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Abstract

Introduction: Many chronic disorders have genomic etiology, disease progression, clinical 

presentation, and response to treatment that vary on a patient-to-patient basis. Such variability 

creates a need to identify characteristics within patient populations that have clinically relevant 

predictive value in order to advance personalized medicine. Unsupervised machine learning 

methods are suitable to address this type of problem, in which no a priori class label information is 

available to guide this search. However, it is challenging for existing methods to identify cluster 

memberships that are not just a result of natural sampling variation. Moreover, most of the current 

methods require researchers to provide specific input parameters a priori.

Method: This work presents an unsupervised machine learning method to cluster patients based 

on their genomic makeup without providing input parameters a priori. The method implements 

internal validity metrics to algorithmically identify the number of clusters, as well as statistical 

analyses to test for the significance of the results. Furthermore, the method takes advantage of the 

high degree of linkage disequilibrium between single nucleotide polymorphisms. Finally, a gene 

pathway analysis is performed to identify potential relationships between the clusters in the 

context of known biological knowledge.

Datasets and Results: The method is tested with a cluster validation and a genomic dataset 

previously used in the literature. Benchmark results indicate that the proposed method provides the 

greatest performance out of the methods tested. Furthermore, the method is implemented on a 
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sample genome-wide study dataset of 191 multiple sclerosis patients. The results indicate that the 

method was able to identify genetically distinct patient clusters without the need to select 

parameters a priori. Additionally, variants identified as significantly different between clusters are 

shown to be enriched for protein-protein interactions, especially in immune processes and cell 

adhesion pathways, via Gene Ontology term analysis.

Conclusion: Once links are drawn between clusters and clinically relevant outcomes, 

Immunochip data can be used to classify high-risk and newly diagnosed chronic disease patients 

into known clusters for predictive value. Further investigation can extend beyond pathway analysis 

to evaluate these clusters for clinical significance of genetically related characteristics such as age 

of onset, disease course, heritability, and response to treatment.
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1. Introduction

With advancements in genome-wide association study (GWAS) techniques and the advent of 

low cost genotyping arrays, researchers have developed a significant interest in applying 

Machine Learning (ML) methods to mine knowledge from patients’ genomic makeup [1,2]. 

This knowledge has allowed researchers to improve gene annotation and discover 

relationships between genes and certain biological phenomena [3,4].

The fields of personalized and stratified medicine benefit greatly from ML. For example, 

many cases in the field of pharmacogenetics have identified genetic variants with clinically 

actionable impacts on drug response and metabolism [5,6]. Moreover, many chronic 

disorders (e.g., asthma, diabetes, Crohn’s disease) have genomic etiology, clinical 
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presentation, and response to treatment that vary on a patient-to-patient basis. Such 

variability reveals a need to identify characteristics within patient populations that have 

clinically relevant insights. For example, Multiple Sclerosis (MS) is a chronic inflammatory 

disorder in which progressive autoimmune demyelination and neuron loss occur in the 

central nervous system. MS varies from patient-to-patient in genomic etiology, disease 

progression, clinical presentation, and response to treatment. Hence, MS patients, like other 

chronic autoimmune patients, could benefit from ML methods that advance personalized 

medicine.

Machine learning methods are commonly classified into supervised and unsupervised 
methods. Supervised methods, such as Support Vector Machines [7] and Random Forests 

[8,9], have been extensively used in the field of bioinformatics. These methods classify new 

objects to a determinate set of discrete class labels while minimizing an empirical loss 

function (e.g., mean square error). However, supervised methods require the use of a training 

set that contains a priori information of several objects’ class labels. In contrast, 

unsupervised methods do not require a training set that contains a priori information of 

objects’ class labels as input. Unsupervised methods are able to detect potentially interesting 

and new cluster structures in a dataset. Moreover, they can be implemented when class label 

data is unavailable. Hence, if the objective of a study is to discover the class labels that best 

describe a set of data, unsupervised machine learning should be implemented in place of 

supervised methods [2]. However, it is challenging for existing unsupervised ML methods to 

identify object memberships that are due to the underlying cluster structures in the dataset, 

rather than the results of natural sampling variation [10]. Moreover, most current methods 

require researchers to provide certain input parameters a priori (e.g., number of clusters in 

the dataset), which can limit their applicability.

In light of the limitations of existing methods and the need to advance personalized 

medicine, an unsupervised machine learning method to cluster patients based on their 

genomic similarity is presented. The method integrates statistical analysis that accounts for 

family-wise-error rate, allowing the method to identify clusters resulting from the underlying 

structure of the data and not just due to random chance. Moreover, the method takes 

advantage of the high degree of linkage disequilibrium between Single Nucleotide 

Polymorphisms (SNP) by pruning correlated nearby SNPs, which helps reduce redundant 

variants in the dataset. Finally, a gene pathway analysis shows the potential relationships 

between the clusters in the context of known biological knowledge. The proposed method is 

capable of clustering patients based on their genomic similarity without a priori information. 

Moreover, it is capable of identifying the significant variants (i.e., SNPs) between patient 

sub-groups within a cohort with a common disorder. Successfully identifying distinct 

genetic subtypes of patients within genomic datasets demonstrates the potential of this 

method to advance personalized medicine of complex diseases with heritable components, 

especially autoimmune disorders which have many shared susceptibility loci [11].

2. Literature review

In the last decade, the field of bioinformatics has seen a significant number of publications 

implementing unsupervised machine learning methods, such as clustering algorithms [12–
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14]. Clustering algorithms partition data objects (e.g., genes, patients) into groups (i.e., 

clusters), with the objective of exploring the underlying structure on a dataset [15]. In the 

medical field, these algorithms have been implemented to identify sets of co-expressed 

genes [16], compare patients’ prognostic performance [17], cluster patients based on their 

medical records [18], and identify subgroups of patients based on their symptoms and other 

variables [19].

In previous work, genomic stratification of patients (i.e., stratified medicine) has been able 

to match specific therapy recommendations to genetic subpopulations by predicting 

therapeutic response [5,6]. However, most of these studies implemented class label data (i.e., 

response to treatment) to cluster patients. In clinical datasets, class label information is not 

widely available for convenient patient clustering. Unsupervised machine learning methods 

can be used in such cases to identify clusters within the dataset. Further investigation of 

genetic subgroups within a cohort of patients can offer a better clinical prediction of age of 

onset, disease course, heritability, and response to therapy, leading to improved outcomes 

[20].

2.1. Hierarchical clustering algorithms.

Agglomerative hierarchical clustering algorithms are one of the most frequently used 

algorithms in the biomedical field [21,22]. Researchers have found that hierarchical 

clustering algorithms tend to perform better than other algorithms (e.g., k-means, 

partitioning around Medoids, Markov clustering) when tested on multiple biomedical 

datasets [23]. The objective of any agglomerative hierarchical clustering algorithm is to 

cluster a set of n objects (e.g., patients, genes) based on an n × n similarity matrix. These 

clustering algorithms have grown in popularity due to their capability to simultaneously 

discover several layers of clustering structure, and visualize these layers via tree diagrams 

(i.e., dendrogram) [10]. Even though these algorithms allow for easy visualization, they still 

require preselecting a similarity height cut-off value in order to identify the final number of 

clusters. In other words, it still requires researchers to know a priori the number of cluster in 

the dataset.

