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Nonlinear Computations Underlying Temporal and
Population Sparseness in the Auditory System of the
Grasshopper
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Sparse coding schemes are employed by many sensory systems and implement efficient coding principles. Yet, the computations yielding
sparse representations are often only partly understood. The early auditory system of the grasshopper produces a temporally and
population-sparse representation of natural communication signals. To reveal the computations generating such a code, we estimated 1D
and 2D linear-nonlinear models. We then used these models to examine the contribution of different model components to response
sparseness.

2D models were better able to reproduce the sparseness measured in the system: while 1D models only captured 55% of the population
sparseness at the network’s output, 2D models accounted for 88% of it. Looking at the model structure, we could identify two types of
computation, which increase sparseness. First, a sensitivity to the derivative of the stimulus and, second, the combination of a fast,
excitatory and a slow, suppressive feature. Both were implemented in different classes of cells and increased the specificity and diversity
of responses. The two types produced more transient responses and thereby amplified temporal sparseness. Additionally, the second type
of computation contributed to population sparseness by increasing the diversity of feature selectivity through a wide range of delays
between an excitatory and a suppressive feature.

Both kinds of computation can be implemented through spike-frequency adaptation or slow inhibition—mechanisms found in many
systems. Our results from the auditory system of the grasshopper are thus likely to reflect general principles underlying the emergence of

sparse representations.

Introduction

Successful behavior is tied to the formation of specific represen-
tations of the environment to enable the discrimination of friend
and foe. Typically, complex feature selectivity arises from more
generic representations as one ascends a sensory pathway. This
increase of specificity can lead to temporal and population
sparseness (Chacron et al., 2011) (but see Willmore et al., 2011).
Temporally sparse responses are characterized by well isolated
firing events interleaved by periods of neuronal quiescence. Ad-
ditionally, higher-order neurons are more idiosyncratic, each re-
sponding to “its own” feature. Consequently, neurons in a
population are less prone to fire together, yielding population-
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sparse activity. Besides being an outcome of the creation of more
specific representations, sparseness also has intrinsic advantages
like the efficient use of energy and neuronal bandwidth as well as
the facilitation of subsequent computations involving learning
and memory (Barlow, 2001; Olshausen and Field, 2004).

Here we ask how temporal and population sparseness arise in
the auditory system of the grasshopper, which generates a sparse
and specific representation of courtship signals in a small, three-
layer feed-forward network (Fig. 1a) (Clemens et al., 2011).

Primary auditory receptors in the grasshopper yield a tempo-
rally dense, relatively unspecific and faithful representation of a
sound’s envelope (Fig. 1b,c; Machens et al., 2001; Gollisch et al.,
2002; Rokem et al., 2006). We attempt to characterize the trans-
formations underlying neural encoding in second- and third-
order neurons—the local and ascending neurons. Local neurons
create a temporally sparse representation of song from the dense
inputs provided by the receptors (Fig. 1d). However, population
sparseness is still low as different local neurons respond to very
similar features. The ascending neurons in turn establish a
population-sparse code with each ascending neuron responding
to a more specific stimulus pattern (Fig. le).

We aimed to get insight into the mechanisms contributing to
temporal and population sparseness by fitting low-dimensional
models of the stimulus-response relationship to recordings of
second- and third-order neurons in the grasshopper using the
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framework of linear-nonlinear (LN) mod- Q
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els. These models provide intuitive phe- song
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nomenological depictions of the neural
computations actualized by a neuron and its
inputs. In their simplest form, LN models b
consist of a single linear filter and a static
nonlinearity. As the kind of representation
found at the level of ascending neurons sug-
gests more complex transformations, we
used an extension of the one-filter LN
models that allowed us to describe multidi-
mensional computations—spike-triggered
covariance analysis (STC; Rust et al., 2005;
Fairhall et al., 2006; Petersen et al., 2008; Fox
etal., 2010).

We find two different classes of nonlinear
computations contributing to sparseness in
the auditory system of the grasshopper: sensi-
tivity to the derivative of a stimulus and an
AND-NOT like transformation. These ab-
stract computations can be implemented by
mechanisms ubiquitous in many neural sys-
tems and are thus likely to constitute general
principles providing sparse and specific
representations.

intensity [dB]

50 ms

Figure 1.

Materials and Methods

Animals, electrophysiology, and acoustic stimulation. Recordings were per-
formed in adult locusts (Locusta migratoria) obtained from a local sup-
plier and held at room temperature (22 * 5°C). We recorded
intracellularly from identified auditory neurons in the locust’s metatho-
racic ganglion. Auditory neurons are organized in a three-layer feedfor-
ward network with receptors as an input layer, an intermediate layer of
local neurons, and an output layer of ascending neurons. Intracellular
electrophysiological recording methods are described in detail in Vogel et
al. (2005). After completion of the stimulation protocol, neurons were
stained with Lucifer yellow and identified by their characteristic mor-
phology (Romer and Marquart, 1984; Stumpner and Ronacher, 1991).
The dataset consists of seven types of auditory neurons from the inter-
mediate (second-order or local neurons: TN1 N = 10, SN1 N = 2, SN3
N = 1, BSN1 N = 9) and the output layer (third-order or ascending
neurons AN1 N = 5, AN2 N = 1, AN3 N = 2). Previous studies have
shown that the local neuron BSN1 comes in two subtypes, one respond-
ing with a short burst to the onset of pulses and one firing more persis-
tently during a pulse, most likely due to different strengths of inhibitory
inputs (Stumpner, 1989). Accordingly, we refer to them as “phasic” (N =
6) or “tonic” (N = 3) subtypes of BSN1.

