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It is a vital ability of humans to flexibly adapt their behavior to different environmental situations. Constantly, the rules for our sensory-
to-motor mappings need to be adapted to the current task demands. For example, the same sensory input might require two different
motor responses depending on the actual situation. How does the brain prepare for such different responses? It has been suggested that
the functional connections within cortex are biased according to the present rule to guide the flow of information in accordance with the
required sensory-to-motor mapping. Here, we investigated with fMRI whether task settings might indeed change the functional connec-
tivity structure in alarge-scale brain network. Subjects performed a visuomotor response task that required an interaction between visual
and motor cortex: either within each hemisphere or across the two hemispheres of the brain depending on the task condition. A
multivariate analysis on the functional connectivity graph of a cortical visuomotor network revealed that the functional integration, i.e.,
the connectivity structure, is altered according to the task condition already during a preparatory period before the visual cue and the
actual movement. Our results show that the topology of connection weights within a single network changes according to and thus
predicts the upcoming task. This suggests that the human brain prepares to respond in different conditions by altering its large scale
functional connectivity structure even before an action is required.

Introduction

Humans and other animals can flexibly adapt their behavior to
the needs of the current context (Miller and Cohen, 2001; Bunge,
2004; Sakai, 2008). Depending on the situation, the same sensory
input can require two completely different actions. An object we
might want to pick up in some situation should not be touched
under other circumstances. Such contextual modulation requires
a flexible control of visuomotor mappings. Standard examples of
flexible visuomotor control paradigms are the anti-saccade task
(Hallett, 1978; Munoz and Everling, 2004) and the anti-pointing
task (Connolly et al., 2000). In pro-trials, the response has to be
made toward the visual stimulus, while in anti-trials, a response
away from the visual stimulus (to a position mirrored at the
fixation spot) is required. Neither stimuli nor responses differ
between the compared conditions, but the stimulus-response
mapping (pro or anti) changes according to a contextual cue.
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Individual neurons (Gail et al., 2009; Johnston et al., 2009) and
also large scale brain signals (Connolly et al., 2002) have been
shown to signal differences in mapping rules in these tasks. More
generally, activity changes in prefrontal cortex (PFC) are related
to task rules but also demand control (Dove et al., 2000; Brass and
von Cramon, 2002; Sakai and Passingham, 2003; Bode and
Haynes, 2009; Reverberi et al., 2012). Miller and Cohen (2001)
proposed that “bias signals” from the prefrontal cortex “guide the
flow of neural activity along pathways between inputs, internal
states, and outputs needed to perform a given task.” The pro- and
anti-tasks described above require two completely different path-
ways within a visuomotor network to be activated: information
flow within individual hemispheres is sufficient in pro-trials,
while both hemispheres need to interact to perform an anti-trial.
In other words, our brain needs to modify the interactions be-
tween the two hemispheres according to the task demand. It has
been shown that prefrontal interactions change depending on the
task (Sakai and Passingham, 2003), suggesting the recruitment of
different task-specific networks. Importantly, the pro- versus
anti-task differs from these studies, as it requires the neural flow
of information within a single network of regions to be routed
differently for pro- versus anti-trials.

Here, we investigated whether the functional integration in a
visuomotor network changed as a function of the task require-
ments. We hypothesized that the brain would prepare to respond
ipsilaterally or contralaterally already during a preparatory phase
by changing the functional integration pattern between task rel-
evant visual and motor regions. Hence, it should be possible to
predict the task condition (pro or anti) from the functional con-
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Figure 1. Visuomotor mapping task. A, Time line of a single pro-trial (Il, left) and anti-trial
(X, right). At the beginning of each trial, the task cue Il or X was shown. During an extended
delay period (between 8 and 14 ), the subject viewed two rotating clocks and tried to detect the
go-signal (when one of the two clocks synchronized its hands; B). During this delay period, the
connectivity in the visuomotor network was assessed. B, During the delay period, all clock hands
(gray) turned with different velocities. At the go-signal, the hands of one clock synchronized.
The black arrows indicate the velocities and were not displayed in the paradigm. For clarity, only
fourhands per clock are depicted. In the experiment, each clock consisted of eight hands. During
the whole experiment, subjects had to fixate on the fixation spot between the two clocks.

nectivity pattern in the visuomotor network before the go-signal.
We measured brain activity with fMRI in a bilateral visuomotor
network and show that the network’s functional connectivity
structure could be used to predict across subjects whether sub-
jects were planning a pro- or an anti-trial. Importantly, our result
provides one of the few examples where a cognitive state can be
predicted from brain activity in new subjects.

Materials and Methods

Participants. Seven healthy adult volunteers participated in the study
[four female, three male, all right-handed, 27 * 6 years old (mean *
SD)]. All subjects had normal or corrected-to-normal vision and gave
written informed consent to participate in the study. The experiment was
approved by the local ethics review board and conducted according to the
Declaration of Helsinki.

