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When we view an object, its appearance depends in large part on specific surface reflectance properties; among these is surface gloss,
which provides important information about the material composition of the object and the fine structure of its surface. To study how
gloss is represented in the visual cortical areas related to object recognition, we examined the responses of neurons in the inferior
temporal (IT) cortex of the macaque monkey to a set of object images exhibiting various combinations of specular reflection, diffuse
reflection, and roughness, which are important physical parameters of surface gloss. We found that there are neurons in the lower bank
of the superior temporal sulcus that selectively respond to specific gloss. This neuronal selectivity was largely maintained when the shape
or illumination of the object was modified and perceived glossiness was unchanged. By contrast, neural responses were significantly
altered when the pixels of the images were randomly rearranged, and perceived glossiness was dramatically changed. The stimulus
preference of these neurons differed from cell to cell, and, as a population, they systematically represented a variety of surface glosses. We
conclude that, within the visual cortex, there are mechanisms operating to integrate local image features and extract information about
surface gloss and that this information is systematically represented in the IT cortex, an area playing an important role in object
recognition.

Introduction
Objects have specific surface reflectance properties that depend
on their material composition and the fine structures of their
surfaces. Our visual system is able to extract information about
these surface reflectance properties from the retinal image, and
the resultant perception of surface quality plays an important role
in the identification of materials and the recognition of objects
(Hunter and Harold, 1987; Adelson, 2001; Maloney and Brain-
ard, 2010). Attempts to understand the neural processing under-
lying the perception of surface qualities have emerged in recent
years (Arcizet et al., 2008; Köteles et al., 2008), and functional
imaging studies in human subjects have shown that the ventral
higher visual areas are activated when subjects attend to or dis-
criminate materials (Cant and Goodale, 2007, 2011; Cant et al.,
2009; Cavina-Pratesi et al., 2010; Hiramatsu et al., 2011).

In the present study, we used a set of stimuli with different
reflection properties to examine how surface reflectance property
is represented in the brain. An important component of surface
reflectance is gloss, which strongly influences surface appearance
and changes depending on the material composition and

smoothness of a surface. Three reflection parameters that have
been shown to be particularly important for characterizing sur-
face gloss are specular reflectance, diffuse reflectance, and rough-
ness (Cook and Torrance, 1982; Ward, 1992; Ngan et al., 2005)
(Fig. 1A). In the present study, we manipulated these parameters
to generate a set of visual stimuli and recorded the activities of
single units in the monkey visual cortex to explore neurons selec-
tive for surface gloss and to examine the response properties of
these cells.

It is well known that the inferior temporal (IT) cortex plays a
key role in the visual recognition of objects. Neurons selectively
responsive to complex patterns, such as a face, and those selective
for texture and color have been shown to reside there (Bruce et
al., 1981; Perrett et al., 1982; Desimone et al., 1984; Tanaka et al.,
1991; Komatsu et al., 1992; Kobatake and Tanaka, 1994; Eifuku et
al., 2004; Tsao et al., 2006; Conway et al., 2007; Yasuda et al.,
2010). In addition, activities related to encoding both the three-
dimensional (3D) geometry of objects (Janssen et al., 2001; Ya-
mane et al., 2008; Nelissen et al., 2009) and the illumination
direction have also been recorded in the region within the supe-
rior temporal sulcus (STS) in the IT cortex (Vogels and Bieder-
man, 2002; Köteles et al., 2008). Furthermore, a recent functional
magnetic resonance imaging (fMRI) experiment using monkeys
revealed activity in the STS that distinguished glossy from matte
surfaces (Okazawa et al., 2011). These results suggest that a
variety of information closely related to encoding surface gloss
converge in the STS, and that this is an ideal area in which to
explore the activities of neurons conveying information about
the surface gloss of objects. We found that neurons selectively
responding to specific glosses are present in the STS and that
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as a population these neurons systematically represent a wide
range of glosses.

Materials and Methods
Surgery and recordings of neuron activities. We recorded neuron activities
from three hemispheres of two monkeys (monkeys “AQ ” and “TV ”; one
male and one female; Macaca fuscata; weighing 5.8 – 6.2 kg). Before start-
ing the physiological experiment, a head holder and a recording chamber
(rectangular in shape with an opening 10 or 15 mm � 10 mm at the edge)
were surgically attached to the skull under aseptic conditions and general
anesthesia. Neuronal activities were recorded from the posterior bank of
the STS, in the central part of the IT cortex (Fig. 2 A). We did not explore
the lateral convexity. The center of each recording chamber was located
at 22 mm lateral and 8 –10 mm anterior, based on the stereotaxic coor-
dinates. Neurons were recorded extracellularly using tungsten micro-
electrodes (Frederick Haer) that were inserted vertically from the vertex
through guide tubes fixed to a plastic grid within which holes were placed
at intervals of 1 mm. By using two grids that were shifted 0.5 mm verti-
cally and horizontally with respect to one another, a minimum interval of
0.7 mm between holes was attained. The activities of single neurons were
isolated through on-line monitoring during recordings, as well as
through off-line spike sorting using a template-matching algorithm. Off-
line analysis confirmed that all of the data were single-neuron activities.

During the physiological recordings, we first mapped a wide region of
the posterior bank of the STS and assessed the visual responses to stimuli
with a variety of glosses. After mapping, guide tubes made of MRI-
compatible metal (titanium or gold) were inserted into the brain, target-
ing the regions where gloss-selective neurons were observed (Fig. 2 B).
We then sampled the neurons in these regions extensively. The tips of the
guide tubes were positioned �1 cm above the targeted cortical regions.
While the guide tubes remained inserted in the brain, we took MRI
images to confirm the recording positions. All procedures for animal care
and experimentation were in accordance with the National Institutes of

Health Guide for the Care and Use of Laboratory Animals (1996) and were
approved by our institutional animal experimentation committee.

Experimental apparatus and the task. During the experiments, the
monkeys were seated in a primate chair and faced the screen of a CRT
monitor (frame rate, 100 Hz; Totoku Electric) situated at a distance of 85
cm from the monkey. Eye position was monitored using an eye coil or an
infrared eye camera system (ISCAN). Visual stimuli were generated us-
ing a graphics board (VSG; Cambridge Research Systems), and then
presented on the CRT monitor. Image resolution was 800 � 600 pixels
(30 pixels/°). Monkeys were required to fixate on a small white spot
(visual angle, �0.1°) at the center of the display. A trial started with the
presentation of the fixation spot, after which stimuli were presented five
times within a trial. Each stimulus presentation lasted 300 ms. The first
stimulus was presented 800 ms after the monkey started fixating and was
followed by four stimuli with 300 ms interstimulus intervals. Monkeys
were rewarded with a drop of juice 300 ms after turning off the last
stimulus. Monkeys had to maintain eye position within a 2.6 � 2.6°
window centered at the fixation point. If the eye deviated from the eye
window, the trial was canceled, and an intertrial interval (ITI) started.
The duration of the ITI was 1000 ms. When the stimulus was presented
on the fovea, the fixation spot was turned off after the first 500 ms of
presentation to avoid interference between the fixation spot and the
visual stimulus.

