
Hand positions for every probing direction and every trial number are significantly different between groups (20 comparisons) (for
a scheme of statistical testing, see Fig. 4 F): p�0.001 for 17 pairs, p�0.01 for 1 pair, p�0.05 for another 2 pairs. The dashed lines
show trajectories corresponding to exponential fits calculated separately for the adaptation of azimuth and elevation (for details,
see Materials and Methods).

9902 • J. Neurosci., July 18, 2012 • 32(29):9898 –9908 Kobak and Mehring • Adaptation Paths Shaped by Structure Learning



involuntary reflex movements, we used a “cursor jump” para-
digm recently applied to assess such reflex responses (Franklin
and Wolpert, 2008). During probing trials, hand movements
were error-clamped by strong spring-like forces preventing any
horizontal or vertical deviations from the z-axis, so that subjects
could only move in a force “channel” directly to the target (see
Materials and Methods). When the hand was 3 cm away from the
starting position, the cursor was for 230 ms displaced in one of
the four diagonal directions in the plane perpendicular to the
z-axis (Fig. 5A). As this was happening in the force channel, we
could measure the force that subjects were exerting on the walls of
this channel as a reaction to the cursor jump. Probing trials were
administered in blocks of 18 error-clamp trials, with each block
being a random sequence of 3 jumps in each direction and 6
error-clamp trials without a jump. Every subject experienced 8 of
these blocks, with continuing exposition to the horizontal/verti-
cal rotations in between.

Every cursor jump initiated an involuntary force response in
the direction opposite to the jump. The average force responses at
300 ms after the jump onset (corresponding approximately to the
peak reaction force) are shown on Figure 5B for each cursor jump
direction. In all four directions, the horizontal group produces
stronger horizontal responses, and the vertical group, stronger

vertical responses than the opposite group (p � 0.001 in three
cases, p � 0.01 in one case, Mann–Whitney–Wilcoxon test ap-
plied after projecting 2D data onto 1D line perpendicular to the
perturbation) (for a scheme, see Fig. 4F). The responses flipped
to the first quadrant and averaged over four jump directions are
shown on Figure 5C (p � 10�17, difference between horizontal
and vertical groups); angular deviations of the average force re-
sponses from the diagonal are 21 and �5° for the vertical and
horizontal groups correspondingly. The inset in Figure 5C shows
these angular deviations, calculated for single subjects. The ver-
tical group shows a strong deviation of the force from the diago-
nal (21°). For the horizontal group, the deviation is smaller
(�5°), although consistently �0° for most subjects. Most impor-
tant for our present argument is the difference between groups,
which is large (26°) and highly significant.

After these experimental sessions were completed, we asked
subjects about their impressions during the cursor jumps trials.
All of them reported that they perceived cursor jumps as a
“flicker” or even a “glitch” and claimed that they had ignored
them; none of the subjects was aware of producing any compen-
satory force. Still, to completely exclude the possibility that com-
pensatory forces could be influenced by cognitive mechanisms,
we conducted another experimental session with eight subjects to

A B C

D E
F

Figure 4. Adaptation paths are bent toward the learned structure (continued). A, Across-trial adaptation of late movement hand positions: the same data as presented in Figure 3B, but flipped
to the first quadrant and averaged over directions (group averages). Ellipses show SEM (N � 96 for each ellipse), with color (dark to light) showing trial number (1–5) during a probing block. The
difference between groups is significant for every trial ( p � 10 �10). The dashed lines show trajectories corresponding to the exponential fits, with small dots on the dashed line showing the
positions on trials 1–5, according to the fit. The inset shows learning speeds for both groups with light (dark) bars corresponding to azimuth (elevation) learning speeds. Learning speed is defined
as amount of error (from 0 to 1) corrected on each subsequent trial. The asterisks show statistical significance (for details, see Materials and Methods), with three asterisks meaning p � 0.001. B,
The same as A, but for initial movement directions (200 ms after movement onset). For trials 2–5, difference between groups is significant with p � 0.001. Two asterisks in the inset mean p � 0.01.
C, The same as B, but for initial directions of backward movements. Here, the data were flipped to the third quadrant only for convenience, to show that these are backward movements. Difference
between groups is significant for each trial with p � 10 �5. D, Movement trajectories during the first trial, averaged over directions. The black ticks show the time point when the difference between
groups becomes significant with p � 0.05. E, For every subject, we computed the degree of bending, calculated as a normalized area between late movement adaptation path and the straight
diagonal path. These values are shown for six subjects in the vertical and six subjects in the horizontal group. The horizontal lines show mean value for each group (printed nearby in respective colors)
together with SEM. F, Scheme of statistical testing for differences between groups, used in A–D. The data were first projected on a line perpendicular to the perturbation, and then Mann–Whitney–
Wilcoxon rank sum test was performed. This way, we were only assessing the difference in bending of adaptation paths, and not in the learning speed.