Agglomerative hierarchical clustering algorithms can be implemented with different linkage 

methods. For example, Ahmad et al. (2016) [17] implemented the Ward’s linkage method to 

compare patients’ prognostics performance; while Hamid et al. (2010) [19] implemented the 

Complete linkage method to identify unknown sub-group of patients. Unfortunately, 

depending on the underlying structure of the data, different clustering results can be obtained 

by implementing different linkage methods. Ultsch and Lotsch (2017) [24] demonstrated 

that neither the Single nor Ward’s linkage methods provided similar clustering results when 

tested with the Fundamental Clustering Problem Suite (FCPS) datasets [25]. Their results 

reveal that these linkage methods were able to correctly cluster all the objects in only a 

subset of the FCPS datasets. Similarly, Clifford et al. (2011) [26] discovered that while 

testing multiple simulated GWAS datasets, the linkage methods of Median and Centroid 

were the only ones to consistently be outperformed by the Single, Complete, Average, 

Ward’s, and McQuitty methods. In light of these, Ultsch and LÖtsch (2017) [24] proposed 

the use of emergent self-organizing map to visualize clustering of high-dimensional 
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biomedical data into two-dimensional space. Even though, their method allowed for better 

visualization, it still required preselecting the number of clusters as well as other parameters 

to perform correctly (e.g., toroid grid size) [24].

2.2. Parameter selection in clustering algorithms.

In order to avoid preselecting input parameters a priori (e.g., the number of clusters), 

researchers have implemented cluster validation metrics. For example, Clifford et al. (2011) 

[26] proposed a method that aimed to capture the clustering outcome of multiple 

combinations of linkage method and similarity metric based on the Silhouette index [27]. 

The Silhouette index was used to rank the results of the clustering combinations, and select 

the best cluster set (i.e., cluster set with largest average Silhouette index). Similarly, Pagnuco 

et al. (2017) [16] presented a method that implemented several linkage methods and 

implemented modified versions of the Silhouette and Dunn indices [28] to select the final 

clustering results. Both the Silhouette and Dunn indices served as internal cluster validation 

metrics (i.e., no external information needed) to guide the selection of the final cluster set. 

However, the Silhouette index has been shown to have a stronger correlation with external 

cluster validation metrics, such as the Rand Index, than the Dun index [28,30].

The methods of Clifford et al. (2011) and Pagnuco et al. (2017) did not require selecting the 

number of clusters a priori due to the internal cluster validation metrics implemented. These 

metrics allow for algorithmic selection of the number of clusters. Nonetheless, the 

computational complexity of testing all potential clusters increases linearly with the number 

of objects in the dataset. Other studies have implemented model-based clustering methods to 

overcome these limitations. For example, Sakellariou et al. (2012) [29] implemented an 

Affinity Propagation [30] algorithm to identify relevant genes in microarray datasets. Shen et 
al. (2009) [31] implemented an Expectation-Maximization algorithm [32] to cluster genes 

based on an integration of multiple genomic profiling datasets. However, models based 

methods make underlying assumptions that might not be applicable in certain datasets [33].

Recently, Khakabimamaghani and Ester (2016) [34] presented a Bayesian biclustering 

method to identify clusters of patients. They benchmarked their method against the 

multiplicative Nonnegative Matrix Factorization (NMF) algorithm proposed by Lee and 

Seung (2001) [35]. Their results revealed that their Bayesian biclustering method was more 

effective in patient stratification than the NMF. While this Bayesian biclustering method did 

not require selecting the number of clusters a priori, it did require selecting parameters for 

prior probability distributions. The capability of biclustering algorithms to discover related 

gene sets under different experimental conditions, have made them popular within the 

bioinformatics community [36]. One of the first works in this area was presented by Cheng 

and Church (2000) [37]. They proposed an iterative greedy search biclustering algorithm to 

cluster gene expression data. Even though their method did not require selecting the number 

of clusters a priori, it did require the selection of hyperparameters (e.g., maximum 

acceptable error).
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2.3. Statistical significance of clustering results.

Even though the methods of Clifford et al. (2011) and Pagnuco et al. (2017) aimed to find 

the optimal clustering outcome from multiple algorithms, which resembled the consensus 

clustering approach (i.e., approach in which a solution is identified by validating multiple 

outcomes) [38], their methods did not account for possible clustering memberships arising 

due to random variation. Whether identified clusters memberships are due to underlying 

cluster structures in the data or are just a result of the natural sampling variation, is a critical 

and challenging question that needs to be addressed when clustering high-dimensional data 

[10]. To address this question, Suzuki and Shimodaira (2013) [39] presented the pvclust R 

package, which calculates probability values for each cluster using nonparametric bootstrap 

resampling techniques. Even though pvclust allows for parallelized computing, it requires 

significant time (i.e., 480 mins) when implemented in genomic datasets. This is due to the 

large number of resampling iterations (i.e., 10,000) required to reduce the error rate [39]. In 

contrast, Ahmad et al. (2016) [17] applied a non-parametric analysis of variance (ANOVA) 

Kruskal-Wallis test to compare the clusters within a hierarchical clustering method. 

Similarly, Bushel et al. (2002) [40] implemented a single gene parametric ANOVA test to 

assess the effects of genes on hierarchical clustering results. Recently, Kimes et al. (2017) 

[10] proposed a method based on a Monte Carlo approach to test the statistical significance 

of hierarchical clustering results while controlling for family-wise-error rate. However, 

family-wise-error rate can also be controlled while applying repetitive statistical tests by 

implementing a Bonferroni correction [41].

2.4. Integrating domain knowledge into clustering algorithms

Other frequently used clustering algorithms in the bioinformatics field are k-means and 

fuzzy c-means. However, these algorithms require initial random assignments of the clusters, 

which can produce inconsistent results [26]. Hence, they might fail to converge to the same 

results, even after multiple initiations using the same dataset [21]. In light of these 

limitations, Tari et al. (2009) [21] proposed the “GO Fuzzy c-means” clustering algorithm. 

Their method resembles the fuzzy C-mean algorithms [42] and implements Gene Ontology 

annotation [43] as biological domain knowledge to guide the clustering procedure. Even 

though this method assigned genes to multiple clusters, which could have improved the 

biological relevance of the results, it was not capable of discriminating the cluster 

memberships that were assigned due to random chance. While the algorithm parameters 

selected in this study might have been reasonable for the dataset analyzed, the authors 

highlighted that future studies would need to experimentally determine these parameters. 

Similarly, Khakabimamaghani and Ester (2016) [34] integrated domain knowledge via the 

selection of parameters for prior probability distributions. However, their results reveal that 

the selection of these parameters had a direct impact on their clustering results. When 

analyzing the effects of priors, the authors indicate that “final selected priors favor better 
sample clustering over better gene clustering” [34]. These findings reveal that the parameters 

need to be carefully selected since they can bias their method towards better sample 

clustering rather than better gene clustering results.

Researchers can implicitly integrate domain knowledge to their methods by judiciously 

selecting the input data of their algorithms [2]. Genomic datasets may include relevant 
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features as well as correlated and non-informative features. The presence of correlated and 

non-informative features might obscure relevant patterns and prevent an algorithm from 

discovering the underlying cluster structure of a dataset [19]. Genomic data is generally 

high-dimensional because the number of features is frequently greater than the number of 

samples. Additionally, genetic variants are commonly correlated with other variants in close 

proximity on DNA. Therefore, when clustering genomic data, it is important to prune non-

informative and correlated features [2,9].

Highly correlated SNPs are said to be in Linkage Disequilibrium (LD). This characteristic 

makes it challenging for unsupervised ML algorithms to discover relevant cluster structures 

in the dataset. GWA studies present significant associations as tag SNPs, implying a true 

causal SNP can be found within the LD block of a tagged location [11]. LD pruning refers to 

removing highly correlated SNPs within LD blocks. For example, Yazdani et al. (2016) [44] 

identified a subset of informative SNPs based on a correlation coefficient. Similarly, 

Goldstein et al. (2010) [9], implemented several correlation coefficient cut-off values (e.g., 

0.99, 0.9, 0.8, 0.5) to remove SNPs with high LD. They achieved this by using the toolsets 

for Whole-Genome Association and Population-Based Linkage Analyses (PLINK) [45], 

resulting in a reduction of up to 76% of the original dataset. This reduction decreased the 

computational complexity of their method [9]. However, researchers have not agreed yet on 

a standard correlation coefficient cut-off value that can be applied to every genomic dataset 

to reduce complexity without incurring in significant information loss.