Visual stimuli. To assess the selectivity for surface reflectance of neu-
rons in the STS, we generated visual stimuli having 33 types of surface
reflectanceselectedfromtheMERLBRDFdataset(http://www.merl.com/
brdf/) (Fig. 1 B). Bidirectional reflectance distribution function (BRDF)
is one of the most general methods for quantitatively characterizing sur-
face reflectance properties. This dataset contains BRDF data for �100
materials (Matusik et al., 2003), and we selected 33 surfaces with the aim
of producing stimuli that were as dissimilar in appearance as possible.
These 33 surfaces selected covered nearly the entire range of MERL BRDF
dataset. The surface reflection of many materials can be represented by a

Figure 1. Gloss parameters and stimuli for assessing gloss selectivity. A, Schematic illustration of three reflection parameters: diffuse reflectance (�d), specular reflectance (�s), and roughness
(�). When �d increases, the lightness of the object increases. When �s increases, the highlights become stronger. When � increases, the highlights become blurred. B, Example of a gloss stimulus
set. The stimuli exhibit 33 types of surface reflectance selected from the MERL BRDF dataset and rendered on one of the shapes (shape 3) under default illumination (Eucalyptus Grove). Stimuli were
ordered according to the magnitude of �. C, Ten object shapes used for the experiment rendered with surface 8 in B. See Figure 3A for examples with other surface reflectance properties. D, Top,
Example of a shuffled stimulus generated by randomizing the pixels within the contour. Bottom, Example of a stimulus rendered under different illumination (Campus at Sunset). See Figure 3, B and
C, for examples with other surfaces. E, Distribution of reflection parameters in a 3D space (gloss stimulus space). The numbers correspond to those in B.
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combination of two components (diffuse reflection and specular reflec-
tion), and the reflection properties can be characterized by three param-
eters: diffuse reflectance (�d), indicating the strength of the diffuse
reflection; specular reflectance (�s), indicating the strength of specular
reflection; and roughness (�), indicating the microscopic unevenness of
the surface that causes the spread of specular reflection (Fig. 1 A). Exam-
ples of the appearance changes caused by a change in each parameter are
shown in Figure 1 A. An object with low �d and �s is a black matte object
(left). As �d increases, the object becomes lighter (upper middle). As �s
increases, the object becomes shiny with sharp highlights if � is small, or

with blurred highlights if � is large. To render the stimuli, �d and �s were
set for R, G, and B separately because the color of the diffuse and specular
reflections varied across surfaces. Roughness � did not depend on color.
We thus controlled seven parameters (�d_r, �d_g, �d_b, �s_r, �s_g, �s_b,
�), and the values for the Ward–Duer model, one of the BRDF models
given in the study by Ngan et al. (2005), were used. Figure 1 E shows the
distribution of the reflection parameters in 3D space, which will be re-
ferred to as gloss stimulus space. In this plot, �d indicates the mean of
�d_r, �d_g, and �d_b, while �s indicates the mean of �s_r, �s_g, and
�s_b. Glossy stimuli with strong highlights (large �s and small �) are
located to the back and left, shiny stimuli with blurred highlights (large �s
and large �) are located to the back and right, and matte stimuli (small
�s) are located to the front and right. Although this plot ignores the
variation of �d and �s across RGB channels, it can still capture essential
features of gloss-selective neural responses. This gloss stimulus space will
be used often in this paper because it is useful for visualizing stimuli and
the gloss-selective responses of neurons.

We used LightWave software (NewTek) to generate 10 different 3D
shapes (Fig. 1C). For the illumination environment, we used one of the
high dynamic range images from the Devebec dataset (http://ict.debevec.
org/�debevec/) (Eucalyptus Grove; illumination 1) as the default. We
rendered object images using Radiance software (http://radsite.lbl.gov/
radiance/), using image parameters (surface reflectance, shape, illumina-
tion environment) as described above. Stimuli with shape 3 are shown in
Figure 1 B, and examples of stimuli with other shapes are shown in Figure
3A. In a control experiment to examine the effect of illumination, we
used another illumination environment image from the Devebec dataset
(Campus at Sunset; illumination 2) (Figs. 1 D, bottom; 3C). The lumi-
nance values of the rendered images were linearly mapped to a low dy-
namic range using a mean value mapping method in which the mean
value, including the background, was mapped to 0.5 and pixels that
exceeded 1 were clipped. The object images were then cut out at the
object contour. In a control experiment to examine selectivity for color
and luminance, we used stimuli in which the pixels were randomly rear-
ranged within the object contour (shuffled stimulus; Figs. 1 D, top; 3B).
The mean luminance of the objects ranged from 3.15 to 78.2 cd/m 2, and
the objects were presented on a gray background (10 cd/m 2). The objects
subtended �5° of visual angle and were usually presented on the fovea.
When responses at the fovea were weak and stronger responses were
evoked by stimuli presented at a position outside the fovea, stimulus
selectivity was examined at that position (27 of 215 neurons recorded; 6
of 57 gloss-selective neurons) (see Results).

Test of gloss selectivity. When we isolated a single neuron, we conducted
a preliminary test to assess its responsiveness to visual stimuli. For this
test, we used a stimulus set consisting of 15 surface reflectance properties,
including three sets of gloss parameters (large �s and small �, large �s and
large �, zero �s) combined with five colors/lightnesses (red, green, blue,
white, black). We tested the neural responses using this preliminary gloss
stimulus set with 10 object shapes, and when a neuron responded to at
least one of the test stimuli, we determined the optimal shape for that
neuron. In the subsequent main experiment, we examined gloss selectiv-
ity in detail using object images with the optimal shape and the 33 types
of surface reflectance. In the early part of the experiment, we used only
two (shapes 3 and 9) or four (shapes 2, 3, 9, and 10) shapes (16 of 57
gloss-selective neurons described in Results). Neural responses were an-
alyzed only for correct trials, and the minimum number of repetitions of
each stimulus accepted for analysis was five. Mean firing rates were com-
puted for a 300 ms period beginning 50 ms after stimulus onset. We then
subtracted baseline activities that were computed for the 300 ms imme-
diately before the onset of the first stimulus within a trial, and the resul-
tant rate was taken as a measure of the neuronal response to the visual
stimulus. Only neurons that showed response of �10 spikes/s and a
significant increase in activity in response to at least one stimulus ( p �
0.05, t test) were included in the sample of visually responsive neurons.
The presence or lack of selectivity for the 33 types of gloss stimuli was
examined using ANOVA, and the strength of the selectivity was quanti-
fied as a selectivity index that was defined as follows: 1 � (minimum
response)/(maximum response). With this selectivity index, as selectivity
increases, the index value increases and will exceed unity if the minimum

