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Cognitive neuroscience aims to explain
how cognitive functions arise from brain
processes using computational models to
describe the mapping between behavioral
and neural data. This approach has previ-
ously been used to understand the neural
mechanisms of stopping an action. A pa-
per recently published in The Journal of
Neuroscience applies this method to ex-
plain how actions are changed.

Stopping has typically been investi-
gated with a task in which subjects are
asked to respond to go-signals, but to stop
their response when a stop-signal follows
the go-signal. Stopping is easy when the
stop-signal is presented early during ac-
tion preparation (<100 ms after the go-
signal), but becomes increasingly difficult
when preparation gets closer to comple-
tion (>200-300 ms after the go-signal), a
relationship referred to as the inhibition
function. The precise time of the inhibi-
tion function varies with natural response
times and task demands. Furthermore, re-
sponses that escape inhibition are faster
than the average response. These behav-
ioral characteristics can be explained by a
model that describes performance as the
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outcome of a race between a GO process
and a STOP process that have indepen-
dent random finish times (Logan and
Cowan, 1984). However, accounting for
both behavioral and neural data requires
an interactive race model, in which STOP
interrupts GO (Boucher et al., 2007).

Changing actions closely resembles
stopping (Logan and Burkell, 1986; Ca-
malier et al., 2007). In the double-step
eye-movement change task, subjects are
asked to make a saccade to peripheral tar-
gets, but to redirect gaze when the target
changes position. Change performance
has the characteristics of a race: the prob-
ability of compensating for the change in
position decreases with the delay between
the initial onset of the target and when it
moves, as described by the compensation
function. Moreover, saccades that could
not be redirected are faster than average;
however, it is unclear which processes
compete and how they interact. Is the race
a direct competition between the pro-
cesses producing the responses to the ini-
tial target (GO1) and final target (GO2) or
is an additional STOP process involved?
Additionally, when and how do these pro-
cesses interact?

These questions were recently ad-
dressed in a study by Ramakrishnan et al.
(2012). Monkeys were trained to perform
a modified double-step task. To measure
the time course of the changing saccade
plan, the authors used microstimulation
of the frontal eye fields to evoke saccades
at various times after the change-signal.

This resulted in a profile of saccade devi-
ation showing that saccades evoked earlier
deviated toward the initial target, whereas
saccades evoked later deviated toward the
final target. The time at which the devia-
tion crossed over from the initial to the
final target (crossover time) was taken as
an estimate of the time when the response
changed.

To identify the mechanism underlying
change performance, Ramakrishnan et al.
(2012) compared race models that dif-
fered in two dimensions: the number of
processes and the manner of interaction.
First, GO-GO models assumed a race be-
tween GO1 and GO2, whereas GO-STOP
models assumed a race between GO1 and
STOP, with GO2 running in parallel. Sec-
ond, GO1 and GO2/STOP could race in-
dependently without interacting, interact
nonselectively (both GO1 and GO2 are
inhibited), or interact selectively (GO1 is
inhibited, GO2 continues in parallel).
Models were fitted to the behavioral data
and best-fitting parameters were used to
simulate saccade deviation profiles.

The results showed that a model in
which GO1 and GO2 interacted nonselec-
tively and models in which GOl and
GO2/STOP did not interact predicted
compensation functions with higher error
rates than observed or produced saccade
deviation profiles failing to cross over.
Better fits were obtained with a model in
which GO1 and GO2 were nonselectively
inhibited by a STOP process and models
assuming selective inhibition of GOI.
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These models accounted equally well for
the behavioral data, but the selective GO-
STOP model predicted crossover times
most accurately. Overall, selective GO-
STOP was the best-fitting model in almost
half of all sessions, whereas selective
GO-GO and nonselective GO-STOP were
better models in a third and a quarter of
the sessions, respectively. It was concluded
that changing actions requires a STOP pro-
cess that selectively inhibits the response to
the initial target, while allowing the response
to the final target to continue in parallel. Ra-
makrishnan etal. (2012) further argued that
a nonselective inhibitory mechanism coex-
ists and that selective and nonselective
mechanisms may represent different
performance strategies.

