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A critical component of decision making is the ability to adjust criteria for classifying stimuli. fMRI and drift diffusion models were used
to explore the neural representations of perceptual criteria in decision making. The specific focus was on the relative engagement of
perceptual- and decision-related neural systems in response to adjustments in perceptual criteria. Human participants classified visual
stimuli as big or small based on criteria of different sizes, which effectively biased their choices toward one response over the other. A drift
diffusion model was fit to the behavioral data to extract estimates of stimulus size, criterion size, and difficulty for each participant and
condition. These parameter values were used as modulated regressors to create a highly constrained model for the fMRI analysis that
accounted for several components of the decision process. The results show that perceptual criteria values were reflected by activity in left
inferior temporal cortex, a region known to represent objects and their physical properties, whereas stimulus size was reflected by
activation in occipital cortex. A frontoparietal network of regions, including dorsolateral prefrontal cortex and superior parietal lobule,
corresponded to the decision variables resulting from the downstream stimulus– criterion comparison, independent of stimulus type.
The results provide novel evidence that perceptual criteria are represented in stimulus space and serve as inputs to be compared with the
presented stimulus, recruiting a common network of decision regions shown to be active in other simple decisions. This work advances
our understanding of the neural correlates of decision flexibility and adjustments of behavioral bias.

Introduction
Humans flexibly adjust internal criteria to suit their current goals
and motivational states. Internal criteria can be thought of as specific
values for classification decisions; when deciding whether an object
is big or small, the criterial value should be based on the relevant
dimension of size. Decisions involving such criteria are used by cog-
nitive scientists to probe different aspects of cognitive processing,
including perception (“is this bright or dark?”), memory (“is this old
or new?”), and emotion (“is this happy or sad?”), among many oth-
ers. The goal of this work was to determine how such criteria are
represented in the brain and how they relate to other components of
the decision process.

The relationship between the stimulus and the internal criterion
in simple decisions has been formalized in two influential models,
signal detection theory (Green and Swets, 1966) and the drift diffu-
sion model (DDM) (Ratcliff, 1978). Figure 1 illustrates these deci-
sion models for a perceptual task in which participants classify lines
as big or small relative to a perceptual criterion (dashed line). Signal
detection theory assumes that a noisy stimulus is compared with a
criterial value along the same dimension to produce the decision.
DDMs take this framework further by describing how the decision
evidence from the comparison process is sampled and accumulated
over time. In this framework, adjusting the criterion effectively bi-

ases choices by shifting the decision evidence in favor of one
response.

It is unclear precisely how such criteria are represented neurally
in relation to other aspects of the decision process. Previous work
with learned perceptual criteria showed criteria-related activation in
both decision- and perceptual-related neural systems (Li et al., 2009,
2012), although it is not clear which effects are specific to the repre-
sentation of the criteria and which reflect downstream decision vari-
ables. The present study used fMRI and decision models to dissociate
criteria values from other decision variables and test whether percep-
tual criteria are reflected by activation of general decision regions,
such as dorsolateral prefrontal cortex (dlPFC); or rather by percep-
tually related regions like inferior temporal cortex. Participants per-
formed a task in the scanner in which they decided whether
perceptual objects were big or small. For each block of trials, a per-
ceptual criterion with one of three different sizes was presented to
use for the comparison process (see Fig. 2). A DDM was fit to the
behavioral data to extract relevant parameters for the decision com-
ponents, resulting in a highly constrained model to probe the fMRI
data that simultaneously accounted for values of stimulus size, crite-
rion size, difficulty, and motor activation for each condition in the
task. By dissociating each component of the decision process, this
design allowed investigation of the neural representations of the in-
ternal perceptual criteria and the systems involved in the formula-
tion and accumulation of decision evidence resulting from
comparing the stimulus to the criterion. This combination of fMRI
and cognitive modeling provides a theoretically driven approach to
understanding how the brain uses perceptual criteria to adjust the
decision process.