Table 1 shows a summary of the current clustering methods in the field of bioinformatics 

applied to genomics data. It can be shown that multiple methods prune the SNPs of their 

datasets based on the degree of LD between nearby SNPs. This is done in order to guide 

their clustering search and remove potentially non-informative features. However, the vast 

majority of existing methods still require preselecting the number of clusters and other 

parameters a priori (e.g., prior probability distributions, toroid grid size). Moreover, the 

current methods do not commonly implement statistical analysis to test for the significance 

of their results, or to account for possible family-wise-error rates.

In light of the aforementioned limitations, an unsupervised machine learning method is 

presented in this work that seeks to identify sub-groups within cohorts of patients afflicted 

with the same disease. This is done by clustering patients based on their genomic similarity 

without the need of a priori input parameters. The method presented in this work takes 

advantage of LD between SNPs by pruning correlated SNPs. In addition, it automatically 

selects the number of clusters by implementing an internal validation metric. The method 

ensembles the clustering outcomes of multiple linkage methods via a majority vote 

approach. Subsequently, it tests for statistical significance among results while accounting 

for family-wise-error rate. Finally, a gene pathway analysis is performed to support the 

potential medical significance of the results.

3. Method

An unsupervised machine learning method is presented that does not require selection of 

input parameters a priori. The method can help identify patient cluster structures within 
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genomic data and potentially discover valuable differences between them. This knowledge 

can be used to advance personalized medicine of complex diseases with heritable 

components, especially autoimmune disorders which have many susceptibility loci. Fig. 1 

shows an outline of the method presented in this work.

3.1 Linkage Disequilibrium Pruning

Pruning SNPs based on LD serves as a feature reduction step. Thus, in the proposed method, 

SNPs that are strongly correlated to other nearby SNPs are pruned, as previously done in the 

literature. The degree of LD between SNPs is assessed by calculating the correlation 

coefficients based on a sliding window method. In this method, cut-off values of (i) 0.999, 

(ii) 0.99, (iii) 0.9, (iv) 0.8 and (v) 0.5 are employed. Previous studies have shown these cut-

off values provide a balance between error reduction and information loss [9]. Hence, five 

subsets of patients’ genomic data containing different sets of SNPs (i.e., features) are 

generated. The subsets generated serve as input for the hierarchical clustering step.

3.2 Hierarchical Clustering

The objective of the unsupervised machine learning method presented in this work is to 

cluster patients based on their genomic similarity. Patients’ genomic similarity can be 

evaluated using a wide range of distance metrics [26]. The selection of the appropriate 

distance metric is driven by the type of data under analysis (e.g., ratio, interval, ordinal, 

nominal or binary scale). For example, the Euclidian distance is appropriated for ratio or 

interval scale data, while the Manhattan distance for ordinal scale data [47].

Subsequently, the method presented in this work employs an agglomerative hierarchical 

clustering algorithm. Hierarchical clustering algorithms are frequently used with only one 

linkage method, which can limit their ability to identify underlying cluster structures in 

certain datasets [24]. Hence, in this work, multiple linkage methods are implemented. The 

linkage methods used in this work have been shown to consistently outperform other 

methods when tested with simulated GWAS datasets [26]. The cluster results obtained by 

implementing different linkage methods are ensemble in the subsequent steps. This 

ensemble takes advantage of the performance of multiple linkage methods. Moreover, it 

helps identify the underlying structure of the data, since the ensemble approach will favor 

cluster structures identified by the majority (i.e., via a majority vote approach) of the linkage 

methods. Specifically, the authors propose to implement:

i. Single Linkage (or Minimum Linkage).

ii. Complete Linkage (or Maximum Linkage).

iii. Average Linkage (or Unweighted Pair Group Method with Arithmetic Mean, 

UPGMA).

iv. Ward’s Linkage.

v. McQuitty Linkage (or Weighted Pair Group Method with Arithmetic Mean, 

WPGMA).
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3.3 Parameter Selection

Once the agglomerative hierarchical algorithm is implemented, the Silhouette index is 

employed as an internal validity metric. This index has been used in previous studies to rank 

the results of multiple clustering algorithms outcomes and guide the selection of final 

clusters [16],[26]. Nonetheless, in this method, the index is used to select the number of 

clusters for all combinations of LD pruning data subsets (see section 3.1) and linkage 

methods (see section 3.2). The number of clusters that provides the largest average 

Silhouette index value in each of the combinations is selected.

The computational complexity of testing all possible numbers of clusters increases linearly 

as the number of objects in a dataset increases. This can be a challenge in datasets that 

contain a large number of objects, even with parallelized computing. In this work, an 

optimization approach is presented to identify the number of clusters that maximizes the 

average Silhouette index. The mathematical formulation of this optimization problem is as 

follows:

Maximize SI (1)

SI = 1
k ∑i = 1

k 1
ηi

∑x ∈ Ci
S(x)  ∀i ∈ K 1, …, k (2)

S(x) = b(x) − a(x)
max b(x), a(x)   ∀x ∈ Ci (3)

a(x) = 1
ηi − 1 ∑y ∈ Ci

d(x, y) ∀x ≠ y, x and y ∈ Ci (4)

b(i) = minw ∈ K, w ≠ i
1

ηw
∑g ∈ Cw

d(x, g) ∀g ∈ Cw, w ∈ K (5)

1 < k ≤ n (6)

Where,

SI: is the average Silhouette index of the clusters set K
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K: is the set of clusters obtained with the hierarchical clustering algorithm for a given 

number of k disjoint clusters

ni is the number of objects that belongs to cluster Ci, for

i ∊ set of clusters {K}

S(x):is the Silhouette of object x, for x ∊Ci;

a(x)is the average similarity of object x with all other objects that belong to the same cluster 

of x (i.e., Ci)

b (x): is the average similarity of object x with the objects from the nearest clusters Cw, for 

w ∊ set of cluster{k},i ≠ w

Eq. (1) represents the objective function that needs to be maximized (i.e., the average 

Silhouette index). Eq. (2), shows the mathematical representation of the average Silhouette 

index, while Eq. (3) shows the silhouette of a given object x. Both Eq. (4) and (5) represent 

the elements that constitute the index of a given object x [27]. Finally, Eq. (6) constrains the 

search for the number of clusters to be greater than 1 and less than the total number of 

objects n (i.e., the maximum number of clusters). Since the objective function is non-linear 

with respect to the parameter k (i.e., number of clusters), this optimization problem needs to 

be solved with a non-linear optimization algorithm. In the literature, there are several 

algorithms suitable to solve this type of optimization problem [48]. Nonetheless, the method 

is not constrained to any specific optimization algorithm.

Once the number of clusters is identified in all datasets combination, the results are 

aggregated into a final cluster set via a majority vote approach. Table 2 shows an example of 

this consensus clustering approach in which patient i is assigned to the final cluster 1 since 

the majority of the cluster results assigned that patient to that given cluster. Similarly, patient 

n is assigned to the final cluster 2, since the majority of clusters assigned this patient to this 

cluster

3.4 Statistical Significance

After the final patient clusters are discovered, a single SNP ANOVA test is performed to 

reveal the SNPs that are statistically significantly different between the clusters of patients. 

This step helps validate that the clusters generated are different by at least one associated 

SNP. To account for family-wise-error-rate a Bonferroni correction is applied by dividing the 

alpha value by the number of tested SNPs. In the case that no SNPs are found to be 

statistically significantly different, it can be concluded that the resulting patients’ clusters 

might have arisen due to random chance.