Kobak and Mehring • Adaptation Paths Shaped by Structure Learning J. Neurosci., July 18, 2012 • 32(29):9898 –9908 • 9903



measure their voluntary reaction time. This time, we instructed
them to exert some force in the direction of the cursor jump as
soon as possible after they noticed the jump (Franklin and Wol-
pert, 2008).

Figure 6 shows the temporal profiles of force responses. Figure
6, A and D, shows the recordings for one exemplary subject. For
each cursor jump direction, the average diagonal force response
can be decomposed into horizontal and vertical components
(Fig. 5B). Figure 6A shows average horizontal forces produced
after cursor jumps in the top-left/bottom-left (solid line) and in
the top-right/bottom-right (dashed line) directions (all data were
trial-wise baseline corrected) (see Materials and Methods). As
expected, after cursor jumps to the left, the horizontal restoring
force is positive, and after cursor jumps to the right, it is negative.
The difference between the left and right responses, averaged over
all subjects, is shown in Figure 6B in magenta. After subjects were

instructed to produce the force in the direction of the cursor
jumps, the same analysis yields the cyan trace in Figure 6B. It is
clear that subjects were not able to voluntarily override the initial
part of the reaction force. This justifies calling this initial reaction
a reflex. The analogous analysis was performed for the vertical
force, this time comparing force responses elicited after upward
and downward cursor jumps (Fig. 6D,E) instead of leftward and
rightward ones.

The cyan curves on Figure 6, B and E, peak at 265 ms; we took
this value as the voluntary reaction time. The difference between
magenta and cyan curves becomes significant only later, at 285
ms (p � 0.05, Wilcoxon test). If the same significance analysis is
done for individual subjects, then the average � SD voluntary
reaction time over subjects is 325 � 46 ms (with the earliest value
over subjects being 275 ms). This is very close to the reaction time
of 324 � 76 ms reported by Franklin and Wolpert (2008). Our

A B C

Figure 5. Cursor jump experiment. A, Subject makes a movement to the target in a “force channel” (blue), with the manipulandum exerting very strong returning forces preventing any deviations
from the z-axis. At 3 cm from the origin, cursor was for 230 ms displaced in one of the diagonal directions but still moved in parallel to the z-axis according to the hand movement. The force channel
allows to record forces that subjects exert on the channel walls in reaction to the cursor jump. B, Average reaction force at 300 ms after the jump onset for all four jump directions (group averages).
Ellipses show SEM (NHOR � 192 and NVERT � 168 for each ellipse). The asterisks indicate the statistical significance of the difference between groups, with two asterisks meaning p � 0.01 and three
asterisks meaning p � 0.001 (for a scheme of statistical test, see Fig. 4 F). C, The same data as on the previous panel, flipped to the first quadrant and averaged over directions ( p � 10 �17; NHOR

� 768 and NVERT � 672). The angular values show deviation of the average force responses from the diagonal. The inset shows these angular values for individual subjects (obtained via circular
median).