Materials and Methods
Participants. Healthy adults were recruited through posted flyers and
prescreened. Prescreening criteria included being of age 18 – 40, having a
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minimum of eighth grade education, speaking English fluently, being
right-handed, having no history of significant medical illness, having no
history of major psychotic disorders, having no history of head trauma,
having no metal implants, not being pregnant, and not currently using
any medication for psychiatric reasons. Exclusion criteria were set a pri-
ori: participants were excluded if scans had poor quality or participants
had excessive movement (translational displacement, �2.5 mm in any
plane). Twenty-six participants (15 females) were scanned and 2 were
excluded from analysis: one for poor scan quality and one for excessive
motion. Of the remaining, all participants except one had four runs of the
task in the scanner; the exception only had three runs because of an error
during the last scan.

Stimuli and task. Two sets of stimuli were used (Fig. 2): vertical lines
and patches of dots. Each stimulus type had six different sizes. Line
stimuli had lengths of 0.6, 1.0, 1.4, 1.8, 2.2, or 2.6 cm. Noise was added to
each presented line stimulus by drawing a value from a uniform distri-

bution spanning �0.15 to 0.15 cm and adding it to the lines. The largest
line subtended a visual angle of 4.3°. Dot stimuli were presented in a 10 �
10 array that subtended 5° visual angle, with dot densities of 25, 35, 45, 55,
65, or 75. Each dot in the display was an asterisk symbol (*) with font size
40. Dots were placed randomly in the array for each trial, resulting in
trialwise variability in the stimulus similar to the line stimuli. However,
the number of dots for each condition did not vary from trial to trial.
There were small, medium, and large criteria for each stimulus type (Fig.
2). For lines, the criterial lengths were 1.2 (small), 1.6 (medium), or 2.0
cm (large). For dots, the criterial number of dots was 40 (small), 50
(medium), or 60 (large).

Each stimulus type was presented in a block of 48 trials using the
Psychtoolbox (Brainard, 1997) in MATLAB. At the beginning of each
block, participants were shown which perceptual criterion (midpoint) to
use for that block. To avoid response bias effects outside of those induced
by the criterion manipulation, the number of big and small stimuli was

Figure 1. Example decision scenario in which a person decides whether lines are big or small. The decision depends on the person’s criteria for how big the line should be to be labeled big. The
left panels show this situation in a signal detection representation, the middle panels show the corresponding drift diffusion representation, and the right panels show the hypothetical choice
behavior. The top row shows one condition with relatively small criterion, leading to many “big” responses. The bottom row shows a comparison condition in which the stimulus is the same but the
criterion is larger, leading to a bias to respond “small.”

Figure 2. Task details. Left, Stimuli and perceptual criteria used for perceptual discrimination. The pattern of stimulus and criterion sizes was parallel for the dots and lines. Right, Trial sequence
for each block of trials.
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equated for each block. For example, when using the small criterion, only
two of the line lengths should be labeled small, whereas four should be
labeled large. To overcome this asymmetry, each of the small stimuli was
presented twice as often as the large stimuli. The opposite was done for
blocks with the large perceptual criterion.

Stimulus order was pseudorandom within a block based on the output
of efficiency simulations. One thousand random trial orders were simu-
lated for each criterion size, and efficiency was calculated for contrasts
based on stimulus size and difficulty (the within-block manipulations).
The 30 trial orders with the highest joint efficiency for the contrasts were
selected for each criterion size. The most efficient designs tended to
involve repetitions of stimulus size, so to maintain psychological validity
only those designs with no more than three repetitions of a stimulus were
retained. Trial order for each block in the experiment was chosen at
random from the remaining possibilities.

Participants first performed a behavioral session in the laboratory to
familiarize themselves with the task and learn the criteria. For each trial,
a central fixation cue was presented for 200 ms, followed by the stimulus.
The dot stimuli were presented in the center of the screen, but the line
stimuli were presented just left of center to avoid overlap with the fixation
cross. The stimulus remained on screen until a response was given or
until the trial timed out. Participants were instructed to press the “z” and
“/” keys to indicate whether the stimulus was big or small (button map-
ping was randomized across participant). They were given up to 1.3 s for
each decision. If a response was not given within 1.3 s, the trial ended with
no response and the next trial began. The response was followed by 500
ms of feedback. Each trial sequence took 2 s total (Fig. 2).