3.5 Gene Pathway Analysis

The set of SNPs significantly associated with differences between patient clusters can be 

explored via Gene Ontology (GO) enrichment and mutational burden on molecular 

pathways. By assigning each SNP to a gene and performing a gene network analysis, (e.g., 

via STRING-DB software [49]), visualizations of gene networks and estimations of 
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significant enrichment along GO terms could provide evidence for potential biological 

significance. The significance is assessed by comparing the number of evidence-based 

relationships between selected genes to the number expected in a set of randomly selected 

genes. If an enrichment is established, the related genes are examined by their molecular 

function, biological relevance, and known associations to the disease from GWA studies. 

While pathway analysis does not provide the rig or of direct experiment or clinical trial, it 

remains valuable in determining whether selected genes are functionally relevant to the 

disease studied, as opposed to being a function of other factors such as ethnicity.

4. Application

The performance of the proposed method is first tested on the datasets presented in the 

Fundamental Clustering Problem Suite (FCPS) [25]. The FCPS contains 10 different 

datasets designed to assess the performance of unsupervised machine learning algorithms on 

particular clustering challenges (e.g., outliers, undefined cluster boundaries). The ground 

truth data of cluster membership are used to test the performance of the method in 

identifying clusters resulting from the underlying structures in the data and not just from 

random variation. To measure this performance, the Rand index [50] validation metric is 

employed. Moreover, the performances of other existing methods in the literature are 

benchmarked with the same datasets. All the benchmark analyses were performed on a 12 

Core i7 3.4 GHz Intel™ computer with 62.8 GB of RAM and Ubuntu 16.04 LTS. The 

benchmark methods were implemented in R v.3.4 [51] with the used of the packages mclust 
v.5.3 [52], apcluster v.1.4.4 [53], DatabionicSwarm v.0.9.8 [54,55], NNLM v.0.4.1 [35], and 

biclust v.1.2.0 [56].

Two genomic datasets are used to compare the performance of the proposed method against 

other state of the art methods in the literature. The benchmark methods include those that 

donot require providing the number of cluster a priori. I.e., Clifford et al. (2011) [26]: 

hierarchical clustering algorithm with silhouette index, Sakellariou et al. (2012) [29]: 

Affinity Propagation clustering algorithm, Shen et al. (2009) [31]: Expectation 

Maximization clustering algorithm, and Cheng and Church (2000) [37]: Iterative Greedy 

Search Biclustering algorithm. Frist, the microarray gene expression data of patients with 

lymphoblastic and acute myeloid leukemia from Golub et al. (1999) [57] was implemented. 

The dataset is publically available at the Broad Institute and has been previously used to test 

the performance of clustering algorithms [23,58]. The dataset is composed of microarray 

gene expression data of 999 genes for 27 patients with acute lymphoblastic leukemia and 11 

patients with acute myeloid leukemia.

Lastly, a dataset of patients diagnosed with MS is employed. DNA samples from 191 

Multiple Sclerosis (MS) patients consented via the Pennsylvania State University PRIDE 

protocol at Hershey Medical Center were subjected to the Immunochip assay (Illumina). 

Allelic variations were measured at previously described susceptibility loci for multiple 

immune-mediated disorders [59,60]. The Y chromosome data were filtered out of the dataset 

to simplify comparisons in a predominantly female cohort. Mitochondrial markers were 

discarded for analysis as well. Genotype calling was done with Illumina GenomeStudio v.

2011.1 (www.illumina.com), and genotype markers were excluded if their GenTrain score 
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was less than 0.8, or if their call rate across the cohort was less than 0.99. Finally, the MS 

dataset was filtered such that only variants within coding regions (i.e., exons), were 

considered. Therefore, the MS dataset was composed of 191 patients and 25,482 SNPs.

With the MS dataset, a 10-fold cross-validation analysis was performed with the objective to 

test the performance of the proposed and the benchmark methods, as well as to provide 

evidence regarding their propensity of overfitting genomic datasets. In this cross-validation 

approach, the MS dataset was randomly partitioned into 10 subsets. Subsequently, the 

methods were used to cluster the patients within these subsets. The clustering results 

obtained from the 10 subsets were compared to those from the complete dataset. The 

agreement between the clusters generated with the complete MS dataset and the 10-fold 

subsets is assessed with the Rand index metric. A match between the clustering results (e.g., 

average Rand index of 1) will indicate that the proposed method was not overfitting the MS 

dataset, thus, providing arguments of its generalizability. Moreover, it will support that the 

method was identifying clusters due to underlying structures in the data and not just due to 

random variations. Finally, the groups of SNPs identified by the proposed method to achieve 

statistical significance between clusters generated were examined via gene pathway analysis.

4.1 Linkage Disequilibrium Pruning

For the MS dataset, the pruning of SNPs with a high LD was done based on the correlation-

coefficient cut-off values found in the literature, as proposed in section 3.1. LD pruning was 

performed using the widely used genotype analysis toolset for Whole-Genome Association 

and Population-Based Linkage Analyses (i.e., PLINK) [45]. This pruning resulted in a 

reduction of the original dataset as presented in Table 3. These percentages of SNPs 

removed are consistent with the results found in previous studies.

4.2 Hierarchical Clustering

The FCPS and Golub et al. (1999) [57] datasets contain features that are in ratio scale. 

Hence, to measure the similarity between the objects in the datasets, the Euclidian distance 

is implemented. Genotype data can be ordinal or additive scale, depending on whether 

heterozygous SNPs are treated as a label or as a half-dosage. While additive models are 

more often used for GWA studies, in this work, ordinal scale was used to demonstrate 

flexibility in the described clustering method. Hence, the genomic similarity of MS patients 

based on different subsets of pruned data is evaluated using the Manhattan distance metric. 

The similarity calculations and the agglomerative hierarchical algorithm with multiple 

linkage methods were performed in R v.3.4 [51].

4.3 Parameter Selection

The selection of the number of clusters k that maximized the average Silhouette index was 

performed with a generalized simulation annealing algorithm. This algorithm was selected 

due to its underlying theory and proven performance in problems with non-linear objective 

functions [61,62]. The algorithm was implemented via the R package GenSA v.1.1.6 [63]. 

Nonetheless, other non-linear optimization algorithms or greedy heuristics can also be 

implemented. Once the number of clusters in every combination of LD pruned data and 
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linkage method are selected, the clustering results are ensemble via a majority vote approach 

(see section 3.3).

4.4. Statistical Significance

After the final clusters have been selected based on the average Silhouette metric and 

consensus clustering approach the statistical significance of the results is evaluated. 

Clusters’ median values for each of the p features in the MS dataset are evaluated via a 

single SNP non-parametric ANOVA Kruskal-Wallis test [46]. To account for family-wise-
error rate, a Bonferroni correction is applied to the significance alpha level of 0.05 (i.e., 

Bonferroni correction= 0.05/p, for p= 25,482).

4.5. Gene Pathway Analysis

Gene variants that show statistical significance are further analyzed via a gene pathway 

analysis to explore their potential medical significance. Pathway analysis starts with 

generating a list of genes determined from the set of SNPs with strong evidence of 

significance between patient clusters. Inputting the gene set via the STRING-DB software 

algorithms [49] allows for convenient calculation of pathway enrichment hypothesis tests 

and visualization of the gene network. STRING-DB determines gene relationships by 

aggregating several databases into an evidence score. Experimental evidence comes from the 

BIND [64], GRID [65], HPRD [66], IntAct [67], MINT [68], and PID[69] databases. In 

addition, STRING-DB pulls from the curated databases KEGG [70], Gene Ontology [43], 

BioCarta [71], and Reactome [72]. Interaction frequency is tested for enrichment compared 

to expectation from a random sampling of genes, with p-values and false discovery rates 

reported for enrichment in specific cellular processes, defined by Gene Ontology references. 