A B C

D E F

Figure 6. Timing of force response to cursor jumps. A, Exemplary subject; horizontal force exerted as a reaction to the cursor jumps in the top-left/bottom-left (solid line) and in the top-right/
bottom-right (dashed line) directions. The dotted line shows the force during no-jump trials. All of the data are aligned on the jump onset, and the cursor jump profile is shown as a green dashed line
(out of vertical scale). N � 48 for each curve. B, The magenta line shows the difference between horizontal forces after cursor jumps in the top-left/bottom-left and in the top-right/bottom-right
directions (i.e., between solid and dashed lines in A). Difference was computed for each subject and probing batch, and then averaged over batches and subjects (N � 64 for each curve). The cyan
line shows the same, but after the subjects were instructed to push in the direction of the cursor jump. An arrow at 265 ms depicts the voluntary reaction time. A tick at 185 ms marks the beginning
of the reflex response ( p � 0.05 difference from the baseline, one-sided t test). C, Difference between horizontal forces after cursor jumps in the top-left/bottom-left and in the top-right/bottom-
right directions (calculated for each subject and probing batch and averaged over subjects in each group; NHOR � 64 and NVERT � 56). The horizontal group is shown in blue, and the vertical group,
in red. The thick black lines show the time interval of significant difference between groups (*p � 0.05; **p � 0.01; ***p � 0.001). D–F, The same as A–C for the vertical force.
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“peak” analysis using the average response across subjects results
in the most conservative estimation.

Finally, Figure 6, C and F, shows the horizontal and vertical
reflex forces, averaged over horizontal and vertical groups of sub-
jects. As we have seen before (Fig. 5), the horizontal group pro-
duces stronger horizontal, and the vertical group, stronger
vertical force. The differences between groups become significant
at 216 ms (with p � 0.05, and at 233 ms with p � 0.001), which is
much earlier than the estimated voluntary reaction time (shown
with a dashed vertical line). The conclusion is that already the
involuntary response is shaped in structure-specific way.

Experiment 3: force fields
To test for structure learning of force fields, we devised an exper-
iment in which subjects were using the same setup as before and
were making movements to the same target, but this time expe-
rienced velocity-dependent force fields instead of visuomotor ro-
tations. For one group, the perturbing force was always
horizontal, and for another group, always vertical (Fig. 7A). For
both groups, the perturbing force was proportional to the hand
velocity along the z-axis, and the coefficient of proportionality
(force gain) was randomly changed every five trials from the set of
{0, �2, �4, �8, �10} N � s/m. The training continued for 3 days,
exactly as in the visuomotor experiment (for details, see Materials
and Methods). The average peak velocity was �0.25 m/s, so sub-
jects experienced average peak forces of �2.5 N. Every fifth trial
(last trial in every block) was error clamped as described above to
assess the subject’s forward model. For every such trial, we esti-
mated subject’s horizontal/vertical gains by regressing the mea-
sured horizontal/vertical force of the subject to the subject’s
velocity profile during that trial. The gains measured on the third
day are shown on Figure 7B, and adaptation was calculated as
described above for the visuomotor case; it was 46 � 8% for the
horizontal and 56 � 13% for the vertical group (mean � SD over
subjects).

On the third day, we tested how subjects adapted to diagonal
force fields by using triplets of trials, consisting of a diagonal force
field trial with the gain of 5 N � s/m, sandwiched between two
error-clamp trials (Sing et al., 2009). These triplets were separated
by three to five washout trials (no force, no error clamp), and
every subject experienced 80 triplets in total, with 20 triplets us-

ing forces in each diagonal direction. The
difference in gains between the second
and the first error-clamp trials shows the
result of the single-trial force field learn-
ing. Indeed, for every diagonal force di-
rection, we observed an average
compensatory force roughly in the oppo-
site direction produced by subjects during
the following error-clamp trial. Figure 8A
shows the difference in gains between the
first and second error-clamp trials for
both groups and for all four force direc-
tions. Evidently, the horizontal group
produces stronger horizontal responses
than the vertical group, whereas the verti-
cal group produces stronger vertical re-
sponses than the horizontal group (p �
0.001 for three of four directions, Mann–
Whitney–Wilcoxon test applied after
projecting 2D data onto 1D line perpen-
dicular to the perturbation) (for a scheme,
see Fig. 4F). The same data flipped to the

first quadrant and averaged over directions are presented on Fig-
ure 8B. The difference between groups is highly significant (p �
10�11), with the responses deviating from the diagonal by 30° for
the vertical group and by 18° for the horizontal one. The inset of
Figure 8B shows these values calculated for single subjects; again,
the effect of structure learning can clearly be observed on the
single-subject level.