Figure 2. Recording sites. A, Schematic illustration showing the recording site within a
lateral view of the monkey cerebral cortex (in red) and the approximate position of the record-
ing chamber. B, An MRI image of a coronal section of the brain of monkey AQ positioned 8 mm
anterior to the interaural line. A guide tube made of gold 650 �m in diameter is inserted
targeting the lower bank of the STS in the right hemisphere. C, Top view of the areas of electrode
penetration in the lower bank of the STS in three hemispheres are indicated by colored contours
(red, monkey AQ right hemisphere; blue, AQ left; green, TV left) with stereotaxic coordinates. A
thick black line indicates the lip of the STS, and a thin gray line indicates the fundus of the STS in
one hemisphere (AQ right). The positions of the lip and fundus of the STS in the other two
hemispheres were very similar to those shown here. The circles indicate the positions of grid
holes where electrodes were penetrated, and the gray circles indicate the positions where
neurons responsive to the gloss stimulus set were obtained. A colored dot indicates the position
where a gloss-selective neuron was recorded.
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response is less than the baseline activity. The sharpness of the selectivity
was quantified using two indices: the number of stimuli that elicited
responses with amplitudes more than one-half that of the maximum
response and a sparseness index defined as follows:

Sparseness index �

�1 � ��
i�1,n

ri/n�2��
i�1,n

�ri
2/n����1 � 1/n�,

where ri is the firing rate to the ith stimulus in a set of n stimuli (Rolls and
Tovee, 1995; Vinje and Gallant, 2000). If ri was a negative value, it was
replaced to zero. The sparseness index indicates the degree to which
responses are unevenly distributed across the set of stimuli. We used a
modified version of the sparseness index (Vinje and Gallant, 2000) be-
cause we felt the result would be more intuitive if sharper selectivity
yielded a larger index value. The sparseness index is at a minimum, with
a value of 0, when responses to all stimuli have the same magnitude. As

the stimulus selectivity becomes sharper, the
index becomes larger. If only one stimulus
among the set evokes a response, the index is at
a maximum and is equal to 1.

Examination of the effects of shape and illumi-
nation. To examine the effect of shape, we com-
pared the responses to the gloss stimulus set
across different object shapes (Figs. 1C, 3A).
Responses were compared between the shape
that yielded the strongest responses in the pre-
liminary test (optimal shape) and that yielding
the second-strongest responses (nonoptimal
shape) by computing correlation coefficient
between two sets of responses. We also con-
ducted two-way ANOVA with gloss and shape
as factors to examine the main effect and their
interaction. In addition, to examine whether
the strength of the selectivity is affected by the
change in shape, we compared the gloss selec-
tivity index between the responses to the opti-
mal and nonoptimal shapes.

To examine the effect of illumination, we
compared the responses to the gloss stimulus
set rendered with the optimal shape across dif-
ferent illuminations (Fig. 3, compare A, C). Re-
sponses were compared between the default
illumination (Eucalyptus Grove) and another
illumination (Campus at Sunset) by com-
puting correlation coefficient between two
sets of responses. We also conducted two-
way ANOVA with gloss and illumination as
factors to examine the main effect and their
interaction. In addition, to examine whether
the strength of the selectivity is affected by
the change in illumination, we compared the
gloss selectivity index between the responses
under two different illuminations.

To examine the effect of shape and illumina-
tion, we also used a separability index (Mazer
et al., 2002; Grunewald and Skoumbourdis,
2004; Yamane et al., 2008) to quantify how well
a neuron retained its selectivity for gloss across
changes in shape or illumination. To compute
the separability index for shape changes, we
first tabulated the gross responses of each selec-
tive neuron in an m � n response matrix ( M),
where m and n corresponded to the different
glosses and shapes, respectively. We then com-
puted the singular value decomposition (M �
USV	) of the response matrix. If selectivity for
gloss is independent of the shape, the responses

are fully explained by the first principal components (i.e., the product of
the first columns of U and V ); otherwise, the responses are explained by
the second principal component to some extent. The separability index is
defined as the squared correlation (r 2) between the actual responses and
the predicted responses reconstructed from only the first principal com-
ponents. We used a permutation test to determine whether a separability
index was significantly larger than chance. We randomly permuted the
mean neuronal responses for different glosses within each tested shape,
and computed a separability index for the reshuffled responses. Permut-
ing the responses within but not across shapes ensured that the mean
permuted response averaged across glosses for a given shape would be the
same as the mean observed response. Permutations were performed 1000
times. If the separability index value obtained experimentally exceeded
the 95th percentile of the distribution of the separability indices for the
reshuffled responses, the neuron was deemed to have a separability index
significantly larger than the chance level. We also assessed the extent to
which the responses are explained by the second principal component
obtained from the singular value decomposition. If the r 2 between the

Figure 3. Examples of stimuli. A, Examples of stimuli with 10 different shapes and 5 different surface reflectances rendered
under default illumination (Eucalyptus Glove). B, Examples of shuffled stimuli (shape 3) with five different surface reflectances. C,
Examples of stimuli (shape 3) with five different surface reflectances rendered under illumination 2 (Campus at Sunset).
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Figure 4. Responses to gloss stimulus set. A, Responses of an example neuron (cell 1) to the gloss stimulus set. The responses are depicted as raster plots and poststimulus time
histograms (PSTHs). The horizontal bars under the PSTHs indicate the stimulus presentation period. B, Response magnitude of cell 1 to each stimulus in the gloss stimulus set represented
by the size of the object image. This neuron strongly responded to stimuli with sharp highlights and did not respond to stimuli with weak glossiness. C, Response magnitude of cell 1 to
each stimulus in the gloss stimulus set represented as the diameter of a circle and plotted at the corresponding position in the gloss stimulus space. D, E, Responses of another neuron
(cell 2) plotted using the same format as in B and C, respectively. This neuron selectively responded to shiny objects with blurred highlights due to large specular reflectance and
roughness. F, G, Responses of a third neuron (cell 3) plotted using the same format as in B and C, respectively. This neuron strongly responded to matte stimuli without clear highlights
and to those with small specular reflectance and large roughness.
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actual responses and the predicted responses
computed from only the second columns ex-
ceeded the 95th percentile of the distribution of
the r 2 for the reshuffled responses, the second
principal component would be deemed to have
made a significant contribution. The separa-
bility index for changes in illumination was
computed in a similar manner.

Examination of the representation of gloss by
the population of neurons. To better understand
how gloss-selective neurons represent gloss, we
conducted multidimensional scaling (MDS)
analysis. First, Pearson’s correlation coeffi-
cients (r) between the responses of the popula-
tion of gloss-selective neurons to all possible
stimulus pairs were computed, then nonclassi-
cal MDS (nonmetric) was applied using 1 � r
as a distance, and the result was plotted on a
two-dimensional space. We also tested other
distance metrics such as Euclidean distance or
Spearman’s correlation coefficient, but the re-
sults of the MDS analyses were similar, regard-
less of the distance metric used.