After statistical testing is done, the gene network is used as a threshold for high confidence 

interaction and a k-means clustering algorithm is performed for visualization purposes (see 

Fig. 6).

5. Results

5.1. FCPS Benchmark results

The majority of existing methods in the literature require the selection of parameters a priori 
(e.g., number of clusters, see Table 1). Hence, to benchmark with multiple methods, the 

number of clusters provided by the FCPS was used as input when testing these methods. 

Figure 2 shows the average Rand index obtained in the FCPS datasets by the method 

proposed in this work (i.e., Proposed) and the methods benchmarked. This plot shows that 

on average the proposed method outperformed other methods, with an average Rand index 

of 0.852. The performance is statistically significantly greater than the results of the methods 

proposed by Cheng and Church (2000), Sakellariou et al. (2012), Lee and Seung (2001), 

Ultsch and Lotsch (2017), and Clifford et al. (2011). Even though these results indicate that, 

on average, the proposed method achieved the largest Rand index, there is not enough 

evidence to conclude that it was statically significantly greater than the Rand index achieved 

by the methods of Shen et al. (2009), Hamid et al. (2010), or Ahmad et al. (2016), at an 

alpha level of 0.05. This can be attributed to the relatively small group of validation datasets 

provided in the FCPS (i.e., 10 datasets).
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Similarly, Figure 3 shows the proportion of the FCPS datasets that achieved a clustering 

result with a Rand index of 1 (i.e., perfect clustering) for each of the given methods. The 

results reveal that the proposed method was able to obtain a Rand index of 1 in 6 out of the 

10 FCPS datasets. The results from the Wilcoxon tests indicate that these results are 

statistically significantly greater than the results of the methods proposed by Ultsch and 

Lotsch (2017), Cheng and Church (2000), Lee and Seung (2001), and Sakellariou et al. 
(2012). Even though the results indicate the proposed method correctly clusters the largest 

percentages of datasets (i.e., 6/10), there is not enough evidence to conclude that this 

proportion is statically significantly greater than the ones from the other methods 

benchmarked, at an alpha level of 0.05. Nevertheless, these results provide evidence that the 

method presented in this work is able to identify true clusters in a wider range of datasets 

with different underlying structures.

5.2. Genomic dataset Benchmark results

Figure 4 presents the Rand index obtained on the Golub et al. (1999) dataset [57] by the 

method proposed in this work and the benchmark methods that do not require providing the 

number of clusters a priori. Fig. 4 indicates that the proposed method performed better than 

the methods presented by Clifford et al. (2011), Cheng and Church (2000), and Sakellariou 

et al. (2012).

Figure 5 shows the average Rand index obtained with the MS dataset and the 10-fold cross-

validation approach by the proposed and benchmark methods. The iterative greedy search 

Biclustering algorithm proposed by Cheng and Church (2000) was not able to find any 

cluster structure in the MS dataset; hence it was not included in this plot. The plot shows that 

on average the proposed method outperformed the other methods, with an average Rand 

index of 0.969. This is statistically significantly greater than the values obtained with the 

other methods benchmarked. Moreover, the average Rand index obtained by the proposed 

method was not significantly different than an average Rand index of 1 (t-value: −1.963, p-

value=0.0812), at an alpha level of 0.05. This reveals that on average the proposed method 

found a perfect match between the clusters of patients obtained with the complete MS 

dataset and the cross-validation subsets.

Table 4 shows the confusions matrix of the clusters obtained with the proposed method 

when implementing the 10-fold cross-validation approach. The table indicates that the 

proposed method was able to group 96.33% of the patients’ in the same clusters when both 

the complete dataset and the different data subsets were used (i.e., accuracy of 0.96), which 

is in line with the average Rand index of 0.969 shown in Fig. 5. The Rand index and 

confusion matrix results indicate that the proposed method identified a similar cluster 

structure even with different subsets of the MS dataset. This indicates that the proposed 

method was not overfitting the dataset. Furthermore, it provides evidence that supports that 

the method was able to identify clusters due to the underlying structure of the data and not 

just due to random change.

The results from the pathway analysis on the set of statistically significant different SNPs 

between the MS patient clusters are shown in Fig. 6. The cluster-defining SNPs show 

significantly more interactions than expected among a random sampling of genes. Out of 
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515 genes, 1,463 interactions were found, with only 942 expected by chance (p-value: 

1.04e-10), among a background set of 4,938 genes present on the Immunochip. The gene 

interactions in the set shown in Fig. 6 demonstrate a high prevalence of cellular adhesion, 

cytokine response, and general immune process pathways.

Table 5 shows relationships between genes based on evidence from literature via STRING-

DB [49]. The highly connected pathway depicted contains many genes known to be involved 

in cell adhesion and leukocyte physiology, both of which are processes dysregulated in MS 

[73]. Additionally, the genes selected show significant Gene Ontology term enrichment in 

these categories, with false discovery rates less than 0.01. Taken together, pathway analysis 

reveals that extracting significant features between clusters may be a valid feature reduction 

technique for downstream analysis. Genes known to be relevant in MS pathophysiology 

(e.g., interleukin receptors, STAT transcription factors, lymphocyte surface proteins from the 

CCR family) were highlighted despite no use of supervised methods and label data, 

implying that the proposed unsupervised method’s value is not just discovering patient 

clusters, but reducing the dimensionality by nearly 20-fold with few samples (i.e., from over 

25,482 features to around 1,500, using 191 samples).

As a secondary observation, an analysis was done on the MS dataset after pruning samples 

which showed greater than 0.2 similarity in PLINK’s Identity-By-Descent (IBD) algorithm 

[74]. This was done to remove potentially related patients from the analysis. IBD identified a 

total of 11 potentially related patients, from whom 10 were initially assigned to cluster 

number two. Consequently, after removing these potentially related patients from the MS 

dataset and applying the proposed method, the number of patients in the second cluster was 

reduced from 12 to 2, and no pathway enrichment was detected. However, the 120 genes 

detected still included T-cell relevant proteins such as STAT and JAK, as well as members of 

the tumor necrosis factor and interleukin families, supporting the claim that the method 

identified SNPs relevant to the disease process even if the sample size of the smaller cluster 

(n=2) constrains the power of the pathway analysis. Furthermore, the cross-validation results 

indicate that the average Rand index achieved after removing potentially related patients 

(i.e., 0.932) was not significantly different than the initial cross-validation results (i.e., 0.969, 

see Fig. 5) (t-value: 1.52, p-value: 0.147). This reveals that the proposed method was able to 

identify the same underlying cluster structure in the MS dataset, and identify patients with 

similar genomic makeup after the removal of potentially related individuals. These results 

provide evidence that supports that the method was able to identify clusters due to the 

underlying structure of the data and not just due to random change.

6. Conclusion and future work

Many chronic disorders have genomic etiology, disease progression, clinical presentation, 

and response to treatment that vary on a patient-to-patient basis. Such variability creates a 

need to identify characteristics within patient populations that have clinically relevant 

predictive value. Unsupervised machine learning methods are suitable to address this type of 

problem, in which no class label information is available to guide this search. However, it is 

challenging for existing methods to identify cluster memberships that are due to the 

underlying structures in the dataset and not just a result of natural sampling variation. 
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Moreover, most current methods require researchers to know and provide input parameters a 
priori. As a result of these limitations and the need to advance personalized medicine, this 

work proposed an unsupervised machine learning method to identify genomically distinct 

patients’ cluster. The method presented in this work integrates statistical analysis to test for 

significance of clustering results and accounts for family-wise-error rate. Moreover, the 

method is capable of automatically identifying the number of clusters by implementing an 

internal validity metric. Similarly, the method takes advantage of the degree of linkage 

disequilibrium between SNPs by pruning correlated nearby SNPs, as well as implementing a 

post-clustering gene pathways analysis.