Experimental design. The flexible visuomotor task required subjects to
respond with either the ipsilateral or the contralateral hand to a visual
stimulus (go-signal) presented in their left or right visual hemifield. The
stimulus—response mapping varied between trials: in pro-trials (called
“II-trials” in this paper), the response had to be given with the hand on
the side of the visual go-signal; in anti-trials (called “X-trials”), with the
hand opposite to the go-signal (Fig. 1 A). The task condition was indi-
cated by a cue at the beginning of each trial (“II” or “X”, 3 5). After a pause
of 2 s, subjects were presented with two clocklike shapes, in the left and
right visual field, with eight clock hands each (Fig. 1 B) rotating at differ-
ent velocities. Specifically, all eight hands of each clock rotated in the
same direction with their rotational velocities distributed normally
around a mean of u = 50°/s with standard deviation o = 30°/0. Negative
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speeds were inverted so that all clock hands turned in the same direction.
At the go-signal, the speeds of all hands of one of the two clocks were set
to w = 50°/s. This continuous visual stimulation during the delay period
was chosen to continuously inject visual information into the visual sys-
tem, which in turn was done to drive fluctuations in the visuomotor
network and thus make changes in functional connectivity more visible.
Subjects had to detect the go-signal (a synchronization of all hands of one
of the two clocks to the same rotational velocity) and respond to this
go-signal according to the task condition: with the hand on the side of the
go-signal in II-trials or with the opposite hand in X-trials. The time of
synchronization was pseudorandomized between 8 and 14 s after the
clocks started to turn. During the delay, subjects knew about the task
condition and thus could prepare the required mapping (II or X). After
each response, subjects received a feedback about their response (correct
or error) and their reaction time [horizontal bar with length relative to
the reaction time (RT)] to motivate them to respond correctly as quickly
as possible. If subjects did not respond to the go-signal within 3 s, they
were informed about the miss, and a new trial was started after 1 s. All
subjects practiced the relatively difficult task in a 1 h training session
several days before scanning and immediately before the fMRI experi-
ment. Short catch trials (4 s delay, 1/5 of all trials) were inserted to force
subjects to attend to the clock hands during the whole delay period, but
were not used for the analysis. The entire fMRI experiment consisted of
four runs with 40 trials each (160 trials in total). Always five consecutive
trials (including one catch trial that was not analyzed) formed a mini-
block of the same condition (II or X) that was later used in the analysis
(Fig. 2A). We used the Cogent 2000 toolbox (http://www.vislab.ucl.ac.
uk/cogent_2000.php) for MATLAB (Version R2007b; MathWorks) to
present the stimuli and to record the responses.

Functional localizers of visual and motor cortex. Functional visual and
motor ROIs were individually defined for each subject based on two
independent localizer runs at the end of the fMRI experiment: The visual
localizer consisted of two circular checkerboards (contrast reversing at
2.5Hz, 20 s stimulation, 30 s gray background) of the same size and at the
same location as the clocks in the main task. Subjects fixated to the center
of the screen and had to indicate (button press) small visual events
flashed in either the right or the left checkerboard. The motor localizer
consisted of alternating blocks (20 s duration, 5 s rest) of right and left
index finger tapping paced by a 1 Hz visual cue at the center of the screen.
Six repetitions of right and left blocks were performed.

fMRI data acquisition. Standard functional images were acquired on a
3-tesla Siemens Trio with a 12-channel head coil. We collected four runs
of T2*-weighted gradient-echo echo-planar images (EPI): TR, 2000 ms;
TE, 30 ms; flip angle, 90°; matrix size, 64 X 64; field of view (FOV), 192
mm; 33 slices (2 mm thick, 1 mm gap, ascending) resulting in a voxel size
of 3 X 3 X 3 mm. Finally, a whole-brain EPI image (parameters as above
but with 70 slices; TR, 4300 ms) was collected after each session as well as
a T1-weighted structural dataset with 1 mm? resolution (TR, 1900 ms;
TE, 2.52 ms; matrix size, 256 X 256; FOV, 256 mm; 192 slices of 1 mm
thickness; flip angle, 9°).

Data analysis. To look at aspects of both specialization and integration,
the fMRI data were analyzed twofold. First, we used statistical parametric
mapping (SPM) to look for functionally specialized areas in the brain, in
which activity might differ between the two task conditions during the
delay period. Second, the main analysis focused on functional integration
during the delay period, while the subjects prepared their responses, by
analyzing the functional connectivity structure in the task-relevant net-
work of brain regions, as identified using the functional localizer tasks
(see Functional localizers and definition of regions of interest, below).

Preprocessing of fMRI data. All functional images were corrected for
motion and slice acquisition time and coregistered to each subject’s
individual structural T1-weighted image via the whole-brain EPI us-
ing SPM2 (Wellcome Department of Imaging Neuroscience, Institute
of Neurology, London, UK). For the standard GLM analysis, the fMRI
data were spatially smoothed with a Gaussian kernel (FWHM, 8 mm),
normalized to the standard EPI template of SPM and high-pass fil-
tered (f = 128 s).

Standard average activation analysis. We looked for differences in brain
activation that reflected the task condition (II vs X) using a standard
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GLM approach. The regressors of the model
were defined according to a mixed (event-
related and mini-block) design. The presenta-
tion of the task cue (I or X), the button presses
(left or right), and the display of the feedback
were modeled as events, while the visual stim-
ulation during the preparatory period (rotat-
ing clocks) was modeled separately for ITand X
trials using two boxcar functions, which started
when the clock hands began to turn and ended
with the go-signal. All regressors were con-
volved with the standard hemodynamic re-
sponse function to obtain BOLD-regressors for
the fMRI data. To find regions whose activa- C
tion would differ between the two tasks, a lin-
ear contrast between the parameter estimates
of the X and II delay period was computed for
each subject and tested on the group level using
a t test on the difference X versus II (or I vs X)
over subjects. To illustrate the most prominent
differences between X and II trials, a liberal sta-
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corrected for multiple comparisons, and thus
the resulting activations are not necessarily sig-
nificant at the whole-brain level. The resulting
activations (p < 0.001, k = 10) were then used
to create masks and extract the percentage sig-
nal change (As) in these regions for illustration
purposes. The masks consisted of a sphere with
a volume of 57 voxels (radius 7 mm) around
the peak activation.