Results
Selective responses to a gloss
stimulus set
We examined neural responses to a gloss
stimulus set that consisted of 33 types of
surface reflectance rendered in the opti-
mal shape for each neuron. We found that
there are neurons in the lower bank of STS
that selectively respond to gloss. We
penetrated electrodes to map neural re-
sponses at 101 positions (68 in monkey
AQ, 33 in monkey TV) in the lower bank
of the STS, in the posterior TE (A4 –A16,
L18 –L26 in the lower bank of the STS)
(Fig. 2C), and tested the responses using a
preliminary gloss stimulus set. For neu-
rons responsive to these stimuli, we exam-
ined the stimulus selectivity in more detail
using the primary gloss stimulus set. Neu-
rons responsive to glossy stimuli appeared
to be localized within the region of the IT
cortex that we had mapped, and guide
tubes were inserted targeting the regions
where these neurons were frequently
encountered. In total, we recorded the
activities of 215 neurons (147 from

Figure 5. Effects of a change in object shape and pixel shuffling on the activity of the neurons depicted in Figure 4. A, Responses
of cell 1 (the same neuron depicted in Fig. 4 A–C) sorted according to the rank order of its response magnitude when the optimal

4

shape was used. The horizontal axis indicates rank order for
the optimal shape (shape 3); the vertical axis indicates re-
sponse magnitude (with SEM). The red line depicts the
responses to the optimal shape; the blue line, those to the
nonoptimal shape (shape 2); and the black line, those to
the shuffled stimuli. Object images with the optimal shape are
shown at the top in rank order. The inset shows the relation-
ship between the responses to each stimulus in the gloss stim-
ulus set for the optimal (horizontal axis) and nonoptimal
(vertical axis) shapes. B, C, Responses of cells 2 (the same neu-
ron depicted in Fig. 4D,E) and 3 (the same neuron depicted in
Fig. 4F,G), respectively. The optimal and nonoptimal shapes
were shapes 3 and 9 for cell 2 and shapes 8 and 4 for cell 3. The
conventions are as in A.
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monkey AQ, 68 from TV) that responded to the gloss stimulus
set. Of these, 194 neurons (129 from AQ, 65 from TV) exhib-
ited selectivity (ANOVA, p � 0.05).

Figure 4 shows responses of three representative neurons
(cells 1, 2, and 3) that exhibited selectivity for the gloss stimulus
set. Cell 1 (Fig. 4A–C) strongly responded to stimuli with sharp
highlights (e.g., stimuli 8 and 13) and did not respond to stimuli
with weak glossiness (e.g., stimuli 1 and 33). This neuron showed
strong and sharp gloss selectivity (gloss selectivity index, 1.08;
sparseness index, 0.51). Only six stimuli evoked more than a
half-maximal response. Stimuli that induced strong responses in
cell 1 were clearly localized in gloss stimulus space (Fig. 4C):
strong responses were evoked by stimuli with large specular re-
flectance (�s) and small roughness (�).

Cell 2 (Fig. 4D,E) selectively responded to shiny objects with
blurred highlights; that is, objects with large specular reflectance
and large roughness (e.g., stimuli 21 and 24) (gloss selectivity
index, 0.95; sparseness index, 0.46). Only three stimuli evoked
more than a half-maximal response in this neuron.

Cell 3 (Fig. 4F,G) exhibited modestly sharp selectivity to gloss
stimulus set broader than cells 1 and 2 (gloss selectivity index,
1.05; sparseness index, 0.32), with nine stimuli evoking more
than a half-maximal response. This neuron strongly responded
to matte stimuli without clear highlights and those with small
specular reflectance and large roughness.

Effect of object shape and pixel shuffling within the stimulus
The results described above suggest there are neurons that selec-
tively respond to images of objects with a specific gloss. However,
images in the gloss stimulus set also varied with respect to their
local luminance pattern; that is, glossy stimuli have sharp light
spots corresponding to highlights whose patterns are roughly
constant as long as the object shape and illumination environ-
ment are unchanged. It was therefore possible that the selective
response of cell 1 was due to the presence of a specific pattern of
highlights in some stimuli. To test this possibility, we recorded
the responses of the same neurons to the gloss stimulus set ren-
dered on a different 3D shape and assessed whether the change in
shape affected stimulus selectivity. In Figure 5A, the red line in-
dicates the rank order of the responses of cell 1 to the gloss stim-
ulus set when the optimal shape (shape 3) was used. The blue line
indicates the responses of the same neuron when a nonoptimal
shape (shape 2) was used and the responses were aligned accord-
ing to the same stimulus order as the red line. This neuron exhib-
ited significant main effects of both surface reflectance and object
shape (two-way ANOVA, p � 0.05), as well as a significant inter-
action between the two. This means that there was some differ-
ence in the pattern of gloss selectivity between the two shapes.
More importantly, however, the overall pattern of responses to
shape 2 was similar to the pattern of responses to the optimal
shape, and there was a clear tendency for the responses to grad-
ually decline along the horizontal axis. Responses to the gloss
stimulus set showed a strong correlation between the optimal and
nonoptimal shapes (r � 0.86; Fig. 5A, inset), which significantly
differed from zero (p � 0.05). These results indicate that even
when the local luminance pattern was changed by changing the
object shape, the gloss selectivity of this neuron was largely main-
tained; thus, stimulus selectivity does not appear to be due to the
local luminance pattern.

Images in the gloss stimulus set also varied with respect to
mean chromaticity and luminance. To exclude the possibility
that the response selectivity was due to differences in the color
and luminance of the stimuli, we tested the responses to shuffled

stimuli in which the pixels were randomly rearranged within the
object contour (Figs. 1D, top; 3B). In the shuffled stimuli, the
luminance and color histograms of the pixels did not change, nor
did the mean luminance and mean chromaticity, but the glossi-
ness dramatically changed, particularly for the glossy stimuli. In
Figure 5A, the black line indicates the responses of cell 1 to the
shuffled stimuli aligned according to the same order as the red
and blue lines. That cell 1 did not show clear responses (maxi-
mum, 1.71 spikes/s) to the shuffled stimuli reveals that the selec-
tive responses to the original stimulus set was not due to the mean
color or luminance of these stimuli. In Figure 5B, responses of cell
2 to images rendered on a nonoptimal shape (shape 9) and to the
shuffled stimuli are compared with the responses to the optimal
shape. As with cell 1, the pattern of selectivity for the gloss stim-
ulus set was highly correlated between the optimal and nonopti-
mal shapes (red and blue lines; r � 0.82; p � 0.01), and the
responses to the shuffled stimuli were very weak (black line; max-
imum, 6.84 spikes/s).