Natural songs of grasshoppers consist of a broadband carrier whose
amplitude is modulated by a species-specific envelope. As the decisive
cues for song recognition lie in this envelope, we were interested in how
single neurons represent the pattern of amplitude modulation of a
sound. We therefore modulated the amplitude of broadband noise (5-40
kHz) with lowpass Gaussian noise (cutoff frequency 140 Hz). The mean
of this amplitude modulation was set to ~10-15 dB above each cell’s
threshold (thresholds ranged between 45 and 65 dB SPL). The standard
deviation (SD) of the random amplitude modulations was 6 dB. We
presented these noise stimuli in two variants to estimate and verify the
models: one long segment lasting between 5 and 14 min for estimating
the models and a shorter 6 s segment, which was repeated at least 18 times
and was used for estimating the time-varying firing rate for model test-
ing. For all further analysis we only used steady-state responses by omit-
ting the first 400 ms of each spike train.

Constructing lower dimensional models to characterize neuronal re-
sponses. Responses to the long noise stimulus formed the basis for spike-
triggered analysis (Schwartz et al., 2006). In essence, spike-triggered
analysis consists of finding stimulus features influencing a neuron’s spik-

g
AN

=

normalized firing rate

EREF

=

Responses of neurons at three levels of the auditory system of grasshoppers to a subunit of song. a, Diagram showing
the flow of information in the early auditory system of grasshoppers. b, Envelope of song. The black line corresponds to 40 dB, peak
intensity was 78 dB. c—e, Normalized firing-rate functions of primary auditory receptors (c), secondary local neurons (d), and
third-order ascending neurons (e) to the stimulus shown in . Different rows correspond to different cells. While receptors respond
throughout the stimulus, local neurons respond transiently but relatively uniformly at the onset of the stimulus. In contrast,
ascending neurons respond more diversely with different latencies and patterns to the same stimulus.

ing by comparing the distribution of stimuli 3 preceding a spike r, p(3]r),
to the distribution of all stimuli, p(_s>), and finding directions in stimulus
space for which both distributions differ most. This yields LN cascade
models of neural computation: a high-dimensional stimulus is reduced
by linear projection to one or two feature values; then, a nonlinearity
transforms the feature value(s) to the cell’s firing rate.

We defined the stimulus 3 as a vector corresponding to the envelope of
the sound in the 64, 1 ms wide bins preceding each point in time. The

64-dimensional distribution of stimuli p(_s>) was by construction Gauss-

ian. p(3|r) was sampled by the spike-triggered ensemble (STE), i.e., the
set of stimulus segments preceding each spike collected in response to the
long noise segment.

In its simplest form, spike-triggered analysis results in calculating the dif-
ference of the mean of both distributions, yielding the spike-triggered aver-

age (STA) as a single feature: ?STA = 3pGlr) - 3 — =p3) - 3 (the last
term is the mean of all stimuli and a constant for our noise stimuli).

To characterize more complex, multidimensional feature selectivity, STC
was performed. To that end, we computed the covariance matrix of the STE,
Gy, and subtracted the covariance matrix of all stimuli, G;, from it: AC=

G, — G The covariance matrix C of an arbitrary distribution PR)is given

by G; = Sp@)FE — ())& — (x))", where the angled brackets denote the
average. An eigenvalue decomposition of AC yields stimulus directions in
which the variance—and not the mean as for the STA—of the spike-
triggered and the raw stimulus ensemble differ most. These directions are
indicated by eigenvectors associated with non-zero eigenvalues. However,
due to the finite sample size (number of spikes) most eigenvalues are non-
zero. We checked the significance of the deviation of each eigenvalue from
zero by computing 1 and 99% confidence intervals for the maximal/minimal
eigenvalues of each recording. To that end, we generated randomized re-
sponses by shuffling the spike times and used the distribution of the larges/
smallest eigenvalue from 1000 such randomized responses to derive
confidence intervals. All cells in our dataset exhibited at least two significant
eigenvalues at this significance level.

We performed the STC analysis in a subspace orthogonal to the

STA, by projecting the STA from each stimulus vector: 3, = 3 —

(?T?S»M)?sm /|7‘5»,<A|2. This rendered the STC eigenvectors orthogonal to
the STA and greatly facilitated the comparison of models derived from
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STA and STC analysis, as a model including STC filters is a direct exten-
sion of the lower-dimensional STA-only model. As eigenvectors yielding
the filters recovered by STC analysis are only defined up to an arbitrary
sign, we choose the sign such that the STC filter is most similar to the
negative derivative of the STA filter (Fairhall et al., 2006). Furthermore,
all filters were normalized to unit-norm.

The nonlinearity is given by Bayes’ rule as the ratio of the raw and the
spike-triggered stimulus distribution in the stimulus subspace defined by
the filter(s): (Np(3'[r)/p(3"). {r) is the average firing rate in the response
set used for estimating the model. 3" is the stimulus projected onto a
subspace defined by the STA, or the STA and the STC filter with the

largest absolute non-zero eigenvalue; it can thus be either 1D or 2D. p(3")
is the distribution of projection values of all stimuli and is by definition

Gaussian with SD 6 dB. p(3'|r) is the distribution of projection values of
the STE and was computed by kernel-density estimation.

Two kinds of model were constructed for each recording: one model
consisted only of the STA and a 1D nonlinearity. We refer to it as the
“STA model.” The other model contained the STA filter and the filter
with the largest absolute eigenvalue from the STC analysis— here called
the “STC filter”—plus a 2D nonlinearity. We called it the “STC model.”

Quantification of model performance. A bias-corrected version of Pear-
son’s coefficient of correlation p was used to quantify how well each
model predicted the neuronal response to a novel stimulus (Petersen et
al,, 2008). To that end, the time-varying firing rate (t) of the neuron was
estimated from responses to several repetitions of a stimulus not used for
model estimation by binning time at 1 ms and smoothing with a box
kernel spanning two bins. A predicted response #(#) to the same stimulus
was obtained from the STA and STC models.