Two control analyses looked at the visual D
and motor activations. Visual activations were

S
computed by contrasting the activation during
the delay period with rest. Motor activations e4)

. ©
resulted from a contrast of left versus right but- el
ton presses. A threshold of p < 0.001 (uncor- ;7<‘ !
rected, k = 10) was applied for both control

contrasts.

Functional localizers and definition of regions
of interest. Using the functional localizer data,
we defined eight ROIs, four in each hemi-
sphere: two visual areas, primary visual cortex
(V1) and V5/hMT++ (also human MT); and
two motor related areas, dorsal premotor cor-
tex (PMd) and primary motor cortex (M1).
The ROIs were defined in a two-step procedure
that combined a priori knowledge about the
location of cortical regions in the form of cyto-
architectonic probability maps (Eickhoff et al.,
2005., 2007) with the actual functional activa-
tion observed in the localizer runs. First, we
used the IBASPM (Aleman-Goémez et al.,
2006) toolbox to map cytoarchitectonic prob-
ability maps (Eickhoff et al., 2005, 2007) from
the standard MNI template to the anatomy of
individual subjects. We then selected for each
voxel in every individual subject the maximum anatomical probability to
create binary anatomical masks for the eight ROIs in each subject. Sec-
ond, these anatomical maps were combined with functional maps from
the localizer runs by selecting the 100 most significant voxels in each
anatomical ROI for each subject individually. This procedure ensures
that the ROIs reflect the general cortical anatomy and also take into
account functional activation individually recorded for each subject.
For the visual localizer (V1, V5/hMT+), significance was assessed by
a t test contrasting stimulus versus rest. For the motor localizer (PMd,
M1), we used a ¢ test contrasting left and right button presses and vice
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Regions of interest and connectivity graph classification procedure. A, The eight (4 per hemisphere) ROIs are illus-
trated. B, lllustration of run structure and assignment of data. The two task conditions were presented in miniblocks of five trials.
Trials are drawn as black boxes (X, anti-trials; II, pro-trials). Gray arrows indicate the sequence of trials during one run. Note that
onlya part of one runis shown. All consecutive trials of one miniblock, i.e., one row, were assigned to one subset (without the catch
trial) from which the correlation matrix Cwas computed (e.g., Cy , is the correlation matrix for the first subset of the contralateral
condition). C, The eight ROIs form a fully connected graph (left). The connectivity structure, i.e., correlation matrix, is calculated for
alllland X miniblocks and transformed to vectors of all connections (right), which are then used for the multivariate analysis. Note
that the elements on the diagonal of the correlation matrix and the lower half remained empty because of the symmetry of the

correlation structure. D, The connectivity vectors of all miniblocks of six subjects were used to train a support vector classifier to
distinguish between the connection graphs for the Il and the X blocks. The classifier was then tested on the connectivity data from
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versa. This procedure selected within each anatomically defined mask
the 100 voxels that were most activated by the corresponding func-
tional localizer. Please note that the data used to create the ROIs were
acquired in separate localizer runs and are thus independent from the
data that was acquired during the task.

Preprocessing and ROI data selection for connectivity analysis. For the
connectivity analysis, the same preprocessing steps as above were ap-
plied, but without smoothing. Additionally, we regressed several poten-
tial sources of global effects out of the individual voxels’ time courses of
each run: the estimated time courses of the movement parameters (6
regressors), a linear regressor, the mean over all voxels (whole-brain
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regressor), and the time courses of four hand-selected voxels in the left
and right ventricles and the white matter in the left and right hemisphere.
This denoising procedure has been shown to successfully remove global
correlations due to breathing or heartbeat, which could inflate correla-
tions (Van Dijk et al., 2010).

All functional images of the delay period of correct trials (47 images/
trial, no catch trials) entered the analysis. The hemodynamic delay was
taken into account by shifting the delay period by 2 s. This relatively small
shift assures that no motor signal enters the analysis. To obtain robust
correlation estimates, all consecutive trials of one miniblock were com-
bined into a subset of images (Fig. 2A). Thus, for every subject, we
obtained four subsets for each condition and run (4 X 2 X 4 = 32 in
total). X subsets consisted on average of 19.5 = 4.6 images (mean = SD)
and contained at least six images; II subsets consisted of 19.0 = 4.2
images, at least nine images. The functional connectivity in the visuomo-
tor network was assessed by calculating the correlations between the
mean time series in the eight ROIs (28 pairs) within each of the 32
subsets, resulting in 16 correlation matrices for each task condition and
subject (Fig. 2C).

Across-subject classification task based on functional connectivity. A lin-
ear SVM (LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm) with
standard parameters was used in a leave-one-subject-out cross-
validation scheme to classify the functional connectivity matrices of the
visuomotor network into II versus X conditions. In each fold of the
cross-validation, we z-normalized every dimension of the training and
test vectors by subtracting the mean and dividing by the standard devia-
tion. Importantly, this normalization procedure was performed using
the mean and standard deviation from the training data only, thus pre-
venting any circularity in the analysis. The classifier was then trained on
the correlation matrices of six subjects and tested by computing how well
it classified II versus X correlation matrices in the subject that was not
used to train the classifier. Classifier performance was compared with a
binomial distribution B( p,n), with p = 0.5 and n = 224 (32 samples X 7
subjects). In addition, we calculated the 95% confidence interval of the
accuracy based on a beta distribution Beta(n_ + 1,1, + 1), where n_and
n, are the number of correct and error predictions, respectively, and the
term +1 results from the assumption of a flat prior distribution
Beta(1,1). See Bishop (2006) for details.