The results were markedly different with cell 3, however (Fig.
5C). With this neuron, the responses to the gloss stimulus set
were highly correlated between the optimal (shape 8) and non-
optimal (shape 4) shapes (red and blue lines; r � 0.87; p � 0.01),

Figure 6. Effects of shape change and pixel shuffling: population analysis. In the scatter plot,
horizontal axis indicates correlation coefficient between the responses to the optimal and non-
optimal shapes, and vertical axis that between the responses to the optimal shape and shuffled
stimuli. If a neuron did not exhibit significant response to the nonoptimal shape or shuffled
stimuli, they are plotted on the horizontal or vertical axis, respectively. We defined “gloss-
selective” neurons using two criteria: (1) They should be responsive to a nonoptimal shape, and
there should be significant correlation between the patterns of stimulus selectivity between the
optimal and nonoptimal shapes ( p � 0.05). And (2) they should not show significant response
to shuffled stimuli (�10 spikes/s and/or p � 0.05, t test), or the correlation for the stimulus
selectivity between the optimal shape and shuffled stimuli should not be significant. The red
circles represent gloss-selective neurons that satisfied these two criteria. The blue circles repre-
sent cells that exhibited significant correlation between the responses to the optimal and non-
optimal shapes, as well as between the responses to the optimal shape and shuffled stimuli. The
histogram at the top depicts the distribution of the correlation coefficients between the re-
sponses to the optimal shape and shuffled stimuli. The histogram at the right depicts the
distribution of correlation coefficients between the responses to the optimal and nonoptimal
shapes. In the histograms, the solid bars represent cells in which both correlation coefficients
were obtained, and the open bars represent cells in which only one of the correlation coeffi-
cients was obtained.
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but, unlike cells 1 and 2, this neuron also strongly responded to
the shuffled stimuli (black line; maximum, 25.6 spikes/s), and
those responses also correlated with the responses to the optimal
shape (r � 0.71; p � 0.01). This suggests that the activity of cell 3

was strongly influenced by low-level im-
age features such as the mean luminance
and chromaticity.

From the neurons that exhibited suffi-
ciently strong (�10 spikes/s) and selective
responses to the gloss stimulus set
(ANOVA, p � 0.05), we isolated neurons
that were likely selective for glossiness by
using two criteria. First, a given cell should
be responsive to a nonoptimal shape, and
the patterns of stimulus selectivity ob-
tained with the optimal and nonoptimal
shapes should be significantly correlated
(p � 0.05). Second, either the neuron
does not show a significant response to the
shuffled stimuli (�10 spikes/s and/or p �
0.05, t test) or the correlation between the
patterns of stimulus selectivity obtained
with the optimal shape and shuffled stim-
uli are not significant. Neurons satisfying
these two criteria were defined as “gloss-
selective.” Of the 194 neurons that exhib-
ited selectivity for the gloss stimulus set in
the optimal shape, we assessed the re-
sponses to more than one shape in 145, to
the shuffled stimuli in 169, and to both in
139 neurons. The distribution of correla-
tion coefficients obtained under each of
these conditions is shown in Figure 6. The
abscissa represents the correlation coeffi-
cient between the responses to the optimal

shape and the shuffled stimuli, while the ordinate represents the
correlation coefficient between the responses to the optimal and
nonoptimal shapes. The scatter plot includes neurons recorded
in both tests (shape change and shuffling), whereas the histo-
grams include neurons that were tested in only one of these tests
(open bars). Many neurons (118 of 145; 81%) exhibited signifi-
cant correlation between the responses to the optimal and non-
optimal shapes. With regard to the responses to the shuffled
stimuli, 54 neurons (54 of 169; 32%) did not show significant
responses (leftmost bar in the histogram). Of the remaining 115
neurons that showed clear responses, the correlation between the
responses to the optimal shape and shuffled stimuli was not sig-
nificant in 51 (51 of 115; 44%). Of 139 neurons tested under both
control conditions, 57 (31 from monkey AQ; 26 from TV) satis-
fied the two criteria for gloss-selective neurons listed above (Fig.
6, red circles). Cells 1 and 2 are examples of this group of neurons.
However, 43 neurons showed a significant correlation between
their responses to the optimal and nonoptimal shapes, and be-
tween their responses to the optimal shape and the shuffled stim-
uli (Fig. 6, blue circles). Cell 3 is an example of these neurons,
which, presumably, selectively respond to the specific luminance
or color of the stimuli. We also examined the stability of the
selectivity of 57 gloss-selective neurons across a change in shape
by using a separability measure (Fig. 7). All of the neurons had a
significant separability index, and most had a separability index
�0.7 (mean 
 SD, 0.86 
 0.08) (Fig. 7A). Representative exam-
ples of the interaction plot for four neurons are shown in Figure
7C. Moreover, only one neuron showed a significant r 2 com-
puted using the second principal component (Fig. 7B). Together,
these results confirm that gloss selectivity is largely independent
of the change in stimulus shape. Most of the gloss-selective neu-
rons showed strong selectivity for the gloss stimulus set, with a

Figure 7. Separability index for a change in shape. A, Distribution of the separability index for a change in object shape. The
horizontal axis indicates the separability index, the vertical axis the number of cells. B, Distribution of r 2 between the actual and
predicted responses computed from only the second principal component. The filled and open bars indicate significant and
nonsignificant cells, respectively, based on the permutation test. C, Raw interaction plot connecting the responses to the gloss
stimulus set for the optimal shape (left) and the nonoptimal shape (right) for four representative example neurons. The left two
panels are for cell 1 and cell 2 depicted in Figures 4 and 5. Separability index for each neuron is 0.92, 0.93, 0.96, and 0.98,
respectively.

Figure 8. Distribution of the selectivity and sparseness indices among gloss-selective neu-
rons. A, Distribution of the selectivity indices of 57 gloss-selective neurons. The horizontal axis
indicates the selectivity index, and the height of each bar indicates the number of cells (left
vertical axis). The rightmost bar indicates cells with a selectivity index over 1.2. The black line
indicates the cumulative percentage of indices (right vertical axis). B, Distribution of the sparse-
ness indices of the 57 gloss-selective neurons. The horizontal axis indicates the sparseness
index. Other conventions are the same as in A.
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selectivity index �0.6 (median, 1.02) (Fig. 8A), and many also
showed sharp selectivity, with a sparseness index �0.3 (median,
0.43) (Fig. 8B). There was no significant difference in the strength
of the selectivity index between the responses to the optimal
shape (mean 
 SD, 1.03 
 0.18) and those to the nonoptimal
shape (mean 
 SD, 1.02 
 0.18) (p � 0.05, t test). We also
examined whether there was difference in eye movements to dif-
ferent stimuli that may explain the neural selectivity. When we
compared the variance of eye position during presentation of the
best stimulus (rank 1) and the worst stimulus (rank 33) for 57
gloss-selective neurons, only one showed significant difference
(p � 0.05, t test). Similarly, only two neurons showed significant
variation in the variance of eye position across 33 stimuli (p �
0.05, ANOVA). These results clearly indicate that the difference
in eye movements cannot explain the neural selectivity to the
gloss stimulus set.