As the neuronal response is noisy, a model of the neuron can never
perform better than that noise level. Thus, the naive estimator of the
correlation is downwardly biased by that noise. To correct for this bias,
we estimated the noise in the response by calculating r(¢) from two equal-
sized, exclusive subsets of the stimulus repetitions, yielding two indepen-
dent estimates of the firing rate r,(¢) and r,(¢). The coefficient of
correlation between these two estimates was then used to normalize the
raw correlation: p = p(r, #)/p(r,,r,).

Characterization of model structure. To characterize the shapes of the
filters we used two metrics: the first was defined by the coefficient of
correlation between the derivative of the STA filter and the STC filter,
and the second was given by the delay between the peak of the STA filter
and the peak of the STC filter with the STA filter being the reference.

We characterized to what extent each 2D nonlinearity in the STC models
corresponded to a truly nonlinear combination of the STA and STC filter.
This was done by fitting minimal linear and quadratic models incorporating
only linear or quadratic interactions between the two filters as described by
Fitzgerald et al. (2011). As the 1D STA model is a lower bound for the
performance of the minimal 2D models, we quantified how well a minimal
linear or quadratic model could explain the performance gain of the 2D STC
model relative to the STA model: (pgrc — Psta)/(PsTC — Pmin)> Where pgra
and pgp are the bias-corrected coefficients of correlation between the em-
pirical and the modeled firing rate and p,,;,, is the performance of the mini-
mal linear or quadratic model. Values close to 100% indicate that a minimal
model of a given order fully explains the performance gain, values close to
0% indicate a failure to explain and hence the importance of higher-order
interactions.

To better characterize the types of computation described by the 2D
nonlinearity, we quantified to what extent the nonlinearities imple-
mented one of two canonical logical operations on the output of the STA
and STC filter. Logical operations were defined as follows: an (STA AND
STC)-like operation corresponds to most large values of the 2D nonlin-
earity being concentrated in the upper right quadrant (positive values of
both filters drive the cell), and an (STA AND-NOT STC)-like operation
is implemented by a nonlinearity with most weight in the lower right
quadrant (positive STA and negative STC outputs drive the cell). The
relative weight each quadrant had in driving the cell was computed by
summing over all values in a given quadrant and normalizing by the sum
over all quadrants. We then summed the relative weights over the “ac-
tive” quadrant(s) as defined by each canonical operator and normalized
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by the number of active quadrants (see Fig. 4h, orange). This yielded
values between 0 (no weight in the “active” quadrants) and 1 (all of the
weight in the “active” quadrants).

Simulation of model responses to natural songs. To study the responses
of the models to natural signals, we used a set of songs from eight differ-
ent male grasshoppers of the species Chorthippus biguttulus (Clemens et
al., 2011). It is well justified to use models fit to neurons recorded in one
species of grasshopper, L. migratoria, to study the responses to signals of
another species, C. biguttulus, as the morphological and physiological
properties of neurons at the early stages of processing we are interested in
are highly similar (Ronacher and Stumpner, 1988; Neuhofer et al., 2008,
Creutzig et al., 2009). As the song’s amplitude increases over its duration,
we used the last 400 ms where the amplitude plateaued. We transformed
the amplitude to a dB scale. The natural songs had a SD of 6 = 1 dB, close
to the SD of the noise stimuli used for the estimation and evaluation of
the models. To cover the range of firing rates between 20 and 50 Hz
observed for natural stimuli (Clemens et al., 2011), we set the average
amplitude to +6 dB.

To quantify the transience of model responses, we calculated the per-
centage of time the firing rate was below its half-maximal value. A highly
transient response will reach its maximal firing rate and then quickly
return to smaller firing rates, spending little time above the half-maximal
firing rate. In contrast, highly persistent responses will spend most of the
time near the maximal firing rate and hence above the half-maximal
firing rate. In addition, peak firing rates were estimated as the 99th per-
centile of the predicted firing rate to natural songs.

Quantification of temporal and population sparseness. Sparseness of the
modeled responses was quantified using the measure in Willmore and
Tolhurst (2001) as in the following:

S=1—(r())/{r(t)). 1)

For temporal sparseness, the average in Equation 1 was taken over time
and then S was averaged over the eight songs. For population sparseness,
we constructed 500 populations for each model class by randomly com-
bining the responses of four cells of the same model class. Then, the
average in Equation 1 was taken over the four cells in a population in each
individual time bin, and S was averaged over all time bins and songs. For
comparison, we included empirical sparseness values of the responses of
local and ascending neurons to the same set of songs (Clemens et al.,
2011).

Results

We will start by describing the models of one representative
cell in detail. We will then show the two classes of computation
we found in our dataset and relate their properties to the
generation of a sparse representation of natural communica-
tion signals.

2D models capture additional aspects of computation
To provide an intuition for the model structure obtained by STC,
we will describe the model obtained for one ascending neuron
AN in depth. The 1D STA model (Fig. 2a,b) consisted of a single
STA filter, which describes the temporal feature the cell is respon-
sive to, and a 1D nonlinearity, which transforms the output of the
filter to the cell’s firing rate and depicts the neuron’s tuning for
that feature. The cell’s STA was largely unimodal, exhibiting one
prominent positive lobe at 20 ms preceding the spike and a weak
negative lobe between 30 and 50 ms preceding the spike (Fig. 2a).
Thus, the cell was sensitive to a lowpass-filtered version of the
amplitude of the stimulus. The nonlinearity was skewed toward
positive filter values, indicating that the cell preferred stimuli that
were similar to the STA (Fig. 2b). Firing was reduced for very
large values—the cell exhibited thus a bandpass-like tuning for
the STA.