On average, after one trial, subjects adopted the gain of 0.8
N � m/s (16% of the perturbation of 5 N � m/s). The amount of
adaptation can be calculated by projecting this value onto the
direction of ideal adaptation (i.e., onto the diagonal). This
gives 15% adaptation for the vertical group and 14% for the
horizontal one.

Additionally, we looked at hand trajectories during the diag-
onal force field trials in the middle of the probing triplets. As
described above, in these trials, the subject’s hand was pushed
away from the z-axis; this evoked a compensatory movement
necessary to bring the cursor to the target. Figure 8, C and D, shows
average movement trajectories during 200–650 ms after movement
onset. The shape of trajectories was quite different between groups:
the horizontal group was faster in correcting the horizontal compo-
nent of the displacement, whereas the vertical group was faster in
correcting the vertical component. At the same time, initial displace-
ment of the hand in response to identical initial force was the same
for both groups (Fig. 8E). Hand trajectories become significantly
different between groups only after 200 ms (and in the direction
perpendicular to the diagonal only after 240 ms). This means that
hand stiffness was identical for both groups, and thus our results
cannot be explained by differences in hand impedance (Burdet et al.,
2001; Franklin et al., 2007).

Discussion
Learning curves and adaptation paths
Most of the experiments in the field of human motor learning are
done by making subjects learn to compensate a certain fixed per-
turbation: usually it is either a visuomotor rotation or a velocity-
dependent force. Whatever the perturbation is, subjects gradually
improve their performance and the sequence of decreasing errors
can be analyzed. These “learning curves” quantify the amount of
adaptation of a single parameter (e.g., the rotation angle) across
trials. Comparing learning curves in different conditions led to

A B

Figure 7. Force field experiment. A, Subjects were making fast straight movements between two targets, this time experienc-
ing different horizontal or vertical force fields instead of visuomotor rotations. Force was proportional to the velocity along the
z-axis, and the gain changed between �10 N � s/m in blocks of five trials. The red and blue dots on the plane of gains show the
gains used for the vertical and horizontal structures. The crosses mark the gains used for probing. B, Gains used by the subjects on
the last trial of every block during the structure learning period on the third day (estimated with error-clamp trials) (see Results).
The small open ellipses show SEM for group averages, and the large filled ellipses show SD, in blue for the horizontal and
in red for the vertical group (NHOR � 18 and NVERT � 12 for each ellipse). Note that, on this panel, the axes do not go until
10 N � s/m, and the average adaptation is only �50%.
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many interesting insights about motor
learning (Brashers-Krug et al., 1996; Mar-
tin et al., 1996; Krakauer et al., 2000, 2005;
Sainburg, 2002; Mazzoni and Krakauer,
2006; Smith et al., 2006; Criscimagna-
Hemminger and Shadmehr, 2008; Keisler
and Shadmehr, 2010; Sing and Smith,
2010; Huang et al., 2011), including the
original evidence for structure learning
(Braun et al., 2009a). This is, however, a
limited research tool, as all the compari-
sons are necessarily one-dimensional: one
learning curve can only be “faster” or
“slower” than another.

An alternative approach to represent
learning progress is to plot the evolution
of subject’s estimated internal model
(“adaptation path”) in the appropriate
parameter space. If the relevant parameter
space has more than one dimension, then
adaptation paths can have different
shapes, and these shapes can be studied
experimentally. A recent study used this
approach (Sing et al., 2009), in which sub-
jects were adapting to velocity- and
position-dependent forces, and their ad-
aptation paths were plotted in the two-
dimensional parameter space of velocity
and position gains. Sing et al. (2009)
found that adaptation paths are curved in
the diagonal direction and suggest that
this can be explained by an asymmetric
distribution of motor primitives. There is
no structure learning involved in that
study, and the curved adaptation paths
were observed in naive subjects.