For comparison, an additional classification was performed that relied
on the average activation within ROIs rather than on the connectivity
within the network. The same data and classification procedure as above
were used, but features were defined in the following way: in every block,
we extracted the average ROI activity at the four time points at the be-
ginning of the delay period, resulting in a feature vector of 32 dimensions
(4 time points X 8 ROIs). These feature vectors were then used to train
and test the classifier in exactly the same way as described above. We used
four time points to allow for a dimensionality that was close to the one of
the main analysis.

Analysis of weight structure. The structure of the weights of the classifier
provides information on the discriminative connectivity pattern, i.e., the
pattern of functional connectivity differences between IT and X trials that
allow for the prediction. We analyzed this pattern to see whether indeed
the task-related changes in functional connectivity were in line with the
theory of Miller and Cohen (2001). To compare only the directions of
weight vectors, the weight vectors from all cross-folds were normalized to
length 1 and then averaged. Note that the z-score normalization of the
training data to a standard variance of 1 already assures that the weights
are approximately normalized. The sign of the weights indicate whether
afunctional connection is stronger or weaker in either the IT or the X task.
The labeling of the conditions in our case was such that positive weights
were assigned to connections that were stronger in X trials, and negative
weights to those that were stronger in II trials. A random permutation
test of the signs of the weights of all connections was used to assess a p
value of the observed weight structure. In particular, we calculated the
fraction of random networks that had more or the equal number of negative
weights in ipsilateral connections and thus also more positive weights in
contralateral connections than the observed weight distribution.

Influence of individual connections. The absolute value of the SVM
weight w; of the connection i is linked to how much information about
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Figure 3.  Behavioral results. A, Left, Average number of correct trials per miniblock for
individual subjects. Short catch trials were not counted. Therefore, there were four trials per
block. Right, Percentage of correct trials averaged over subjects. B, Left, Average reaction time
for individual subjects. The average and SD were calculated over all correct trials of each indi-
vidual subject. Right, Group average of reaction times. Black bars, X trials; white bars, Il trials.
Error bars show the SD.

the task condition is present in that particular connection (Mourao-
Miranda et al., 2007). A high w; would suggest that the temporal corre-
lation between the i pair of regions consistently differs between the two
conditions. Again, the weight vectors from all cross-folds were normal-
ized to length 1 and then averaged across all cross-folds. In two analyses,
we assessed the role of individual connections within the network. First,
the unique contribution of every single dimension to the classification
was tested by removing one dimension from the feature vectors and
conducting the classification with this reduced dataset. A drop in accu-
racy (tested by a t test across subjects) would suggest that this functional
connection contributes information that is relevant for the classification
of the task condition. Second, we analyzed each element of the correla-
tion matrix separately. For this, we compared the mean correlation (Fish-
er’s Z-transformed) of each region pair for the two conditions (Il and X).
The matrices from all miniblocks of each condition were averaged for
each subject individually and compared using a paired-sample ¢ test
across subjects.

Within-subject classification. To compare the across-subject classifica-
tion to classifiers that are trained and tested on independent data within
the same subject, we classified task condition based on the connectivity
pattern and the average activation within ROIs using the same features as
for the across-subject classification. Importantly, we now use a leave-
one-run-out cross-validation. Please note that this procedure results in
fewer training samples and thus a lower performance might be expected.

In addition, within-subject classifiers can make use of the detailed
activation pattern within the ROIs, which has been shown to yield sub-
stantial information that cannot be obtained from regional averages
(Haynes and Rees, 2005; Kamitani and Tong, 2005). We thus wanted to
test whether such multivoxel pattern classifiers might be able to classify
task condition better than the connectivity-based classification. For each
voxel within an ROI, we extracted the average activation over the four
first time steps (scans) of the delay period, yielding a 100-dimensional
feature vector for each block of the experiment for each ROI. For each
ROI, we then trained a multivoxel pattern classifier to predict the task
condition in a leave-one-run-out cross-validation. Prediction accuracies
were then averaged across subjects to yield the average prediction accu-
racy of each ROL Please note that this multivoxel classification differs
from the main analysis in two important aspects: it cannot be performed
across subjects, and it uses information that is different from the connec-
tivity structure, which was the main interest of this study.

Results

Behavioral results

All subjects achieved a good behavioral performance in the task.
On average, they responded correctly in more than three of the
four trials of a miniblock (Fig. 3A; catch trials were not analyzed).
At least one or two trials were correct in each miniblock. A non-
parametric Wilcoxon rank sum test was performed to test for
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Table 1. Regions with different activation in X and Il trials at p < 0.001
(uncorrected)

MNI coordinates  Region Toax K Pauster COTrected  Contrast
—33,—63,—9 Leftfusiform gyrus 11.75,18  0.095 X>1l
39, —75, -3 Right inferior occipital gyrus ~ 8.03,12  0.330 X>
—3,—24,—9  Brainstem 6.80,10 0.487 X>1l
—15,51,45 Left superior frontal gyrus 7.99,24  0.029 II>X

differences between the two task conditions. At the group level,
there was no significant difference (Wilcoxon test, p = 0.83).
When subjects were considered individually, data from six of
seven subjects showed no significant difference (p > 0.05), while
one subject (S3) showed, on average, slightly more correct trials
in X blocks (p = 0.049, not corrected for multiple comparison).
RT was defined as the time interval between the go-signal and the
button press. Note that RT includes both the time for the difficult
detection of the go-signal (synchronization of clock hands) and
the actual motor reaction time. The mean RT of subjects ranged
from 956 to 1516 ms (mean * SD: 1230 * 202 ms; Fig. 3B),
suggesting that RT are dominated by the visual detection. RT did
not show a significant difference between the two task conditions
at the group level (Wilcoxon test, p = 1). Six subjects did not
show a significant difference in RT (p > 0.05), while one subject
(S6) reacted slightly faster in X trials (p = 0.04, not corrected).
Note that none of the single-subject p values (percentage correct
or RT) was significant when compared with the Bonferroni-
corrected threshold a/n = 0.007. Importantly, the absence of any
difference between X and II trials in behavioral measures suggests
that the difficulty of the task was mainly influenced by factors that
were equal in the two conditions, e.g., the detection of the
go-signal.