The STC model (Fig. 2¢,d) consisted of the STA and a second
filter recovered by STC analysis. This STC filter was broader than
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the STA filter, mostly positive, and led the
STA (Fig. 2¢). Thus, the neuron was influ-
enced not only by the STA but also by the
envelope in the 20 ms preceding the STA.
In the 2D STC model the stimulus is fil-
tered by both filters in parallel. The output
values of both filters are then combined to
yield the cell’s firing rate. This transfor-
mation from pairs of filter values to firing
rate is implemented by a 2D nonlinearity,
which depicts for each pair of filter out-
puts the resulting firing rate of the neuron
(Fig. 2d). This 2D nonlinearity shows that
the cell was best driven by stimuli in the
lower right quadrant, i.e., when the STA
filter produced large positive output val-
ues and the STC filter yielded negative
outputs. Such a combination corresponds
to an AND-NOT like logical operation on
the output of the filters. Thus, the STC
model yielded a much richer description
of neuronal feature selectivity of this cell:
addition of a second filter revealed a non-
linear computation performed on the
stimulus which was not obvious from the
STA model alone.

Generally, the stimulus transforma-
tions of auditory neurons in the grass-
hopper were well described by STA and
STC models—model performance ranged between 0.5 and 0.8
(0.57 and 0.63 for the STA and STC models of the example
presented above; Fig. 2e). The 2D STC models were able to
capture additional aspects of the stimulus-response relation as
they performed significantly better than the 1D STA models,
increasing model performance on average by 9% (psry =
0.59 * 0.11, psye = 0.65 = 0.11, mean = STD, p = 6+ 10,
sign rank). While the STC model thus explained 9% more
response variance than the STA model, this gain was relatively
small considering the increased complexity of the model (one
additional filter and a 2D nonlinearity). However, we will
show below that there existed systematic differences in the
structure of the predicted responses that enabled the 2D STC
models to better explain the level of sparseness observed in the
auditory system of the grasshopper.

20ms

Figure 2.

highly similar.

Analysis of the model structure reveals two types
of computation
Looking at the model structure of all cells in our dataset, we found
two principal classes of model (Fig. 3). Notably, this dichotomy was
not obvious by looking at the STA filters alone: the STA filter and its
nonlinearity were similar to that shown in the example (Fig. 2a,b)—the
STA filter of all cells was thus mainly integrating and drove the cells for
positive projection values (Figs 3, upper row, 41). Only the incorporation
of the STC filter revealed fundamental, qualitative differences between
models, justifying the discrimination of two principal classes of neurons:
the STC filters on the left side of the figure were all biphasic whereas
those on the right were unimodal (compare Fig. 3a,b, lower row). The
fact that we found only two classes of models does not exclude the exis-
tence of additional computational classes in the auditory system of the
grasshopper—local or ascending neurons not recorded might imple-
ment different kinds of transformations.

Analyzing the filters and nonlinearities allowed us to interpret
the computations performed by both model classes.

firing rate [Hz]
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Structure of the STA and STC model for an ascending neuron AN1. a, STA filter. The arrowhead marks the time of
occurrence of the spike. b, Nonlinearity relating the projection values of each stimulus onto the STA to the cell’s firing rate. ¢, STA
filter (red) and the filter obtained by STC (orange). d, 2D nonlinearity relating the projection values of stimuli onto the STA (x-axis)
and STCfilter ( y-axis) to the cell's firing rate. Firing rate is color coded (see color bar). Note that this neuron responds only to a small
subset of projection values. e, Measured response (black) and the predictions from the STA (red) and STC model (orange) were

“Derivative-like” cells

We found specimens of this first group of cells only among the
second-order, local neurons: TN1, SN1, SN3, and BSN1 (the tonic
subtype, termed BSN1t) (Fig. 3a). As for all cells, the STA filter was
excitatory for positive projections of the stimulus (Fig. 4, red). The
STC filter of this class of models was highly similar to the negative
derivative of the STA (Fig. 4a,¢; correlation coefficient between the
derivative of the STA and the STC filter 0.83 = 0.11). This high
correlation means that the shape of the STC filter was largely deter-
mined by that of the STA filter. Given that the STA filters were
relatively uniform, this made different cells of this class respond to
very similar features. In addition, both filters exhibited great overlap
in time, making these cells respond to the stimulus on a short time
scale of the order of the STA filter’s width (Fig. 4f; delay between
peaks of the STA and STC filter 3.0 = 0.6 ms).

The nonlinearity of the STC filter was quadratic-like, render-
ing these cells weakly phase invariant (Fig. 4j, red). A minimal
linear model of the interactions of both filters accounted for only
23 = 8% of the performance gain of the STC model (Fig. 4g, top).
The incorporation of quadratic interactions doubled this (51 =
19%; Fig. 4¢, bottom), but was not able to fully explain the inter-
action of the filters. This indicates that both filters interacted in a
highly nonlinear fashion in this class of cells.

To better describe how derivative-like cells integrate the out-
putofthe STA and STC filter we fit two different canonical logical
operators to the 2D nonlinearity. A cell firing only to positive
projections values of both filters performs an AND operation on
the two filters. A cell that responds only to positive outputs of the
STA and negative outputs of the STC filter performs an AND-
NOT operation. We quantified to what degree the two operations
were implemented by determining the match between the empir-
ical 2D nonlinearity (Fig. 4b,d) and a template corresponding to
either logical operation (Fig. 45, bottom; see Materials and Meth-
ods). This revealed that the nonlinearity was best explained by an
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Figure 3.

The cell types fall into two classes of model: STA (top row) and STCfilters (bottom row) for the cell types in the dataset. Filters had a duration of 64 ms, were aligned at their peaks, and

normalized for better visibility. Only the STC filters differed strongly between classes (compare a and b, lower row) while the STA filters of all cells were highly similar.
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b, d, Nonlinearities for the cells in @ and ¢. Firing rate is color coded (see color bars right to each nonlinearity). e, Correlation coefficient between the STC filter and the negative derivative of the STA
filter (derivative-like: 0.83 + 0.11, leading-suppressive: 0.31 = 0.08,p = 2+ 10 ", rank sum). Red indicates derivative-like, green leading-suppressive cells in subfigures (e—j). f, Delay between
the peaks of the STA and the STC filter, taking the STA as a reference (derivative-like: 3.0 = 0.6 ms, leading-suppressive: —7.8 = 1.9ms, p = 4 - 10 —®,rank sum). g, Ability of minimal linear (top)
and quadratic (bottom) models to explain the performance gain of the STC model relative to the STA model. h, Ability of two different canonical logical operators to explain the structure of empirical
2D nonlinearities. Template nonlinearities corresponding to an AND and AND-NOT like integration of the STA and STC filter are shown below. i, j, Nonlinearities for the STA and STC filter of both classes

of cells (thick lines and shaded area indicate mean = SEM over all cells in a class).