Our study is the first to show that, with
prolonged training, adaptation paths can
change, both in kinematic and dynamic tasks. This is the main
reason why we used a 3D setup: the relevant parameter spaces of
visuomotor rotations and force fields in 3D naturally become two-
dimensional, as perturbations can occur in the plane perpendicular
to the movement and thus have a horizontal and a vertical compo-
nent. Note that, in our experiments, motor tasks from different
(horizontal vs vertical) structures involved perturbations in different
spatial directions and so possibly induced training with different
muscles. It is an interesting topic for future research to investigate
whether adaptation path bending will also be observed when pertur-
bations from both structures happen in the same spatial direction
(e.g., velocity-dependent vs position-dependent force fields).

Structure learning of force fields
All previous studies about structure motor learning used visuo-
motor transformations (Braun et al., 2009a,b; Turnham et al.,
2011, 2012), and the question whether structure learning also
plays a role in learning dynamic tasks, such as learning velocity-
dependent force fields, was open. At the same time, humans often
have to learn to control movements under new forces in real-
world motor tasks. Our Experiment 3 demonstrates that adapta-
tion to new force field tasks is shaped according to the previously
experienced structure, and this effect is not due to altered hand
stiffness. Thus, human motor system can learn structures of force

fields and use this knowledge during adaptation to new dynamic
tasks.

Influence of structure learning on involuntary reactions
We showed that structure learning (of different visuomotor ro-
tations) changes the magnitude of the fast force responses, elic-
ited by sudden cursor jumps during a reaching movement. This
fast force response is known to be involuntary (Franklin and
Wolpert, 2008), in the sense that subjects cannot get rid of it even
if they are told to try. Franklin and Wolpert showed that the reflex
reaction to cursor jumps is modulated depending on the environ-
ment: it becomes stronger in the environment in which subjects
have to correct for random perturbations and weaker in the en-
vironments in which perturbations do not interfere with the per-
formance and therefore do not have to be corrected. In other
words, the strength of this visuomotor reflex can increase or de-
crease depending on whether it is important in the given environ-
ment. In the present study, we show that the modulation of this
reflex happens specifically in the direction of external perturba-
tions: training with horizontal (vertical) perturbations leads to
increase of the horizontal (vertical) reflex component.

Structure learning is implicit and automatic
Structure learning is a prominent feature of human intelligence
and is usually understood as a high-level learning phenomenon

A B

C D E

Figure 8. Effects of structure learning on single-trial force field learning. A, The result of single-trial force field learning for both
groups and four diagonal force directions (group averages). Diagonal force field trials were always preceded and followed by
error-clamp trials, and this panel shows the difference between gains estimated in the first and in the second error-clamp trials.
Ellipses show SEM (NHOR � 120 and NVERT � 80 for each ellipse). The difference between groups is significant in three directions
of four ( p � 0.001) (for a scheme of statistical test, see Fig. 4 F). B, The same data flipped to the first quadrant and averaged over
directions ( p � 10 �11; NHOR � 480 and NVERT � 320). Percentage values show the amount of adaptation achieved after a single
trial: the length of projection of the average force onto the diagonal, relative to 5 N � s/m. The angular values show the angular
difference between the response force and the diagonal. These angular deviations for single subjects (calculated as circular
medians) are shown on the inset. C, Trajectories during force field trials between two error-clamp trials for both groups and all four
directions, projected on the XY plane. Plotted trajectories start at 200 ms after movement onset and end at 650 ms. The colored
bands around the average trajectories show SEM (NHOR � 120 and NVERT � 80 for each trajectory). D, The same trajectories as in
C, but averaged over directions. The black ticks show the time point when the trajectories start to be significantly different between
groups ( p � 0.05; NHOR � 480 and NVERT � 320). E, Same trajectories, first 300 ms after movement onset. The ticks mark 100 and
200 ms (the color of the tick corresponds to the group).
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(Kemp and Tenenbaum, 2008; Tenenbaum et al., 2011). At the
same time, the results of our cursor jump experiment show that
structure learning influences involuntary visuomotor reflexes
and so cannot be due to conscious efforts or strategies used by the
subjects. Involuntary visuomotor reflexes are arguably the most
low-level part of the brain-mediated motor system (with only
spinal cord reflexes being faster and more basic). Our results
demonstrate that structure learning manifests itself not only in
the abstract cognitive functions of human brain but also in the
most low-level brain-mediated circuits. This is in accordance
with studies showing that long-latency reflexes can reflect an in-
ternal model of limb dynamics (Kurtzer et al., 2008) and are
controlled by the motor cortex (Pruszynski et al., 2011).