We next examined how the responses of gloss-selective neu-
rons were affected by a change in object shape or by image shuf-
fling at the population level by computing the rank order of the
population responses in a way similar to what was done in Figure
5. That is, we sorted the responses of each neuron to the nonop-
timal shape and shuffled stimuli according to the rank order of
the responses to the optimal shape and then averaged the re-
sponses across the population (Fig. 9A). We found that responses
to the nonoptimal shape monotonically declined along the hori-
zontal axis, which was similar to the pattern of responses to the
optimal shape although the slope of the decline was shallower.
The difference in the averaged responses between the optimal and
nonoptimal shapes for nonpreferred stimuli (rightmost part of
the graph) is likely due to nonsystematic differences in the rank
order between the optimal and nonoptimal shapes. In contrast to
the responses to the nonoptimal shape, the responses to the shuf-
fled stimuli were nearly flat, although the slope of the linear fit
(�0.07 spikes per s/rank) was significantly different from zero
(p � 0.05, t test), suggesting that average color or luminance of
the stimuli slightly affected the selectivity. However, when we
computed the slope of the responses to the shuffled stimuli for
each of the 27 gloss-selective neurons that exhibited significant
response to the shuffled stimuli, only 2 had slope that was signif-
icantly different from zero (p � 0.05, t test). This confirms that
little selectivity was retained after shuffling of the image pixels.
For neurons that showed clear responses to the shuffled stimuli
(Fig. 6, blue circles), responses to both the nonoptimal shape and
shuffled stimuli showed similar monotonically decreasing pat-
terns along the rank order of the optimal shape (Fig. 9B), indi-
cating that the selectivity was maintained under both conditions.
In the following, we will describe in more detail the response
properties of the 57 neurons that satisfied both of the aforemen-
tioned criteria for gloss selectivity.

Stimulus preference of gloss-selective neurons
The preferred stimulus of gloss-selective neurons differed
from cell to cell. Figure 10 shows two other examples of gloss-
selective neurons: one (Fig. 10 A, C) responded selectively to
stimuli with large specular reflectance (�s), small roughness
(�), and sharp highlights, while the other (Fig. 10 B, D) re-
sponded selectively to stimuli with large roughness, regardless
of the specular reflectance.

To examine how gloss-selective neurons responded as a pop-
ulation to the gloss stimulus set, we computed the population
response to each stimulus where the maximum response for each
neuron was set to unity before averaging the responses. Figure
10E shows the normalized population average response to each

stimulus. The population of gloss-selective neurons responded
more or less to all of the stimuli, although there was significant
variation in the response magnitudes across the stimulus set
(ANOVA, p � 0.05). The ratio between the maximum and min-
imum of the normalized responses (to stimulus 13, 0.47, and to
stimulus 33, 0.21, respectively) was 2.18, and there was a ten-
dency for glossier stimuli to elicit stronger responses. This ten-
dency was more clearly seen when the distribution of the
preferred stimulus for each gloss-selective neuron was examined.
Figure 10F depicts the number of neurons that showed a peak
response to each stimulus in the gloss stimulus set. Peak re-
sponses frequently occurred with stimuli having large specular
reflectance and little roughness, but occurred less frequently with
stimuli having small specular reflectance.

Effects of the illumination environment
In all of the results described so far, object images were rendered
under the same illumination environment (illumination 1, Euca-
lyptus Glove). Changing the illumination environment does not
affect the apparent glossiness very much, as long as natural illu-
mination is used (Fleming et al., 2003). Therefore, if the re-
sponses of gloss-selective neurons are related to encoding

Figure 9. Rank order of the responses to the gloss stimulus set: population average. A,
Average of the responses of 57 gloss-selective neurons (Fig. 6, red circles) to stimuli with the
optimal shape (red line), a nonoptimal shape (blue line), and shuffled stimuli (black line), sorted
according to the rank order of the responses to the optimal shape for each neuron. B, Average of
the responses of 43 neurons that showed significant correlation between the responses to the
optimal shape and shuffled stimuli (Fig. 6, blue circles). Other conventions are the same as in A.
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glossiness, we would expect that selectivity for the gloss stimulus
set would be retained, even after the illumination environment
was changed. To test that idea, we assessed gloss selectivity of 48
of the 57 gloss-selective neurons using stimuli in which an object
with the optimal shape was rendered under different illumina-
tion (illumination 2, Campus at Sunset; Figs. 1D, bottom; 3C). In
Figure 11A, the red line indicates the responses of cell 1 to the
optimal shape illuminated under illumination 1 (same as the red
line in Fig. 5A), and the blue line indicates the responses of the
same neuron to the same stimulus set under illumination 2. The
results are aligned according to the same order as the red line. We
found that there was a clear tendency for the responses to gradu-
ally decline along the horizontal axis and that the responses to the
stimulus set under the two illumination conditions were highly
correlated (r � 0.81; p � 0.05) (Fig. 11A, inset). Figure 11B
summarizes the effect of the illumination condition (abscissa)
and object shape (ordinate) on the activity of gloss-selective neu-
rons tested under the two illumination conditions. Given our defi-
nition of gloss-selective neurons, all of these neurons showed
significant correlation between their responses to the optimal and
nonoptimal shapes. Likewise, most of the neurons showed signifi-

cant correlation between illuminations (40
of 48; 83.3%; red circles). This indicates that
the gloss selectivity of these neurons was re-
tained across different illuminations, which
is consistent with the notion that apparent
glossiness is rather stable under different
natural illumination conditions. Analysis
based on the separability measure also
showed that the selectivity of gloss-
selective neurons remains mostly stable
under different illumination conditions
(Fig. 12). All neurons but one showed a
significant separability index, and most
neurons showed separability index val-
ues �0.7 (mean 
 SD, 0.84 
 0.1) (Fig.
12 A). In addition, only two neurons
showed a significant r 2 computed using
the second principal component (Fig.
12 B). These results confirm that gloss
selectivity of these neurons is largely in-
dependent of a change in illumination.

To further examine how the popula-
tion of gloss-selective neurons was af-
fected by the illumination condition, the
rank order of the responses obtained un-
der illumination 2 was compared with
that obtained under illumination 1 (Fig.
12C, red and blue lines, respectively). The
average responses obtained under illumi-
nation 2 gradually decreased along the
rank order of the responses obtained un-
der illumination 1 (abscissa), indicating
that selectivity was largely maintained at
the population level. As was the case un-
der illumination 1, gloss-selective neu-
rons showed strong selectivity to the gloss
stimulus set under illumination 2. The se-
lectivity index was even higher, although
marginally, under illumination 2
(mean 
 SD, 1.08 
 0.20) than under il-
lumination 1 (mean 
 SD, 1.04 
 0.19)
(p � 0.032, t test).