AND-like computation on the STA and STC filter. As the STA
filter primarily integrated the stimulus and as the STC filter re-
sembled an upstroke of the stimulus (Figs. 34, lower row, 4a),
derivative-like cells thus encoded a combination of the intensi-
ty— Dby means of the STA filter—and the derivative—by means
of the STC filter— of a sound’s envelope.

“Leading-suppressive” cells

The phasic subtype of the local neuron BSN1 (BSN1p) and the three
ascending neurons, AN (Fig. 2), AN2, and AN3, formed the second
class of models, which was thus dominated by ascending neurons

(Fig. 3b). In contrast to the derivative-like cells, where the STC filter
strongly resembled the derivative of the STA filter, here, both filters
were largely independent and covered a longer segment of the stim-
ulus: the STC filter was mostly integrating and led the STA; both
filters spanned between 30 and 40 ms of the stimulus (Figs 3, 4¢).
This class of cells thus integrated the stimulus on a much longer time
scale than the derivative-like cells. Along this line, the great range of
delays between both filters (—3 to —12 ms; Fig. 4f) equipped these
cells with a more diverse temporal selectivity than the comparatively
uniform derivative-like cells.
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The nonlinearity of the STA filter resem- g
bled that of derivative-like cells in that it also
made the cells fire for positive output values
(Fig. 4i, green). The nonlinearity of the STC
filter was unimodal, with a maximum at 0
and a bias toward negative projection values
(Fig. 4j, green). This means that positive
projection values of the STC filter generally
suppressed firing. While a minimal linear
model of the nonlinearity only accounted
for 34 = 10% of the performance gain, a
minimal quadratic model almost fully ex-
plained the performance gain of the STC
models (78 * 23%; compare Fig. 4g, top
and bottom). This indicates that the opera-
tion of these cells is well described by a qua-
dratic interaction of both filters. The logical
operation implemented by the nonlinear-
ity was best approximated by an AND-
NOT-like logical operation of the output
of both filters (Fig. 4h), meaning that
these cells fired strongly only for positive
projection values of the STA and negative
projection values of the STC (Fig. 4d). As
the peak of STC filter preceded that of the
STA, we termed this model class “leading-
suppressive cells.”
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Contribution of model components to
sparse and decorrelated coding of
natural stimuli

The analysis of the encoding properties of
local and ascending neurons in the grass-
hopper revealed two different computa-
tional classes: the local neurons in our dataset could mostly be
termed derivative-like cells, while all ascending neurons were
leading-suppressive cells (Figs. 3, 4). To relate the computational
properties of both classes of cells to sparse coding we used the
STA and STC models to predict responses to a set of natural songs
and quantified the contribution of both filters to temporal and
population sparseness. The range of response patterns produced
by the models matched those found in actual recordings indicat-
ing that our models generalized well to natural stimuli (compare
model responses in Fig. 5a,b with recordings in Fig. 1).

Temporal sparseness

Temporal sparseness describes the tendency to fire in well-
defined events interleaved by long stretches of relative quies-
cence. Generally, STC models responded more transiently to
natural signals than STA models (Fig. 5a4,b, compare red and
orange traces). For derivative-like cells, this effect was often sub-
tle, leading to a shortening and downscaling of persistent re-
sponses after onsets in the stimulus (Fig. 5a, black arrows). In
contrast, the responses of STC models of leading-suppressive
cells deviated more strongly from those of STA models. Here, the
tonic responses of STA models became often purely transient in
STC models (Fig. 5b, black arrows). To gain an intuition on how
the properties of individual firing events— defined as isolated
packets or bursts of spikes and evident as segregated peaks in a
firing-rate profile—affect temporal sparseness, we constructed
artificial firing patterns with varying degrees of response tran-
sience by either changing the duration or the magnitude of these
events (Fig. 6a). This showed that the shortness of firing events

patterns of STA and STC models differed strongly. ¢, d, Temporal (c) and population sparseness (d) of STA and STC models of both
classes. Sparseness values quantified from neural recordings in response to natural songs are shown in gray. ***p << 0.001, *p <
0.5, (*) p = 0.06, n.s. p >> 0.05. Note that p values in the comparison between STA and STC values came from paired tests (sign
rank), while the comparison of the STA or STCmodels and the data was unpaired (rank sum). Hence, the differences between STA
and STC models are highly significant despite substantial overlap of the distributions.

strongly correlates with temporal sparseness (Fig. 6a, top). We
quantified the transience of the modeled responses to natural
song as the fraction of time the firing rate was below 50% of its
maximum. The firing rate of a persistently firing cell will spend
most of the time near the maximum, while that of a transiently
firing cell will quickly fall below the half-maximal firing rate.
Indeed, STC models of both classes responded much more tran-
siently than STA models when quantified by this measure (STA vs
STC: derivative-like 69 = 25 vs 90 = 11%, leading-suppressive
60 = 30 vs 94 = 10%; STA vs STC model: p < 6.2+ 10 %, sign
rank). In addition to event shortness, the height of individual
firing events also contributed to temporal sparseness (Fig. 64,
bottom). We quantified this response property by the 99th per-
centile of each cell’s firing-rate distribution and found that STC
models exhibited higher peak firing rates than STA models (STA
vs STC: derivative-like 238 * 65 Hz vs 329 * 140 Hz, leading-
suppressive 102 = 49 Hz vs 160 = 92 Hz; STA vs STC model p <
6.7 - 10 2, sign rank).