Ramakrishnan et al. (2012) clearly ruled
out models in which the processes do not
interact, but their results are less conclusive
about which of the interactive race models
accounted best for performance. Actually,
the similarities are more striking than the
differences and it is unclear whether any
model would have outperformed the oth-
ers had a formal statistical model compar-
ison been performed. Furthermore, none
of the models fitted the data perfectly: re-
sponse time (RT) distributions could not
be fitted in up to half of all sessions and the
discrepancy between the predicted and
observed saccade deviation profiles was
half the size of the observed span. As dis-
cussed below, these imperfect fits might
be explained by atypical performance, po-
tential shortcomings in measurements
and models, and differences in perfor-
mance strategies across sessions.

The compensation functions suggest
that task performance may not have been in
accordance with a race in all sessions. In this
task, the lower asymptote of the compensa-
tion function is typically near 0% error
probability, indicating that when the initial
and final targets are displayed in immediate
succession, the saccade can be successfully
changed. In contrast, the reported error
probability was on average ~30% (and in
some sessions even 70%). This is character-
istic of a strategy in which, on a certain pro-
portion of trials, subjects respond to the
initial target regardless of whether the final
target is presented (Logan and Cowan,
1984). Why would the monkeys adopt such
a strategy? Perhaps the imposed response
deadline of 400 ms encouraged them to
trade accuracy on change trials for speed on
no-change trials. From the monkey’s per-
spective, this was not a bad strategy, because
it yielded reward in 80% of all trials.

It is also possible that measurements
and model architectures have been incor-

rect or incomplete descriptions of the un-
derlying processes. The crossover time
measured from the saccade deviation pro-
files was decisive in selecting the best-
fitting model, but may actually reflect the
time when GO1 and GO?2 are counterbal-
anced rather than the time when the re-
sponse changes. Moreover, all models
assumed that GO1, GO2, and STOP run
in parallel. Although there is no doubt
that GO1 and STOP run in parallel (Lo-
gan and Burkell, 1986), STOP and GO2
may occur serially (Verbruggen et al,
2008, but see Camalier et al., 2007). An-
other assumption was that GO1 and GO2
receive driving input of equal strength.
However, this is contrary to a common
finding in change tasks that change RTs
(resulting from GO2) are faster than no-
change RTs (resulting from GO1) (Logan
and Burkell, 1986; Camalier et al., 2007;
Shankar et al., 2011) and could explain
why models, at least in the example ses-
sion, overestimated change RTs.

As Ramakrishnan et al. (2012) suggest,
models could represent different perfor-
mance strategies and these may have dif-
fered between sessions. At first, this seems
unlikely; why would strategies differ across
sessions even though the tasks were identi-
cal? Notably, the data were obtained from
two subjects who may have used different
strategies. Indeed, the best-fitting model
parameters show considerable variability
between them. Performance strategies
probably not only differ between subjects
but also depend on task design. For exam-
ple, it has been argued that a selective stop-
ping strategy is optimal when stop-signals
are frequent and anticipated, whereas a
nonselective stopping strategy is useful
when stop-signals are infrequent and un-
predictable (Aron, 2011). It is possible that
selective GO-STOP was the best model in
this study because change trials occurred
frequently and the response to be stopped
was entirely predictable. These insights
highlight that actions may be changed in
multiple ways and that there may be no one-
to-one mapping between neural mecha-
nisms and cognitive functions.

To further elucidate the various mech-
anisms by which actions are changed it
would be useful to extend the approach
used by Ramakrishnan et al. (2012). Fu-
ture studies should compare race models
with parallel and serial architectures, pref-
erably on measures that are sensitive to
STOP-GO2 processing architecture, such
as the relation between reprocessing time
and intersaccadic interval (Ray et al,
2004), the relation between change RT
and stop-change delay (Verbruggen et al.,
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2008), or corrective RT (Camalier et al.,
2007). Furthermore, the selective GO-
STOP model needs specification: it is as-
sumed that the STOP process “knows”
which GO process should be inhibited,
but it is not explained. Alternatively, the
STOP process might inhibit all GO pro-
cesses nonselectively and then selectively
reinitiate GO2. Finally, it will be impor-
tant to examine whether the mechanism
for changing eye movements in monkeys
extends to humans and hand movements,
for instance, with single-pulse transcra-
nial magnetic stimulation over the left and
right M1 in humans to track the time
course of corticospinal excitability related
to performance in a bimanual change
task.

In summary, Ramakrishnan etal. (2012)
used the powerful concept of neurally con-
strained cognitive modeling to reveal how
action plans are changed. They have pro-
vided a valuable starting point for future
studies to extend and refine these models
that ultimately will help in understanding
the neural mechanisms of decision-making
and executive control.
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