The method is tested with clustering validation datasets previously used in the literature. The 

benchmark results reveal that proposed method provides, on average, the greatest 

performance (i.e., average Rand index 0.852). Moreover, results indicate that it was able to 

obtain cluster results with a Rand index of 1 (i.e., perfect clustering) in 6 out of the 10 

Fundamental Clustering Problem Suite (FCPS) datasets. Similarly, the method is applied to 

a dataset of 38 patients with leukemia, and subsequently to a dataset of 191 Multiple 

Sclerosis (MS) patients. The results indicate that the method is able to identify genetically 

distinct patient clusters without the need to select the number of clusters or any input 

parameter a priori. Moreover, the cross-validation results indicate that the method presented 

in this work outperformed the other methods found in the literature when en it comes to data 

overfitting, since the average Rand index obtained was significantly greater than the 

benchmarked methods and not significantly different than 1. This performance was 

maintained even after the removal of potentially related patients from the dataset. This 

indicates that the method was identifying clusters due to the underlying structure of the data 

and avoided overfitting the dataset. The identification of distinct genetic subtypes of patients 

demonstrates the potential applicability of this process to advance personalized medicine of 

complex diseases with heritable components, especially autoimmune disorders.

When applied to genomic data, the method also shows value as a feature reduction strategy. 

Out of over 25,482 exonic SNPs and 191 patient samples, the clustering of patients yielded a 

set of SNPs which significantly vary between clusters. These variants represent 515 genes, 

several of which are known to be involved in MS (CD69, CCRX5, IL-13, STAT3) and cell 

adhesion (ICAM1, LAMB4). The fact that many highlighted genes are components of the 

immune system is not surprising due to the nature of the Immunochip assay, but the 

enrichment of leukocyte-specific genes is evidence that the method can result in functionally 

relevant feature sets, even without class labels. Notably, 57 genes representing over 10% of 

the network are involved in cytokine receptor processes. This is greater than expected from 

random chance, as cytokine receptors constitute a small percentage of all Immunochip 

genes. The evidence presented in this work alone is insufficient to define genetic subtypes of 

MS, but the specific SNP set reaching significance may be a valuable resource in 

experimental studies examining immune cell dynamics and genetics. For example, the 

hypothesis that these clusters represent different subtypes of MS, can be tested by evaluating 

clinical criteria such as image results and disease progression, as well as quantitative 

cytokine profiling and gene expression studies for each cluster, compared against random 

groupings of patients.
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This work demonstrates an iterative unsupervised machine learning method which identifies 

significant patient clusters within a genomic dataset. Future research should explore the 

medical significance of the findings shown in this work. Similarly, the method from this 

work should be implemented in studies collecting SNP array and gene expression 

microarray data from additional disease cohorts to explore its potential benefits. Further 

investigation can extend beyond pathway analysis to evaluate these clusters for clinical 

significance of genetically relelated characteristics such as age of onset, disease course, 

hereritability, and response to treatment. Once links are drawn bet between clusters and 

clinically relevant outcomes, the Immunochip can be used to classify high-risk and newly 

diagnosed chronic disease patients into clusters with predictive value.

Acknowledgments

The authors acknowledge the NSF I/UCRC Center for Healthcare Organization Transformation (CHOT), NSF I/
UCRC grant #1624727, and the Institute for Personalized Medicine at the Pennsylvania State University. 
Additionally, the authors would like to acknowledge Dr. James R. Broach from the Institute for Personalized 
Medicine at the Pennsylvania State University, for his valuable contributions. Any opinions, findings, or 
conclusions found in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

References

[1]. Leung MKK, Delong A, Alipanahi B, Frey BJ, Machine Learning in Genomic Medicine: A 
Review of Computational Problems and Data Sets, Proceedings of the IEEE. 104 (2016) 176–
197. doi:10.1109/JPROC.2015.2494198.

[2]. Libbrecht MW, Noble WS, Machine learning in genetics and genomics, Nature Reviews. Genetics 
16 (2015) 321–332. doi:10.1038/nrg3920.Machine.

[3]. Upstill-Goddard R, Eccles D, Fliege J, Collins A, Machine learning approaches for the discovery 
of gene- gene interactions in disease data, Briefings in Bioinformatics. 14 (2013) 251–260. doi:
10.1093/bib/bbs024. [PubMed: 22611119] 

[4]. Yip KY, Cheng C, Gerstein M, Machine learning and genome annotation: a match meant to be?, 
Genome Biology. 14 (2013) 205. doi:10.1186/gb-2013-14-5-205. [PubMed: 23731483] 

[5]. Ross CJ, Towfic F, Shankar J, Laifenfeld D, Thoma M, Davis M, Weiner B, Kusko R, Zeskind B, 
Knappertz V, Grossman I, Hayden MR, A pharmacogenetic signature of high response to 
Copaxone in late-phase clinical-trial cohorts of multiple sclerosis, Genome Medicine. 9 (2017). 
doi:10.1186/s13073-0170436-y.

[6]. Kulakova O, Tsareva E, Lvovs D, Favorov A, Boyko A, Favorova O, Comparative 
pharmacogenetics of multiple sclerosis: INF-B versus glatiramer acetate, Pharmacogenomics. 15 
(2014) 679–85. [PubMed: 24798724] 

[7]. Xu W, Zhang L, Lu Y, SD-MSAEs: Promoter recognition in human genome based on deep feature 
extraction, Journal of Biomedical Informatics. 61 (2016) 55–62. doi:10.1016/j.jbi.2016.03.018. 
[PubMed: 27018214] 

[8]. Zhao Y, Healy BC, Rotstein D, Guttmann CRG, Bakshi R, Weiner HL, Brodley CE, Chitnis T, 
Exploration of machine learning techniques in predicting multiple sclerosis disease course., PloS 
One. 12 (2017) e0174866. doi:10.1371/journal.pone.0174866. [PubMed: 28379999] 

[9]. Goldstein BA, Hubbard AE, Cutler A, Barcellos LF, An application of Random Forests to a 
genome-wide association dataset: Methodological considerations & new findings, BMC 
Genetics. 11 (2010) 49. doi:10.1186/14712156-11-49. [PubMed: 20546594] 

[10]. Kimes PK, Liu Y, Neil Hayes D, Marron JS, Statistical significance for hierarchical clustering, 
Biometrics. (2017). doi:10.1111/biom.12647.

[11]. Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S, Shoresh N, Whitton H, 
Ryan RJH, Shishkin AA, Hatan M, Carrasco-Alfonso MJ, Mayer D, Luckey CJ, Patsopoulos NA, 
De Jager PL, Kuchroo VK, Epstein CB, Daly MJ, Hafler DA, Bernstein BE, Genetic and 

Lopez et al. Page 17

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



epigenetic fine mapping of causal autoimmune disease variants, Nature. 518 (2015) 337–343. 
doi:10.1038/nature13835. [PubMed: 25363779] 

[12]. Lim S, Tucker CS, Kumara S, An unsupervised machine learning model for discovering latent 
infectious diseases using social media data, J Biomed Informat. 66 (2017) 82–94.

[13]. Xu R, Wunsch DC, Clustering algorithms in biomedical research: A review, IEEE Reviews in 
Biomedical Engineering. 3 (2010) 120–154. doi:10.1109/RBME.2010.2083647. [PubMed: 
22275205] 

[14]. Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, Gruissem W, Zitzler E, A systematic 
comparison and evaluation of biclustering methods for gene expression data, Bioinformatics. 9 
(2006) 1122–1129.

[15]. Jain AK, Murty MN, Flynn PJ, Data clustering: a review, ACM Computing Surveys. 31 (1999) 
264–323. doi:10.1145/331499.331504.