Task-specific activations

In the following, we will first focus on differences in activation
between X and II trials during the delay period. Then results of
two control analysis are presented. To illustrate differences in
activation between X and II trials, a relatively liberal threshold
(p < 0.001, uncorrected) was applied at the voxel level. This
analysis revealed four clusters (Table 1) that contained more than
k = 10 voxels in which activation differed between the two task
conditions during the delay period. One of these clusters was
significant at the cluster level (p = 0.026). The peak activation
was located in the left superior frontal gyrus (MNI coordinates:
—15, 51, 45) in a region that is part of the default network
(Raichle et al., 2001) and decreases activity during visual tasks
(Shulman et al., 1997). Indeed, the significant contrast resulted
from stronger deactivation of that region in X trials compared
with II trials (Fig. 4).

In addition to the contrasts thatlook for differences in the task
condition, we performed two important control analyses. In
these control analyses, the same threshold (p < 0.001, uncor-
rected) was applied at the voxel level. At this threshold, contrasts
of left versus right (right vs left) button presses showed large
clusters (both k > 400) around the right (left) central sulcus that
were both highly significant (pguger < 0.001, corrected) at the
cluster level. To assess visual signals induced by the rotating clock
hands, a t contrast that compared the visual activation during the
delay period with rest was computed and revealed the expected
activations in area V5/hMT +. A large cluster was observed in the
right hemisphere (k = 106, puser < 0.001, corrected at cluster
level), but only few significant voxels in the left V5/hMT+ (not
significant at cluster level). These control analyses show that the
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Figure4. Activation differences during delay period. The activations (p << 0.001,k = 10) of
the Il versus X (X vs Il) contrast were used to create masks and extract the percentage signal
change (As) in these regions. The masks consisted of a sphere with a volume of 57 voxels
(radius, 7 mm) around the peak activation. Average activations (percentage signal change, As)
are shown for the four regions that showed a significant difference at p << 0.001 (uncorrected,
k = 10) between Il and X trials. All correct trials of a condition were temporally aligned to the
onset of the delay period (dashed vertical line) and then averaged over subjects (n = 7).
Average traces of percentage signal change are shown for X trials (black) and ll trials (gray). Error
bars are SEM. Note that none of the small differences between the two task conditions survived
a Bonferroni correction for multiple time points (n = 11). Nevertheless, when fitted with the
regressors defined in the GLM, these four regions showed a significant activation. This differ-
ence could arise because the GLM regressors take into account the length of the delay period. FG,
Right fusiform gyrus; 10G, right inferior occipital gyrus; BS, brainstem; SFG, left superior frontal
gyrus.

task indeed elicited reliable cortical activations in the expected
regions.

Across-subject prediction of task condition from functional
visuomotor network

The main analysis of this study tested with multivariate pattern
classification whether the functional connectivity structure in a
predefined visuomotor network differed between the two task
conditions. First, the correlation matrices between the mean
fMRI signals in the eight task-relevant localizer regions were
computed. Then, an SVM classifier learned to discriminate be-
tween the two conditions (IT vs X) on the data of six of the seven
subjects (Fig. 2). Finally, the classifier was tested using the con-
nectivity matrices of the seventh subject. This procedure was
repeated for each subject in a leave-one-subject-out cross-
validation. Thus, successful prediction would mean that task
conditions can be predicted in new subjects, whose data were not
part of the training data for the classifier. The linear classifier was
able to classify the connectivity matrices in the test sets with an
accuracy of 58.5% into IT and X trials (p < 0.005, binomial test).
The 95% confidence interval ranged from 51.9% to 64.8%.
Hence, the correlation structure in the visuomotor network con-
tained significant information about the current task condition,
even in the delay period, where the visual input was identical for
the two conditions and where no motor action or preparation
could be taken because the go-signal was not yet shown to the
subject.

After having shown that the correlation structure yields sig-
nificant information about the task condition, we investigated in
more detail how the preparatory functional connectivity was re-
lated to the task and whether specific connections were especially
important for this classification. The absolute value of each di-
mension of the weight vector wis related to the importance of this
dimension for the classification (Mourdao-Miranda et al., 2007).
We averaged the normalized weight vectors from all seven cross-
folds to obtain a single weight value for each of the 28 connec-
tions in the visuomotor network. Figure 5 illustrates the result of
this procedure for the within (Fig. 5A) and between (Fig.
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and not attributable to a single, unique
dimension. We further tested whether the
correlation between any pair of regions in
the network showed a significant change
with task condition. For this, the differ-
ence between the Fisher’s Z transformed
correlation matrices of the two conditions
was tested using a paired f test across sub-
jects. None of the connections survived a
statistical threshold of p < 0.05 (Bonfer-
roni corrected for the number of connec-
tions). In a post hoc analysis, we asked
whether task condition could be predicted
by simply considering a single value, namely

O T S A S S S A A the difference of the average within-
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Figure 5.

nections on the right.