In accord with their higher transience and peak firing rates,
STC models of both classes did exhibit significantly higher tem-
poral sparseness than the respective STA models (Fig. 5¢). This
effect was most prominent for the leading-suppressive cells. This
suggests that the higher temporal sparseness of STC models was
due to an amplification and shortening of firing events.

To determine how well the models could reproduce the tem-
poral sparseness of the auditory system of grasshoppers for nat-
ural signals, we compared the values obtained from the model
responses to those measured empirically in a previous study (Cle-
mens et al., 2011). As the class of derivative-like cells was formed
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corresponding to the response shown. Thin lines show intermediate filters. Either the positive (red, top) or the negative lobe (green, bottom) of the filter was scaled down and the temporal
sparseness was determined. The response of the original model is shown in black for comparison. Gray arrowheads mark response epochs where the transience of the modified models is smaller than
that of the original model; black arrowheads mark those where a secondary firing event is amplified. ¢, Influence of either the positive (red) or negative lobe (green) on the duration of the primary
firing event (top, gray triangle in b), on the height of the secondary event (middle, black triangle in b), and on temporal sparseness (bottom). x-axis shows the log of the scaling factor. Positive values
correspond to a reduction of the positive lobe, negative values to that of the negative lobe. Examples in b show responses for log scaling factors of —8 (top) and 8 (bottom). Temporal sparseness of
the STA model shown as a black dot (bottom). d, Impact of the STC filter of a leading-suppressive cell (AN1) on temporal sparseness of responses to different onsets. The stimulus with successively
decreasing onsets is shown on top and the output of the STA (red) and STC filter (orange) in the middle. The bottom graph depicts the output of the STC model. Temporal sparseness increased as a

function of onset height (inset).

by local neurons we compared the sparseness in these models to
that found in local neurons. The sparseness values of leading-
suppressive models, being dominated by ascending neurons,
were compared with those of ascending neurons. STA and STC
models of derivative-like cells well reproduced the range of tem-
poral sparseness values found in actual recordings of natural
songs (Fig. 5¢; STA 0.44 = 0.17, STC 0.54 = 0.19, data 0.52 =
0.19). In contrast, temporal sparseness of leading-suppressive
cells depended on model type. While STA models underesti-
mated the temporal sparseness found in data, the STC model
exhibited no significant difference in temporal sparseness when
compared with experimental data (Fig. 5¢, right; STA 0.34 * 0.18,
STC 0.63 * 0.23, data 0.57 = 0.12). Note that the STC models
tended to exhibit slightly higher temporal sparseness than ob-
served in the data.

What property of the STC model of both classes of model
contributed to temporal sparseness? The STC filter of derivative-
like cells employs these cells with a sensitivity to the derivative of
the stimulus and presumably accentuates responses to onsets.
Distorting the derivative-like STC filter by scaling down either its
positive or negative lobe prolonged firing events (Fig. 6b, gray
arrowheads, ¢, top) and amplified small firing events (Fig. 6,
black arrowheads, ¢, middle). Models with distorted filters thus
exhibited longer firing events, less transient responses, and hence
reduced temporal sparseness (Fig. 6¢, bottom). In contrast,
changing the delay between the STA and the STC filter had a
negligible impact on temporal sparseness (Fig. 7a—c). This indi-
cates that the differentiating shape of the STC filter in conjunc-
tion with the AND-like integration of both filters led to the
increase in temporal sparseness in derivative-like cells.

For the leading-suppressive cells, it was the AND-NOT like
interaction of the STA and the STC filter that increased the tran-
sience of responses. The fact that the STC filter led the STA filter
and suppressed firing made these cells respond strongly only to

onsets (Fig. 6d). The “inhibitory” STC filter responded tonically
to stimuli with constant amplitude due to its integrating shape
(Figs. 3D, bottom for the shape of STC filters, 6d, middle). This
tonic suppression effectively reduced strong persistent activity,
increased the height of firing events (Fig. 64, bottom) and thereby
enhanced temporal sparseness in this class of cells (Fig. 6d, inset).
The delay between both filters also influenced temporal sparse-
ness (Fig. 7¢). While making the delay in the model more negative
increased temporal sparseness by 10—15%, making the delay less
negative tended to decrease sparseness.

Population sparseness

We calculated population sparseness by constructing four-cell
populations of random combinations of models belonging to the
same class. Population sparseness is high if different cells in a
population do respond with different patterns to the same signal,
e.g., by being selective for different stimulus features.

The model responses reveal a fundamental difference in the
impact of the STC filter on response diversity (Fig 5a,b).
Derivative-like cells (Fig. 5a) exhibited relatively uniform re-
sponses with high firing rates during onsets. The STC filter did
little to add to response diversity. This comes to no surprise as
both filters were relatively uniform in members of this class (Figs.
3a, 4e,f). In contrast, while STA models of leading-suppressive
cells also responded relatively uniformly to song, different STC
models of this class exhibited a greater diversity of response pat-
terns to the same stimulus (Fig. 5b), comparable to that found in
actual recordings of ascending neurons (compare Fig. 1).