[16]. Pagnuco IA, Pastorea Juan I.;, Abras G;, Brun M;, Ballarin VL;, Analysis of genetic association 
using hierarchical clustering and cluster validation indices, Genomics. (2017) 4–11. doi: 10.1016/
j.pscychresns.2008.11.004. [PubMed: 28049437] 

[17]. Ahmad T, Desai N, Wilson F, Schulte P, Dunning A, Jacoby D, Allen L, Fiuzat M, Rogers J, 
Felker GM, Clinical implications of cluster analysis-based classification of acute decompensated 
heart failure and correlation with bedside hemodynamic profiles, PloS One. 11 (2016) e0145881. 
[PubMed: 26840410] 

[18]. Mei K, Peng J, Gao L, Zheng NN, Fan J, Hierarchical Classification of Large-Scale Patient 
Records for Automatic Treatment Stratification, IEEE Journal of Biomedical and Health 
Informatics. 19 (2015) 1234–1245. doi:10.1109/JBHI.2015.2414876. [PubMed: 25807574] 

[19]. Hamid JS, Meaney C, Crowcroft NS, Granerod J, Beyene J, Cluster analysis for identifying sub-
groups and selecting potential discriminatory variables in human encephalitis., BMC Infectious 
Diseases. 10 (2010) 364. doi:10.1186/1471-2334-10-364. [PubMed: 21192831] 

[20]. Redekop W, Mladsi D, The faces of personalized medicine: a framework for understanding its 
meaning and scope, Value in Health. 6 (2013) S4–S9.

[21]. Tari L, Baral C, Kim S, Fuzzy c-means clustering with prior biological knowledge, Journal of 
Biomedical Informatics. 42 (2009) 74–81. doi:10.1016/j.jbi.2008.05.009. [PubMed: 18595779] 

[22]. Bellazzi R, Zupan B, Towards knowledge-based gene expression data mining, Journal of 
Biomedical Informatics. 40 (2007) 787–802. doi:10.1016/j.jbi.2007.06.005. [PubMed: 
17683991] 

[23]. Wiwie C, Baumbach J, Rottger R, Comparing the performance of biomedical clustering methods, 
Nature Methods. 12 (2015) 1033–1038. doi:10.1038/nmeth.3583. [PubMed: 26389570] 

[24]. Ultsch A, Lotsch J, Machine-learned cluster identification in high-dimensional data, Journal of 
Biomedical Informatics. 66 (2017) 95–104. doi:10.1016/j.jbi.2016.12.011. [PubMed: 28040499] 

[25]. Ultsch A, Clustering with SOM: U*C., in: In Proceedings of the 5th Workshop on Self-
Organizing Maps, Paris, 2005: pp. 75–82.

[26]. Clifford H, Wessely F, Pendurthi S, Emes RD, Comparison of clustering methods for 
investigation of genome-wide methylation array data, Frontiers in Genetics. 2 (2011) 1–11. doi:
10.3389/fgene.2011.00088. [PubMed: 22303300] 

[27]. Rousseeuw PJ, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, 
Journal of Computational and Applied Mathematics. 20 (1987) 53–65. doi:
10.1016/0377-0427(87)90125-7.

[28]. Bezdek JC, Pal NR, Some new indexes of cluster validity, IEEE Transactions on Systems, Man, 
and Cybernetics, Part B: Cybernetics. 28 (1998) 301–315. doi:10.1109/3477.678624.

[29]. Sakellariou A, Sanoudou D, Spyrou G, Combining multiple hypothesis testing and affinity 
propagation clustering leads to accurate, robust and sample size independent classification on 
gene expression data, BMC Bioinformatics. 13 (2012) 270. [PubMed: 23075381] 

[30]. Frey BJ, Dueck D, Clustering by passing messages between data points, Science. 315 (2007) 
972–976. [PubMed: 17218491] 

[31]. Shen R, Olshen AB, Ladanvi M, Integrative clustering of multiple genomic data types using a 
joint latent variable model with application to breast and lung cancer subtype analysis, 
Bioinformatics. 25 (2009) 2906–2912. [PubMed: 19759197] 

Lopez et al. Page 18

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[32]. Dempster AP, Laird NM, Rubin DB, Maximum likelihood from incomplete data via the EM 
algorithm, J Royal Stat Soc Series B. (1977) 1–38.

[33]. Fraley C, Raftery AE, How many clusters? Which clustering method? Answers via model-based 
cluster analysis., The Comp Journal. 41 (1998) 578–588.

[34]. Khakabimamaghani S, Ester M, Bayesian biclustering for patient stratification, Biocomputing 
2016: Proceedings of the Pacific Symposium (2016) 345–356.

[35]. Lee D, Seung H, Algorithms for non-negative matrix factorization, Advances in Neural 
Information Processing Systems. (2001) 556–562.

[36]. Pontes B, Giraldez R, Aguilar-Ruiz J, Biclustering on expression data: A review, Journal of 
Biomedical Informatics. 57 (2015) 163–180. [PubMed: 26160444] 

[37]. Cheng Y, Church G, Biclustering of expression data, Proceedings of the 8th International 
Conference on Intelligent Systems for Molecular Biology, La Jolla, CA (2000) 93–103.

[38]. Nguyen N, Caruana R, Consensus clusterings, in: Proceedings - IEEE International Conference 
on Data Mining ICDM, 2007: pp. 607–612. doi:10.1109/ICDM.2007.73.

[39]. Suzuki R, Shimodaira H, pvclust: An R package for hierarchical clustering with p-values, 
Bioinformatics. 22 (2013) 1–7.

[40]. Bushel PR, Hamadeh HK, Bennett L, Green J, Ableson A, Misener S, Afshari CA, Paules RS, 
Computational selection of distinct class- and subclass- specific gene expression signatures, 
Journal of Biomedical Informatics. 35 (2002) 160–170. doi:10.1016/S15320464(02)00525-7. 
[PubMed: 12669979] 

[41]. Cabin RJ, Mitchell RJ, To Bonferroni or not to Bonferroni: when and how are the questions, 
Bulletin of the Ecological Society of America. 81 (2000) 246–248. doi:10.2307/20168454.

[42]. Bezdek JC, Ehrlich R, FCM: The fuzzy c-means clustering algorithm, Comp and Geosci. 10 
(1984) 191–203.

[43]. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, 
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, 
Richardson JE, Ringwald M, Rubin GM, Sherlock G, Gene Ontology: tool for the unification of 
biology, Nature Genetics. 25 (2000) 25–29. doi:10.1038/75556. [PubMed: 10802651] 

[44]. Yazdani A, Yazdani A, Samiei A, Boerwinkle E, Generating a robust statistical causal structure 
over 13 cardiovascular disease risk factors using genomics data, Journal of Biomedical 
Informatics. 60 (2016) 114–119. doi:10.1016/j.jbi.2016.01.012. [PubMed: 26827624] 

[45]. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de 
Bakker PIW, Daly MJ, Sham PC, PLINK: A Tool Set for Whole Genome Association and 
Population-Based Linkage Analyses, The American Journal of Human Genetics. 81 (2007) 559–
575. doi:10.1086/519795. [PubMed: 17701901] 

[46]. Redei GP, Kruskal-Wallis test, Encyclopedia of Genetics, Genomics, Proteomics, and 
Informatics. (2008) 1067–1068.

[47]. Everitt BS, Landau S, Leese M, Stahl D, Measurement of Proximity, Cluster Analysis. (2011) 
43–69. doi:10.1002/9780470977811.ch3.

[48]. Bazaraa MS, Sherali HD, Shetty CM, Nonlinear programming: theory and algorithms, John 
Wiley & Sons, Chicago, 2013.

[49]. Szklarczyk STRING v10: protein-protein interaction networks, integrated over the tree of life, 
Nucleic Acids Research. D1 (2015) 447–452.