5B) hemisphere connections. The thickness of the connection
lines is proportional to the absolute value weight of the corre-
sponding connection, while the color codes the sign (black,
minus; white, plus). Note that the labeling of Il trials as —1 and X
trials as +1 for the SVM classification was such that higher cor-
relations in II compared with X trials in black connections are
suggestive of a II trial, while in white connections, higher corre-
lations in X compared with II trials point toward a classification
as an X trial. Interestingly, the majority of white lines are between-
hemisphere connections, suggesting a large-scale functional inte-
gration between the two hemispheres during the delay period in
X trials. In contrast, nearly all within-hemisphere connections
have negative weights, suggesting that within-hemisphere func-
tional connectivity is higher during I1 trials. Note that the connectiv-
ity pattern described here is followed by most, but not all,
connections. However, a permutation test (see Materials and Meth-
ods, above) revealed that the number of positive weights in across
hemisphere connections is unlikely to occur by chance (p = 0.040).

The classification on the connectivity matrices was robust
against the removal of single connections. A f test did not reveal
any significant reduction in accuracy (all p > 0.05, Bonferroni
corrected) when any single connection was removed from the
connectivity matrix, suggesting that information about task
condition was distributed in a pattern of several connections

Discriminative weight structure of classifier. A, B, The weights of the support vector classifier are depicted for all
connections within hemisphere (4) and between hemispheres (B) for the network of eight ROIs. The nodes of the graph correspond
to the ROIs (compare Fig. 2). The line thickness is proportional to the absolute value of the respective dimension of the average
weight vector. Hence, itis related to the amount of information about the two conditions that s present in the temporal correlation
between the respective region pair. The line color gives information of the sign of the weight corresponding to the connection
(black, minus; white, plus). Numbers at the bottom right of A and B indicate the number of black and white lines in the two graphs.
The number of black lines in A, and thus, the number of white lines in B, are significantly higher than expected by chance (p =
0.04). ¢, lllustration of weights versus connections for all cross-folds individually. For every connection (x-axis), the corresponding
weightis plotted for all seven cross-folds. Black triangles depict intrahemispheric connections; white squares are interhemispheric
connections. Connections are ordered to confirm with A and B: intrahemispheric connections on the left, interhemispheric con-

block was then classified as II if the av-
erage correlation difference was above
the threshold and as X if it was below the
threshold. All calculations were per-
formed on Fisher’s Z transformed cor-
relations. This simple classifier achieved
an accuracy of 51.8%, which is not sig-
nificant (p > 0.2) and lies outside the
95% confidence interval of the full
classification.

Importantly, the average activations
within the visuomotor network under
consideration did not show any clear dif-
ferences between the two tasks. Figure 6
illustrates the average percentage signal
change in the eight areas of the visuomotor network during the
delay period. A sign rank test that compared activations in X and
11 trials did not reveal any difference that survived a correction for
multiple comparisons (all corrected p > 0.17). Hence, there is
little to no activation differences in the network depending on the
task condition.

Finally, we assessed whether the temporal activation patterns
within the ROIs can be used to predict the task condition. Exactly
the same classification as for the connectivity matrices was per-
formed but with the mean activation of each region as features.
To keep the number of features approximately equal, we used the
first four time steps of the delay period in all eight regions, yield-
ing a 32-dimensional feature space. The classification based on
these 32 features showed a trend but was not significant (54.9%
correct, p = 0.06, binomial test). Although smaller, this value is
clearly within the 95% confidence interval of the connectivity-
based approach. We thus cannot conclude that the connectivity-
based classification performs significantly better. Please note that
the original data entering this analysis were very similar to the one
in the main analysis, but entered directly instead of looking at
correlations between regions. Importantly, the choice of the fea-
tures that are fed into the classifier is tightly linked to the inter-
pretation of the results. We could not have addressed our
hypothesis of a biased functional connectivity in preparation
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Figure6. Averageactivationinvisuomotor network. Average activations (percentage signal
change, As) are shown for the eight regions of the visuomotor network. Normalized (MNI)
masks of the eight ROIs were calculated for this purpose. Specifically, we normalized the indi-
vidual masks of each subject to the MNI template and then selected for each ROI the 50 voxels
with the highest overlap between the masks of all seven subjects. The normalized masks were
used to extract average time courses from the normalized and smoothed data. Correct trials of a
condition were temporally aligned at the onset of the rotating clocks (dashed vertical line) and
thenaveraged over subjects (n = 7). Average traces of percentage signal change (black, X trials;
gray, I trials) are shown for the eight regions of the visuomotor network (legend on top right).
Error bars show SEM. A sign rank test at a liberal threshold of p << 0.05 yielded only few
significant differences in percentage signal change (As) between X and Il trials, none of which
survived a correction for multiple comparisons for the number of time points (Bonferroni, n =
11). Please note that the average traces contain left and right button presses and are aligned to
the onset of the visual stimulus and not to the motor response. Hence, motor-related BOLD
activity as confirmed by the GLM control analysis is averaged out and cannot be seen here.

to a task (Miller and Cohen, 2001) had we simply looked at
activation-based classification.