Consistent with the similarity of the STA filters, populations
of STA models of both classes displayed comparable levels of
population sparseness (Fig. 5d; derivative-like STA 0.28 = 0.06,
leading-suppressive STA 0.26 = 0.06). However, while the sec-
ond filter did increase population sparseness only marginally in
derivative-like cells, leading-suppressive cells profited greatly
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Impact of the delay between the STA and the STC filter on response diversity and temporal sparseness. Shown are the results for a derivative-like tonic BSN1t (a—d) and a

leading-suppressive phasic BSN1p (e-h). Green marks negative, red positive temporal shifts of the STC filter. a, e, The original model with the STA filter (gray) and the STC filter (black) was
manipulated by increasing or decreasing the delay between both filters (red and green STCfilters for added delays of —8, —4, 4,and 8 ms). b, f, Responses of the original model (0 ms delay, black)
and those with positive (red) and negative (green) delays were obtained. Responses were normalized by the maximal response for plotting purposes. The stimulusis shownin black on top. Black and
gray arrows in findicate epochs where the delay between both filters strongly affects the response patterns. ¢, g, Relative changes in temporal sparseness as a function of the delay added. Reference
is the sparseness of the unmodified STC model (green, negative delays; red, positive delays; black, original model). d, h, Response diversity as a function of the delay added was quantified by the

correlation coefficient between the original STC model (0 ms delay) and the modified one.

from the inclusion of the second filter (STA vs STC: derivative-
like 0.28 = 0.06 vs 0.32 = 0.06, leading-suppressive 0.26 = 0.06 vs
0.42 = 0.08). While STA models of both classes and STC models
of the derivative-like models exhibited population sparseness
comparable to those obtained empirically for local neurons
(0.35 = 0.05), only the 2D STC models of leading-suppressive
cells approached the high values reported previously for the out-
put of the network (0.47 = 0.03).

Why were only leading-suppressive cells but not derivative-like
cells able to significantly increase population sparseness? We have
shown above that leading-suppressive cells exhibited a wide range of
delays between the STA and STC filter, while those of the derivative-
like cells had relatively uniform delays (Fig. 4f). If the small range of
delays limits response diversity of derivative-like cells, then artifi-
cially increasing this range should increase response diversity. In-
terestingly, this did not truly increase response diversity but only
shifted a uniform firing event in time (Fig. 7a,b,d). We thus hy-
pothesized that the derivative-like shape of the filter is the factor
limiting response diversity. Indeed, distorting the shape of the
STC filter by reducing its positive or negative lobe filter appeared
to increase response diversity while reducing temporal sparseness
(Fig. 6b). Hence, a derivative-like filter in combination with a
small range of delays seems to be ineffective in increasing popu-
lation sparseness.

In contrast to the small impact of the delay between the STA
and the STC filter on response diversity in derivative-like cells,
the delay had strong impact on response diversity in leading-
suppressive cells. Systematically varying the delay between the
STA and the STC filter altered the response patterns for these
types of cells (Fig. 7e,f). The response to the onset of the stimulus
became longer with increasingly negative delays (Fig. 7f, gray
arrows). Positive delays fully abolished any onset response. The
firing-rate modulations after the onset also changed with delay
(Fig. 7f, black arrows). Hence, the range of delays between the
STA and the STC filter decorrelated responses and increased pop-
ulation sparseness in leading-suppressive cells.

Discussion

Employing the framework of LN models, we found two classes of
cells in the auditory system of grasshoppers. While the STA filter
was similar for both classes, cells differed in their second filter:
models with a derivative-like STC filter and an AND-like nonlin-
earity were found at the level of local neurons and models with a
leading-suppressive STC filter and an AND-NOT like nonlinear-
ity were found mainly among ascending neurons (Figs. 3, 4).

Our simulations have shown that only 2D models produce the
degree of temporal and population sparseness found in the auditory
system of the grasshopper (Fig. 5). While both, derivative-like and
leading-suppressive cells increased temporal sparseness—though to
different degrees—only the latter class of cells substantially in-
creased population sparseness.

In the following, we discuss how the structure of both classes
of models increases sparseness. In addition, we will use prior
knowledge about the grasshopper to speculate on likely biophys-
ical mechanisms, which could implement these computations.

Note that not all cells in the early auditory system of grasshop-
pers are included in our dataset. Other cells in network probably
perform different computations, adding to the response diversity
(Rémer and Marquart, 1984; Stumpner and Ronacher, 1991);
e.g. the ascending neuron AN4 receives fast inhibitory inputs,
which leads to a suppression of responses at onsets (Fig. 7f).
Another ascending neuron not included in the dataset is AN14,
which fires only during silent parts of a stimulus.

Temporal sparseness

Temporal sparseness increases if transient firing is accentu-
ated and persistent firing is attenuated, leading to responses
with short firing events interleaved by long silent epochs (Figs.
5a,b, 6a). The two model classes achieve this transformation
by two different computations. The derivative-like STC filter
of most local neurons leads to a differentiation of the stimulus
(Figs. 6b, 7b). The leading-suppressive STC filter of the as-
cending neurons quenches prolonged responses (Fig. 6d).
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Both operations can be subsumed under the phenomenon of
spike-frequency adaptation, the decrease of neuronal firing in
response to prolonged stimulation (Benda et al., 2001; Lund-
strom et al., 2008; Tripp and Eliasmith, 2010). The relation be-
tween spike-frequency adaptation and temporal sparseness has
been reported previously (Farkhooi et al., 2009; Houghton, 2009;
Nawrot, 2012). Adaptation has been described in terms of differ-
entiation (Lundstrom et al., 2008) or as a highpass filter (Benda et
al., 2001), transformations that reduce temporal correlations and
thereby increase temporal sparseness (Wang et al., 2003; Tripp
and Eliasmith, 2010). The STC filter in derivative-like cells thus
likely implements adaptation by determining the derivative of the
stimulus (Figs. 34, 6b). Derivative-like, 2D models as described in
our study have been found in many sensory systems (Brenner et
al., 2000; Slee et al., 2005; Fairhall et al., 2006; Atencio et al., 2008;
Fox etal., 2010; Kim et al., 2011; Sharpee et al., 2011), suggesting
that this model structure instantiates—in addition to its contri-
bution to temporal sparseness— beneficial properties, like adap-
tation to stimulus statistics and robust and efficient encoding of
time-varying stimuli (Fairhall et al., 2001; Sharpee et al., 2011).

Adaptation can be implemented by cell-intrinsic mechanisms
via adaptation currents (Wang et al., 2003) or in a network via
synaptic depression, feedback inhibition (Papadopoulou et al.,
2011), and slow feedforward inhibition (Assisi et al., 2007; Creut-
zig et al., 2009). In our system, the derivative-like STC filter is
likely to be implemented by cell-intrinsic adaptation currents,
especially for those cells (TN1, SN1), which receive only excit-
atory inputs from receptors (Romer and Marquart, 1984). In two
cells (BSN1t and SN3), the derivative-like filter could be shaped
by additional inhibitory inputs.