Our finding that structure learning in motor control is invol-
untary is in agreement with the generally accepted view that mo-
tor adaptation is an automatic, unconscious, and implicit process
(Shadmehr et al., 2010). It is well known, for example, that if a
visuomotor perturbation or a force field is introduced gradually,
then subjects successfully adapt to it without ever becoming
aware of any perturbation (Jakobson and Goodale, 1989; Kagerer
et al., 1997; Klassen et al., 2005; Michel et al., 2007). Even though
the effects of an explicit cognitive strategy and implicit, “genu-
ine,” motor adaptation are often hard to disentangle, carefully
designed experiments allow to separate them (Malfait and Ostry,
2004; Hwang et al., 2006; Mazzoni and Krakauer, 2006). In a
similar vein, our present results show that structure learning is
part of the implicit motor system.

Possible computational mechanisms of structure learning
It was recently suggested that curved adaptation paths can be
explained by a correlated distributions of motor primitives (Sing
et al., 2009). Motor primitives, as introduced in the study by
Mussa-Ivaldi et al. (1994), are independent units of computation
that calculate the output force (or force gain) given the current
state; the resulting total force is the weighted sum of forces pro-
duced by individual primitives (Thoroughman and Shadmehr,
2000; Donchin et al., 2003; Joiner et al., 2011). Our results can be
explained by reorganization of initially symmetric distribution of
primitives: practicing tasks belonging to the vertical/horizontal
structure could gradually lead to motor primitives accumulating
around the vertical/horizontal axis, and this would in turn lead to
the subsequent adaptation paths being bent in the vertical/hori-
zontal direction (Sing et al., 2009).

Alternatively, our results can be interpreted as different Bayes-
ian priors acquired by subjects during structure learning. If prac-
ticing vertical/horizontal perturbations builds up a vertically/
horizontally stretched prior over perturbations, then a suddenly
observed diagonal perturbation would be interpreted differently,
depending on the prior (Wolpert et al., 2011). A learned structure
would then essentially be an acquired bias in estimating the value
of a perturbation given a noisy observation.

Yet another, more abstract, way to think about structure mo-
tor learning is in terms of Bayesian networks. A Bayesian network
is a graphical representation of causal relationships between dif-
ferent variables: an arrow from variable A to variable B means
that B is directly influenced by A (Pearl, 2009). For example, in
the case schematically presented on Figure 1, a one-dimensional
structure in the three-dimensional control parameter space cor-
responds to a Bayesian network with one hidden variable defin-
ing the values of all three control parameters. The value of this
hidden variable corresponds to the position along the one-
dimensional structure; all three control parameters can be recov-
ered given this value. One can also imagine motor structures

corresponding to more complicated Bayesian networks, with
several (and not only one) hidden variables influencing con-
trol parameters in various combinations. In contrast, a set of
perturbations that is not confined to a lower-dimensional struc-
ture would correspond to a trivial Bayesian network without any
arrows, because all control parameters are statistically indepen-
dent. From this point of view, what we called structure learning
can be seen as learning a Bayesian network with hidden variables,
in particular realizing that control parameters are not statistically
independent, but instead have one or several hidden common
causes. Structure learning of Bayesian networks has recently be-
come an active topic of research bringing together the fields of
cognitive psychology and machine learning (Tenenbaum et al.,
2011).

These alternatives are not equivalent, but also not mutually
exclusive: for example, learning the structure of a Bayesian net-
work leads to a certain prior over the nonhidden node values. The
data presented in this manuscript do not allow selecting among
these alternatives, and additional work is needed to test whether
structure motor learning can indeed be accurately described in
any such way. Future work should also show whether similar
computational mechanisms are used in other noncognitive brain
functions.
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