Within-subject classifiers based on detailed patterns

The standard approach in multivariate pattern classification in
fMRI is to use within-subject classifiers that do not generalize
across subject. However, such classifiers can exploit the activa-
tion pattern and thus precise local information at a voxel resolu-
tion. Even though these two approaches are difficult to compare,
we tested whether such multivoxel classification might perform
better than the across-subject classification based on the connec-
tivity pattern and performed a classification analysis using sup-
port vector machines on the multivoxel pattern of activation in
the regions of interest. For each voxel within a, ROI, we extracted
the average activation over the four first time steps (scans) of the
delay period, yielding a 100-dimensional feature vector for each
block of the experiment. Because detailed patterns are not ex-
pected to be the same across subjects, the classification was per-
formed within subject (leave-one-run-out cross-validation) and
accuracies were then averaged across subjects for all ROIs indi-
vidually. Only one of the ROIs (left V1) showed an average accu-
racy equal to the 58.5% observed in the connectivity-based
classification; all the others had lower accuracies. In all regions,
the accuracies varied strongly across subjects (e.g., from 46.9% to
68.8% in left V1) so that a sign rank test yielded no significant
accuracy in any of the ROIs (all p > 0.05). Interestingly, the
connectivity-based classification across subjects as presented
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Figure 7. lllustration of different classification schemes. The results of all feature selection
and cross-validation schemes used in this study are illustrated. The Beta-distribution, Beta
(n.+1,n,+ 1), that describes the result of the classifier of the main analysis is plotted on top
(gray curve). The average accuracy (solid gray; 58.5%) and the 95% confidence interval (dashed
gray; 51.9% and 64.8%) are shown as vertical lines. Chance level (50%) is indicated by the thin
vertical solid gray line. Different feature selection methods are indicated by a symbol (key in top
left) showing the average accuracy across subjects. Each classifier is further characterized by a
horizontal line indicating the full range observed, i.e., from minimum to maximum within-
subject accuracy. a, Classification across subjects on connectivity graphs (main analysis). b,
(lassification across subjects on ROI activation. ¢, Classification across subjects on average
within versus between connectivity. d, Classification within subjects on connectivity graphs. e,
(lassification within subjects on ROl activation. f, Classification within subjects on voxel pattern
within ROIs. In f, ROIs are (from top to bottom): right PMd, right M1, right V5, right V1, left V1,
left V/5, left M1, and left PMd (compare Fig. 2). Note the large variability in the within-subject
classifiers, which might be due to the small number of training samples compared with across-
subject classification. Itisimportant to note thatit was not the goal of this study to maximize the
classification accuracy but to test classification across subjects based on connectivity graphs.

above was more consistent across subjects with individual accu-
racies ranging from 53.1% to 62.5% (mean, 58.5%). Finally,
within-subject classification based on either the functional con-
nectivity or average activation within ROIs (same features as for
the across-subject classifications, but with a leave-one-run-out
cross-validation) did not perform above chance with average ac-
curacies of 47.8% (connectivity) and 47.3% (activation). Thus,
within-subject classifiers (even based on fine-grained activation
patterns) did not improve the classification in any way and
showed results that were relatively inconsistent across subjects
and ROIs. Figure 7 summarizes the results of all different classi-
fiers and features that were used here. It is important to empha-
size that it was not the goal of this study to maximize classification
accuracy but rather to use a specific classifier—the connectivity-
based classification across subjects—to answer a specific research
question, namely, whether the functional integration in a visuo-
motor network changes during task preparation and thus allows
prediction of upcoming tasks.

Discussion

In this study, we have analyzed preparatory activity in a flexible
visuomotor task with a focus on functional integration in a visuo-
motor network. We find that the functional weight topology in
the studied network of eight cortical regions contains informa-
tion about the task condition already in the preparatory period,
when only the task is known but the side of the go-signal and of
the motor response are not known. In contrast, there is hardly
any activity that significantly changes with the task condition in
single specialized regions.
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Behavioral performance of subjects

Our behavioral paradigm was similar to the classic experiment pro-
posed by Poffenberger (1912) to assess conduction delays between
the two hemispheres (Marzi, 1999). However, we did not observe
any significant differences in behavioral performance (percentage
correct and RT) between the IT and X conditions. The relatively long
RT's suggest that the variance in the measured reaction times (from
cue onset to button press) is mainly due to variance in the time
needed to detect the go-signal. The small differences between II and
X reaction times observed in similar visual-to-motor mapping tasks
(Poffenberger, 1912; Simon, 1969) and in anti-saccades (Hallett,
1978) might be invisible due to a much larger variability in detection
time for the go-signal in the current study.

Absence of univariate signals indicating the task condition
There were only small differences in univariate activity between I
and X trials on the group level. A single cortical area located
within the frontal part of the default network survived a statistical
threshold at the cluster level. This is in contrast to other fMRI
studies (Connolly et al., 2000, 2002) and results from monkey
electrophysiology (Everling and DeSouza, 2005) that clearly
show differences between pro- and anti-trials. In particular, pre-
frontal regions are thought to be involved in top-down control
(Miller and Cohen, 2001; Bunge, 2004; Sakai, 2008). Prefrontal
activation has been associated with “increases in the demand of
control” (Miller and Cohen, 2001). A potential reason for the lack
of a strong specialized activity in our experiment could be that
even during the delay period, subjects were involved in a complex
visual detection task, while subjects in many other studies were
just waiting to respond to the appearing target. The behavioral
results suggest that there is little to no difference in difficulty
between the II and X task conditions, which could be the reason
for the absence of significant activity in PFC during the prepara-
tory period. It is also conceivable that there is neural activity that
signals the upcoming task, but that this activity is too small to be
detected with our experimental setting and group size.

However, other contrasts that did not differ between the two task
conditions were highly significant at the group level. Area V5/
HMT+, a visual region that strongly responds to visual motion
(Wilms etal., 2005), was strongly activated during the delay period in
the right hemisphere, and motor regions (Yousry et al., 1997) were
consistently active during the paradigm. Both visual and motor ac-
tivations illustrate that considerable BOLD responses were present,
in line with our expectations. Despite these clear and reliable cortical
activations associated with the task, no difference could be found
between the IT and X delays, which suggests that the potential differ-
ences in univariate signals are small.