Note that a derivative-like STC filter can also be the result of
imprecise spike-timing (Dimitrov et al., 2006). However, this is
more likely if such jitter is greater than the time scale of the filter
(Fairhall et al., 2006; Sharpee et al., 2011). We calculated spike-
time jitter as the SD of the timing of individual firing events
across trials as in Desbordes et al. (2008). The jitter was always
much smaller than the filter width, for derivative-like 10 times
and for leading-suppressive cells 5 times smaller (jitter:
derivative-like 0.6 = 0.4 ms, leading-suppressive 1.3 £ 0.5 ms;
filter width: derivative-like 5.3 = 0.9 ms, leading-suppressive
6.8 = 1.7 ms) (Figs. 2¢, 3). This renders jitter an unlikely source of
the derivative-like filter.

Although the filters of derivative-like cells are relatively simi-
lar across cells, the temporal sparseness values cover a relatively
broad range (Fig. 5¢). This reflects a great diversity in the fine
structure of the nonlinearity, which enables different degrees of
selectivity and hence temporal sparseness. While all nonlineari-
ties implemented an AND-like integration of the STA and STC
filter (Fig. 4h), the thresholds of individual cells of this class
ranged between 45 and 65 dB. This great diversity of thresholds
increases the dynamic range of the network and justifies the ex-
istence of many different types of local neurons with highly sim-
ilar filters (Fig. 3a).

In the leading-suppressive cells, temporal sparseness is in-
creased by shutting off persistent responses via slow suppression.
The two properties of the leading-suppressive models contribut-
ing to this transformation are the delay between the STA and the
STC filter (Figs. 4e, 7e—f) and the AND-NOT like nonlinearity
(Fig. 4h), which are possibly implemented in a network: the STA
filter corresponds to excitatory inputs and drives the cell; as the
STC filter leads the STA and is suppressive, the cell will only fire
strongly if the stimulus preceding the STA is relatively soft. Such
an implementation is highly likely for the phasic BSN1, AN1, and
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AN3, for which strong, slow inhibitory inputs have been shown in
dendritic recordings (Romer and Marquart, 1984; Hildebrandt et
al., 2009). For another leading-suppressive cell type in our data-
set—AN2—a strong afterhyperpolarization has been shown to
underlie adaptation (Hildebrandt et al., 2009); yet, this cell also
receives contralateral inhibition that can be slower than the exci-
tation. The STC filter of this cell type is thus likely to be a combi-
nation of both cell-intrinsic adaptive currents and inhibitory
inputs.

That the most likely mechanisms contributing to temporal
sparseness are adaptation currents in derivative-like cells and inhib-
itory and excitatory inputs in leading-suppressive cells suggests a
change in the factors dominating response properties of neurons in
subsequent stages. The derivative-like cells were local neurons,
which primarily pool the responses of receptors and probably gain
their sensitivity to the derivative via a cell-intrinsic mechanism. In
contrast, most leading-suppressive cells were ascending neurons;
their computations are most likely shaped by the connectivity with
local neurons and thus by network properties.

Population sparseness

Our results show that differentiation of the stimulus and slow
inhibition increase temporal sparseness by reducing persistent
firing (Figs. 5, 6). This property in itself does not necessarily lead
to population sparseness. For population sparseness to be high,
cells in a population need to exhibit little tendency to fire together
by being selective for different features of a stimulus.

The ability of derivative-like filters to increase population
sparseness was relatively small (Fig. 5d). As the STA filters were
similar and the STC filter was heavily constrained by the shape of
the STA filter—on average 83% of the STC filter’s shape of each
cell was explained by the STA filter—this second filter added little
response diversity across cells (Figs. 3a, 4e). Accordingly, the
derivative-like cells exhibited very similar feature selectivity and
responded uniformly to a stimulus.

In contrast, the STC filter of leading-suppressive cells strongly
increased population sparseness—up to the values observed in
the auditory system of the grasshopper (Fig. 5d). A highly diverse
feature selectivity in these cells is established through a large
range of delays between the excitatory STA filter and the suppres-
sive STC filter (Fig. 4f). As argued above, the model structure of
leading-suppressive cells is probably generated by slow feedfor-
ward inhibition (Luo et al., 2010). The role of excitation and
inhibition in shaping temporal filters and in decorrelating re-
sponses between cells in a population has been appreciated pre-
viously (Schmuker and Schneider, 2007; Wiechert et al., 2010;
George et al., 2011). In addition to the filters of leading-
suppressive cells being diverse, the AND-NOT like joint nonlin-
earity equips these models with a highly nonlinear operation to
select a small set of stimuli suitable for firing (Fig. 4d,h). This
narrows the tuning of leading-suppressive cells and reduces the
overlap between responses of different cells of this type. The
AND-NOT like computation also leads to a “delayed anti-
coincidence detection”—the cells fire strongly only if the stimu-
lus at different delays is not loud (Borst et al., 2005). This can yield
a combinatorial and synergistic code (Osborne et al., 2008; Sch-
neidman et al., 2011).

Conclusion

Not diversity and changes in the linear STA filter but nonlinear
integration of two filters governs the transformation of the code
from a dense and uniform one to a temporally and population-
sparse one in the grasshopper (Pitkow and Meister, 2012). The
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shape of the second filter equips neurons with transformations
that decorrelate responses in time and across cells in a popula-
tion. Additionally, a 2D nonlinearity allows neurons to specifi-
cally select a small subset of the feature space spanned by the STA
and the STC filter. Mechanisms implementing these abstract
computations are ubiquitous in many nervous systems; the trans-
formations found in the grasshopper are thus likely to constitute
general principles underlying the transformation of neural
representations.
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