[50]. Rand WM, Objective criteria for the evaluation of clustering methods, J Amer Stat Assoc. 66 
(1971) 846–50.

[51]. R. R Development Core Team, R: A Language and Environment for Statistical Computing, 1 
(2011).

[52]. Fraley C, Raftery AE, Murphy TB, Scrucca L, mclust Version 4 for R: Normal Mixture Modeling 
for Model-Based Clustering, Classification, and Density Estimation, Technical Report No. 597, 
Dept of Statistics, University of Washington (2012).

[53]. Bodenhofer U, Kothmeier A, Hochreiter S, APCluster: an R package for affinity propagation 
clustering, Bioinformatics. 27 (2011) 2463–4. [PubMed: 21737437] 

Lopez et al. Page 19

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[54]. Thrun MC, Lerch F, Lotsch J, Ultsch A, Visualization and 3D printing of multivariate data of 
biomarkers, in: Proceedings of International Conference in Central Europe on Computer 
Graphics, Visualization, and Computer Vision, Plzen, 2016.

[55]. Thrun MC, Projection based clustering through self-organization and swarm intelligence: 
combining cluster analysis with the visualization of high-dimensional data., Springer 
Fachmedien, Wiesbaden, Germany, 2018.

[56]. Kaiser S, Santamaria R, Khamiakova T, Sill M, Theron R, Quintales L, Leisch F, DeTroyer E, 
biclust: BiCluster Algorithms, R Package Version 1. no. 1 (2015).

[57]. Golub T, Slonim D, Tamayo P, Huard C, Gaasenbeek M, Mesirov J, Coller H, Loh M, Downing 
J, Caliguiri M, Bloomfield C, Lander E, Molecular classification of cancer: class discovery and 
class prediction by gene expression monitoring, Science. 5439(1999) 531–7..

[58]. Monti S, Tamayo P, Mesirov J, Golub T, Consensus clustering: a resampling-based method for 
class discovery and visualization of gene expression microarray data, Machine Learning. 52 
(2003) 91–118.

[59]. Cortes A, Brown MA, Promise and pitfalls of the Immunochip, Arthritis Research & Therapy. 13 
(2011) 101. [PubMed: 21345260] 

[60]. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, 
Hindorff L, Parkinson H, The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations, Nucleic Acids Research. 42 (2014) D1001–D1006. doi:10.1093/nar/gkt1229. 
[PubMed: 24316577] 

[61]. Kirkpatrick S, Gelatt CD, Vecchi MP, Optimization by simulated annealing, Science. 220 (1983) 
671–80. [PubMed: 17813860] 

[62]. Lopez CE, Nembhard D, Cooperative workforce planning heuristic with worker learning and 
forgetting and demand constraints, in: IIE Annual Conference Proceedings, 2017: pp. 380–85.

[63]. Xiang Y, Gubian S, Suomela B, Hoeng J, Generalized simulated annealing for global 
optimization: the GenSA Package, R J. 5 (2013) 13–28.

[64]. Bader GD, Betel D, Hogue CWV, BIND: the Biomolecular Interaction Network Database, 
Nucleic Acids Research. 31 (2003) 248–50. [PubMed: 12519993] 

[65]. Chatr-Aryamontri A, Oughtred R, Boucher L, Rust J, Chang C, Kolas NK, O’Donnell L, Oster S, 
Theesfeld C, Sellam A, Stark C, Breitkreutz BJ, Dolinski K, Tyers M, The BioGRID interaction 
database: 2017 update, Nucleic Acids Research. (2016).

[66]. Prasad TSK et al., Human Protein Reference Database −2009 Update, Nucleic Acids Research. 
(2009) D767–72. [PubMed: 18988627] 

[67]. Hermjakob H, Montecchi-Palazzi L, Lewington C et al., IntAct: an open source molecular 
interaction database, Nucleic Acids Research. (2004) D452–5. [PubMed: 14681455] 

[68]. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza 
AP, Santonico E, Castagnoli L, Cesareni G, MINT, the molecular interaction database: 2012 
update, Nucleic Acids Research. (2012).

[69]. Schaefer CF, Anthony K, Krupa S et al., PID: the Pathway Interaction Database, Nucleic Acids 
Research. (2009) D674–9. [PubMed: 18832364] 

[70]. Kanehisa M Furumichi M Tanabe, Sato Y, Morishima K, KEGG: new perspectives on genomes, 
pathways, diseases, and drugs, Nucleic Acids Research. (2017) D353–61. [PubMed: 27899662] 

[71]. Nishimura D, Biotech software and internet report, BioCarta, BIotech Software & Internet 
Report: The Computer Software Journal for Scient 2(3). (2004). 10.1089/152791601750294344.

[72]. Fabregat et al., The reactome pathway knowledgebase, Nucleic Acids Research. D1 (2015) 481–
487.

[73]. Larochelle C, Alvarez J, Just W, How do immune cells overcome the blood-brain barrier in 
multiple sclerosis?, FEBS Letters. (2012).

[74]. Isobe N, et al., An Immunochip study of multiple sclerosis risk in African Americans, Brain. 138 
(2015) 1518–30. [PubMed: 25818868] 

Lopez et al. Page 20

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Patient clusters based on their genomic makeup

• Discovery of significant variantsbetween patient sub-groups

• Relationship between the genomic clusters and clinically relevant outcomes

• Assign high-risk and chronic disease patients into a discovered cluster
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Figure 1. Outline Method
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Figure 2. Average Rand index for FCPS datasets
Note: p-value: <0.001***, <0.01**, <0.05*
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Figure 3. The proportion of results with Rand index of 1 for FCPS datasets
(i.e., perfect clustering)

Note: p-value: <0.001***, <0.01**, <0.05*
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Figure 4. Rand index for Leukemia dataset
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Figure 5. Average Rand index for MS dataset
Note: p-value: <0.001***, <0.01**, <0.05*
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Figure 6. Gene Pathway Analysis results
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Table 1.

Summary of current methods

Papers
LD Pruning Automatic selection of k * Statistical tests performed No selection of parameters 

required
ǂ

[9,11,19,21] X

[40] X X

[16,26,29,31,34,35,37] X

[10, 17, 39, 46], X

This work X X X X

*
k is the parameter defining the number of cluster in the dataset.

ǂ
No parameters or hyperparameters are required to be known or selected a priori by researchers (e.g., prior probability, toroid grid size).
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Table 2.

Example of consensus clustering

No. LD Pruning Linkage Method Patient i cluster Patient n cluster

1 1 Single 1 2

2 0.99 Single 1 2

3 0.90 Single 1 1

4 0.8 Single 1 2

5 0.5 Single 2 1

⋯ ⋯ ⋯

24 0.8 McQuitty 2 2

25 0.5 McQuitty 1 2

Final Cluster 1 2

J Biomed Inform. Author manuscript; available in PMC 2019 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lopez et al. Page 30

Table 3.

LD Pruning summary

R2 cut-off value Number of SNPs retained Percentage of SNPs removed

0.50 5,460 78.57%

0.80 6,849 73.12%

0.90 7,421 70.88%

0.99 8,666 65.99%

0.999 8,691 65.89%
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Table 4.

MS dataset 10-fold cross-validation confusion

Complete Dataset

Cluster 1 Cluster 2

Data Subsets
Cluster 1 172 0

Cluster 2 7 12
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Table 5.

Gene Pathway Analysis results

Pathway ID Pathway Description Count in Gene Set False Discovery Rate

GO.0051249 Regulation of lymphocyte activation 32 0.00641

GO.0002823 Negative regulation of adaptive response 9 0.00749

GO.0006952 Defense response 73 0.00749

GO.0002694 Regulation of leukocyte activation 33 0.00804

GO.0050865 Regulation of cell activation 35 0.00804

GO.0002376 Immune system process 93 0.00898
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