Population encoding of gloss
How are different glosses encoded by the activities of gloss-
selective neurons? Knowing which pairs of stimuli were differen-
tiated and which pairs were not well differentiated should
provide a clue as to how different glosses are encoded by the
population of gloss-selective neurons. To examine this problem,
we computed a correlation coefficient (r) for the responses of the
57 gloss-selective neurons to all possible pairs of the 33 stimuli in
the gloss stimulus set. Then (1 � r) was regarded as the neural
distance between two stimuli and MDS analysis was applied to
the resultant distance matrix, which contained the neural dis-
tances for all possible pairs of stimuli. Figure 13, A and B, depicts
the relationships between the responses of the 57 gloss-selective
neurons for two example pairs of stimuli. Stimuli 3 and 8 (Fig.
13A) are quite different in color and luminance, but both have
sharp highlights and similar glossiness. The population of gloss-
selective neurons exhibited highly correlated responses to these
two stimuli (r � 0.92), indicating that the neural distance be-
tween them was small. Stimuli 3 and 31 (Fig. 13B) are very dif-
ferent in appearance: stimulus 3 is highly glossy, whereas

Figure 10. Stimulus preference of gloss-selective neurons. A, C, Responses of a gloss-selective neuron that was selectively
responsive to shiny objects with clear highlights (cell 4). B, D, Responses of another gloss-selective neuron that was selectively
responsive to matte objects (cell 5). These are examples of gloss-selective neurons recorded from monkey TV, while those shown
in Figure 4 (cell 1 and cell 2) are from monkey AQ. Conventions are the same as in Figure 4, B and C. E, Population average of the
normalized responses of 57 gloss-selective neurons to each stimulus in the gloss stimulus set. F, The numbers of gloss-selective
neurons that showed a peak response to each stimulus in the gloss stimulus set.
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stimulus 31 is matte. The response patterns to these two stimuli
were quite different, and the correlation between them was very
weak (r � 0.22), indicating the neural distance was large. We
computed the neural distances for all pairs of stimuli using the
same procedure, after which the stimuli were arranged on a two-
dimensional plane such that their relative positions on the plane
maintained the neural distances as much as possible.

Figure 13C indicates the resulting diagram of this MDS anal-
ysis. The scree plot in Figure 13C (inset) shows that two dimen-
sions are sufficient to capture most of the variance of the neural
distance (stress, 0.12) and to understand the basic aspects of the
neural encoding of the stimulus set. In this two-dimensional di-
agram derived from the MDS analysis, stimulus pairs that yielded
similar response patterns in the neural population are plotted
near one another and those that yielded different response pat-
terns are plotted farther away. At the left side of this figure, highly
specular stimuli are accumulated. However, at the bottom right,
glossy stimuli with blurred highlights are accumulated, and to-
ward the top right glossiness is reduced and matte stimuli are
clustered at the top right. The results of the MDS analysis show
that the population responses of gloss-selective neurons systemati-
cally represent a variety of glosses and suggest that these neurons
carry information that is closely associated with characterizing the
surface gloss of objects.

Discussion
Surface reflectance properties in object recognition
We are very sensitive to the surface properties such as gloss of
both natural and man-made objects, and often our behavioral
decisions are dependent upon them. For example, the surface
reflectance of foods significantly changes depending on whether

the food is fresh or old, and the reflectance of an animal’s skin
changes depending on the health condition. This type of infor-
mation is closely related to the optical and surface reflectance
properties of an object, and understanding how these properties
are represented in the brain is essential for understanding the
neural mechanisms involved in object recognition.

In the present study, we found neurons in the lower bank of
STS that selectively respond to specific glosses. As a population,
these neurons systematically represented a variety of glosses. This
finding provides strong evidence that IT cortex, which plays an
important role in object recognition, is involved in processing
information about gloss.

Comparison with previous studies
Two previous studies examined the selectivity of neurons to var-
ious materials having different surface reflectance properties.
These studies described material-selective neurons in area V4
(Arcizet et al., 2008) and IT cortex (Köteles et al., 2008), and
reported that the material selectivity was largely unaffected by
changes in illumination direction. Both of those studies used
visual stimuli consisting of various materials taken from the
CUReT BRDF dataset (http://www.cs.columbia.edu/CAVE/
software/curet/), which contains measured BRDF data on vari-
ous materials (Dana et al., 1999). However, materials in this
dataset generally have a 3D mesostructure, macroscopic geomet-
ric details on the surface, characteristic to each material, which
yields complex texture patterns of shading [Köteles et al. (2008),
their Fig. 1A]. It is therefore likely that the observed neural activ-
ities selective for specific materials were due to complex texture
patterns of shading specific to each material. However, objects
sampled in the MERL BRDF dataset used in the present study do

Figure 11. Effects of illumination change. A, Responses of cell 1 (the neuron depicted in Fig. 4A–C) sorted according to the rank order of the response magnitudes under the default illumination
(illumination 1, Eucalyptus Grove). The horizontal axis indicates the rank order of the responses, and the vertical axis indicates the response magnitude (with SEM). The red line depicts the responses
under illumination 1; the blue line depicts those under different illumination (illumination 2, Campus at Sunset). Object images rendered with illumination 1 are shown at the top. The inset shows
the relationship between the responses to each stimulus in the gloss stimulus set under illuminations 1 (horizontal axis) and 2 (vertical axis). B, Summary of the effects of the illumination and shape
in 48 gloss-selective neurons tested under both illuminations. In the scatter plot, the horizontal axis indicates the correlation coefficient between the responses under the two different illumination
conditions, and the vertical axis indicates the correlation coefficient between the responses to the optimal and nonoptimal shapes. Given our definition of gloss-selective neurons, all of these neurons
showed significant correlation between their responses to the optimal and nonoptimal shapes. The red circles represent neurons that showed significant correlation between the responses elicited
under the two illumination conditions. The histogram at the top depicts the distribution of the correlation coefficients between the responses under the two illumination conditions. The black bars
represent neurons that exhibited significant correlation, and the gray bars, nonsignificant correlation. The histogram at the right depicts the distribution of correlation coefficients between the
responses to the optimal and nonoptimal shapes.
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not have such 3D mesostructures, which eliminated the influence
of shading texture patterns and enabled us to study neural selec-
tivity to surface reflectance properties in isolation.

Classification of gloss-selective neurons
Classification of gloss-selective neurons in the present study does
not imply that these neurons form a distinct group clearly sepa-
rated from other nearby neurons. As can be seen in Figure 6,
gloss-selective neurons form a continuous distribution with
other neurons, and it is likely that some of those cells may also be
involved in encoding gloss. In particular, the neurons repre-
sented by blue circles in Figure 6 retained selectivity for the gloss
stimulus set, even when the object shape was changed. Although
these neurons may be responding to low-level image statistics
such as mean luminance or chromaticity, they may also be
involved in encoding glossiness. Pixel shuffling causes large
changes in the apparent gloss of specular stimuli, whereas the
changes are small for matte stimuli. It may be possible that these
neurons selectively encode stimuli with low specularity, and the neu-
ron depicted in Figure 5C may be a good example. Nonetheless, in
attempting to explore neurons selective for gloss, we opted to apply
rather conservative criteria.