Functional integration during preparatory set

It has been suggested that specialization and integration are the
two major principles of the functional architecture of the brain
(Friston, 2002). Brain regions specialized for sensory processing
and motor planning need to interact and integrate their special-
ized functionality for appropriate behavior in a given situation.
In this study, we focused on the question of whether the entire
functional connectivity structure in a predefined visuomotor
network might reflect the task condition, i.e., the required visuo-
motor mapping. A classification approach allowed us to predict
the task conditions from the functional weight topology during a
preparatory delay. Thus, the brain prepares for the upcoming
visuomotor mapping by adapting the functional integration to
the needs of the task (Miller and Cohen, 2001). Interestingly, the
structure of the learned classifier seems to reflect the fundamen-
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tally different flow of information required in the two task con-
ditions: in X trials, information needs to cross to the other
hemisphere, while in II trials, integration within a single hemi-
sphere is sufficient. The classifier weights suggest that the inter-
actions between areas are biased to serve the upcoming action, as
shown by the excess of negative weights in within-hemisphere
connections. The functional integration pattern between V1 and
PMd consistently follows a hypothetical flow of information
from visual to motor areas that is in line with the theory: within
hemispheres in II trials and across hemispheres in X trials. Note
that the functional interactions in the studied visuomotor net-
work are not necessarily monosynaptic connections but most
likely reflect multisynaptic connections via different pathways or
common input. It has been shown previously that different lat-
eralized cortical networks are recruited during the execution of
different tasks (Stephan et al., 2003) and that prefrontal interac-
tions reflect the upcoming tasks (Sakai and Passingham, 2003). In
these studies, the different tasks were fundamentally different
(verbal vs spatial) and recruited different brain networks for ex-
ecution. Our study differs from these findings in considering one
single visuomotor network only, whose functional connectivity
structure is modulated according to the information flow de-
mands in the task. Please note that the entire visuomotor network
needs to be involved in both task conditions. Only the interac-
tions within the network change according to the task. Impor-
tantly, the changes in functional connectivity occur during a
preparatory period, before execution of the motor command.

There are other physiological measures, like heart rate and
respiration, that might change with the task. The inclusion of
regressors for white matter and CSF probably reduced such ef-
fects (Van Dijk et al., 2010). In addition, it seems unlikely that
these large-scale physiological effects would influence interac-
tions in the visuomotor network in a specific way without show-
ing any detectable signal change in the GLM analysis. We cannot
rule out that fluctuations in mental preparation during the delay
period might have caused the observed correlation structure: if
subjects alternated their covert attention between the right and
left clock, simultaneous motor imagery of the corresponding move-
ment could create a functional connectivity structure like the one we
observe. It would be interesting to see whether a similar preparatory
change in functional connectivity is observed with pro- versus anti-
tasks that use a simpler go-signal, such as the appearance of a dot,
and are thus less attentionally demanding. We see no reason why the
functional integration should be specific to the visual stimulation or
the difficulty of the task. However, based on previous findings (Con-
nolly etal., 2002), one would expect to observe prefrontal activations
that differ between the task conditions when the detection of the
go-signal is relatively simple.

Importantly, the information about the task condition was
distributed in the network. There was no single connection that
was either necessary or sufficient for the classification, as revealed
by the knock-out and univariate analyses. Thus, it is the com-
bined integration of the entire network that alters between the
two task conditions. The weights of the classifier cannot be re-
placed by the average within- versus between-hemisphere con-
nectivity. Noninformative connections with low weights in the
classifier might increase the noise in the mean within- or
between-hemisphere connectivity. Finally, classification based
on the mean activation within ROIs did not show significant
classification accuracies. The functional connectivity pattern as
the input to the classifier not only resulted in better (though not
significantly better) accuracy, it also allowed us to interpret our find-
ing in terms of functional integration and thus links our results to an
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important theory about how different tasks might bias the functional
connectivity within cortex (Miller and Cohen, 2001).

It is important to note that the classification here was performed
across subjects, which distinguishes our results from most other de-
coding studies, where classification is usually performed within sub-
jects (Haynes and Rees, 2005, 2006; Kamitani and Tong, 2005).
Within-subject classifiers can look at the fine-grained voxel pattern
and thus might be more powerful in many cases. However, they
cannot generalize to new subjects. Although across-subject classifi-
cation has to deal with individual subject differences, an additional
noise source, none of the within-subject classifications resulted in
higher accuracies. Thus, large-scale connectivity structures might be
highly suited for robust classification across subject. Although the
detailed analysis of large-scale brain networks using graph theory has
gained a lot of attention in the last few years (Hagmann et al., 2008;
Bullmore and Sporns, 2009), only a few studies have used functional
or effective connectivity graphs to classify brain data. Disease states
have been successfully predicted from the correlation structure in a
predefined network (Craddock et al., 2009). Other studies have suc-
cessfully used wavelets (Richiardi et al., 2011) or dynamic causal
models (Brodersen et al., 2011) to create the connectivity graphs for
the classification.

In summary, here we have shown that the human brain pre-
pares for specific stimulus response mappings by altering its
large-scale functional connectivity structure. Specifically, the
correlation structure in a bilateral network of sensory and motor
areas can be used to predict the current task condition during the
preparatory phase across subjects. Interestingly, the weight pat-
tern of the linear classifier suggests that the areas that need to
work together for a specific mapping increase their functional
integration already during a preparatory period.

Notes

Supplemental material for this article is available at http://sites.google.
com/site/hayneslab/publications/supplementary-information. A video
of the visual stimulation of the paradigm is provided as online material
on the authors’ website. This material has not been peer reviewed.
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