Encoding 3D shapes and surface reflectances in the IT cortex
When we view an object, three factors, namely shape, surface
reflectance, and illumination environment, interact to form a
retinal image and are thus intermingled within the image. Isolat-
ing each factor from the retinal image is a fundamental task of the
visual system. In the lower bank of STS, within area TE, neurons
that encode 3D information based on stereo disparity and texture
gradients have been previously reported (Janssen et al., 2000a,b,
2001; Liu et al., 2004; Yamane et al., 2008). However, there is
important difference in nature of visual features related to stereo
and texture compared with those related to shading and specular
highlights (Blake and Bülthoff, 1991; Norman et al., 2004). That
is, visual features related to stereo and texture processing corre-
spond to fixed locations on the surface of an object, whereas those
related to shading and highlight processing change their locations
depending on the position of the light source and viewpoint.
Responses of TE neurons in the present study retained their se-
lectivity when the pattern of shading and highlights was altered
through a change in illumination. Thus, these neurons fit well
with the properties of the visual features generated by the inter-
action of illumination with surface reflectance in the sense that
the responses tolerated a change in illumination to invariably
encode the surface reflectance properties of objects.

Figure 12. Effect of illumination on responses among gloss-selective neurons. A, Distribu-
tion of separability indices for the change in illumination. The filled and open bars indicate
significant and nonsignificant cells, respectively, based on the permutation test. B, Distribution
of r 2 between the actual and predicted responses computed from only the second principal
component. C, Average of the responses of 57 gloss-selective neurons to stimuli with the opti-
mal shape rendered under default illumination (illumination 1, Eucalyptus Grove; red line) and
another illumination (illumination 2, Campus at Sunset; blue line) sorted according to the rank
order of the responses under illumination 1.

Figure 13. Neural representation of gloss in the activities of gloss-selective neurons. A,
Relationship between the responses of 57 gloss-selective neurons to a pair of stimuli (surfaces 3
and 8) that are similarly glossy in appearance. The horizontal axis indicates responses to one
stimulus (no. 3); the vertical axis indicates the responses to the other (no. 8). B, Relationship
between the responses of 57 gloss-selective neurons to a pair of stimuli (surfaces 3 and 31) that
differ with respect to their glossiness. Conventions are as in A. C, Two-dimensional plot of the
results of MDS analysis. Distances were based on 1 � r between the responses of the 57
gloss-selective neurons for each stimulus pair from the gloss stimulus set. The inset is a scree
plot showing the relationship between the number of dimensions and the stress in the MDS
analysis.
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Imaging of gloss-selective activities using fMRI in monkeys
has shown activities in the ventral visual areas, including areas
TEO and TE, but not in the parietal cortices (Okazawa et al.,
2011). The results are analogous to those from human and mon-
key fMRI studies showing that activities related to deriving shape
from shading is only observed in ventral higher areas (Georgieva
et al., 2008; Nelissen et al., 2009). By contrast, activities related to
deriving 3D shape from stereo and texture features can be ob-
served in the parietal cortex (Durand et al., 2007; Joly et al., 2009)
as well. These results suggest that visual features related to surface
reflectance and illumination are mainly processed in the ventral
visual pathway. Presumably, two separate mechanisms exist in
the lower bank of STS, one to encode the 3D shapes of objects by
processing stereo and texture information and another to encode
the surface reflectance of objects by processing shading and high-
light information. This does not necessarily mean different
mechanisms coexist in the same location within STS. For exam-
ple, the recording site in the present study is clearly more poste-
rior than the 3D shape selective region described by Janssen et al.
(2000a, 2001). Locations of the gloss-selective neurons are also
different from the three regions where concentration of color
selective neurons has been reported in IT cortex. Two of them
were located in the anterior and posterior regions on the lateral
convexity of IT cortex (Harada et al., 2009; Yasuda et al., 2010;
Banno et al., 2011), and the remaining one (Conway and Tsao,
2006; Conway et al., 2007) was located in the more posterior
region in the lower bank of STS (posterior 1– 4 mm in the stereo-
taxic coordinates).

There exists an interesting relationship between surface gloss
and 3D shape. Specular highlights cling to regions of the surface
of an object that have a high degree of curvature (Koenderink and
van Doorn, 1980) and thereby facilitate 3D shape discrimination
(Todd et al., 1997, 2004). Because the gloss selectivities of TE
neurons in the present study were invariant across a change in
object shape, these selectivities are likely related to the coding of
the surface reflectance rather than to a cue for coding in the 3D
shape. It would be interesting to know how such information
about gloss interacts with 3D shape information within STS.

Relationship with gloss perception
In the present study, we examined the gloss selectivity of neurons
using stimuli defined by a combination of physical parameters of
gloss (�s, �d, �). An important question is how the activities of
these neurons are related to the gloss perception. The relationship
between the physical parameters of gloss and perceived gloss was
examined in a previous psychophysical study, and a perceptually
uniform gloss space was derived (Ferwerda et al., 2001). This
perceptual gloss space is a two-dimensional space with a c (con-
trast gloss) axis and d (distinctness of gloss) axis. The results of
our MDS analysis show that a variety of glosses can be systemat-
ically represented in a two-dimensional space, and c and d appear
to systematically vary within this plane. This suggests that the
activities of gloss-selective neurons are closely associated with
gloss perception.

Neural processes related to generating gloss selectivity
How is gloss selectivity of IT neurons generated from the neural
processing in early visual areas? Detection of complex shapes is
thought to be achieved through integration of local features such
as local contrast, orientation, spatial frequency, and contour cur-
vature (Riesenhuber and Poggio, 1999; Kourtzi and Connor,
2011). The visual features related to gloss perception are not yet
well understood, although the importance of highlights has long

been recognized (Beck and Prazdny, 1981; Hunter and Harold,
1987; Blake and Bülthoff, 1990) and the importance of image
statistics has been suggested more recently (Nishida and Shinya,
1998; Motoyoshi et al., 2007). That the responses of the gloss-
selective neurons in the present study were significantly dimin-
ished by shuffling of the image pixels indicates their selectivity is
not due simply to low-level image statistics: a difference in the
parameters of the luminance and chromaticity histograms of dif-
ferent stimuli, for example. Furthermore, when we analyzed the
correlation between the luminance contrasts of stimuli and re-
sponses, most neurons did not exhibit a significant correlation,
indicating that their selectivity is also not due to image contrast.
How the responses of gloss-selective neurons are determined by
the combination of simple image features will be an important
question for future research and should enhance our understand-
ing of the visual features involved in gloss perception.
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