The behavioral session was broken into four lists lasting 10 min and
34 s each. Lists consisted of three blocks (one of each criterion size) of the
line-length judgment and three blocks (one of each criterion size) of the
dot judgment. All three blocks for a stimulus type (e.g., lines) were per-
formed before the other stimulus type was tested. The order of stimulus
type and criterion size was counterbalanced across runs. At the beginning
of each block, the perceptual criterion was presented for 10 s with an
example stimulus of that size. There was also a 15 s break when switching
from one stimulus type to the other. The first three lists included error
feedback after every trial, whereas the final list used no feedback.

The testing session was conducted in the scanner no more than 7 d
after the training session. Before entering the scanner, participants first
completed a shortened practice list with 24 trials per block (compared
with 48), using the same design as above and error feedback. Once in the
scanner, four lists of the same composition as the practice session were
performed. Responses were collected using a separate button box for
each hand with big/small responses mapped to the right or left hand
according to the button mapping from the behavioral session. No error
feedback was used for the scanning session.

Diffusion model fitting. The DDM (Ratcliff and Smith, 2004; Ratcliff
and McKoon, 2008) was fit to the behavioral data for each participant
individually, and separate fits were conducted for line and dot trials. The
DDM included the following parameters which were held constant
across condition in the fitting process: boundary separation (a), nonde-
cision time (Ter), starting point (z/a), across-trial variability in drift rate
(�), across-trial variability in starting point (sz), and across-trial variabil-
ity in nondecision time (st). Within-trial variability in the diffusion pro-
cess, s, can act as a scaling parameter and was fixed at 0.1. In a DDM, a
separate drift rate is used to estimate the strength of decision evidence for
each condition; thus, 18 drift rates (6 stimulus � 3 criteria) were needed
for each task, with positive drift rates leading to “big” responses and
negative drift rates leading to “small” responses. However, this was ac-
complished using only six free parameters corresponding to the sizes of
the stimulus and criterion for different conditions. Because the decision
always depends on the size of the stimulus relative to the criterion, the
center of the perceptual space (e.g., 50 dots) could defined as the 0 point
with parameters calculated relative to that. Stimulus size was represented
by three parameters (s1, s2, s3) indexing the distance from the stimulus to
the 0 point (see Fig. 4). For example, if s1 � 0.5, s2 � 0.3, and s3 � 0.1, the
stimulus size values for the six stimuli from smallest to largest would be
[�0.5 �0.3 �0.1 0.1 0.3 0.5]. The same schema was used to represent the
perceptual criterion, using one parameter (r) for each criterion size. In

this framework, the drift rate for each of the 18 conditions was calculated
as the difference between the stimulus and criterion values (si � ri), with
positive values of drift leading to “big” responses and negative values
leading to “small” responses. Thus, the DDM was fit to all 18 conditions
(6 stimuli � 3 criteria) for a task (e.g., dots or lines) with only s_i allowed
to vary across stimulus size and r_i allowed to vary across criterion size.
This framework allows all 18 drift rates to be estimated with relatively few
free parameters, and also captures the assumption that drift rates are a
function of the distance between the stimulus and criterion. Note that
this decomposition into stimulus and criteria values was only possible
because of the experimental manipulation; because the drift rate is cal-
culated as si � ri, the values of s and r are only constrained by knowledge
of the experimental conditions (increasing s has the same effect as de-
creasing r). By fitting all 18 conditions simultaneously, si and ri become
highly constrained relative to each other, providing relevant information
about changes in these values across condition. Importantly, because the
DDM uses all of the behavioral data when estimating the decision com-
ponents for each participant, including percentage correct and response
time (RT) for correct and error responses, it provides more accurate
estimates of decision evidence than obtained with the mean RTs or ac-
curacy values alone (White et al., 2010).

Parameter search was conducted using a SIMPLEX routine to mini-
mize a � 2 value (Ratcliff and Tuerlinckx, 2002). The data entered into the
routine were the accuracy values, number of observations, and RT dis-
tributions for correct and error responses. RT distribution shape was
represented by taking the 0.1, 0.3, 0.5 (median), 0.7, and 0.9 quantiles of
the RT distribution. Thus, all the behavioral data were used in estimating
the DDM parameters.

fMRI acquisition and analysis. Imaging data were collected using a
General Electric 3T Signa Excite MR scanner. Functional data were col-
lected using a T2*-weighted echo-planar imaging sequence with 90° flip
angle (TR, 2.88 s; TE, 30.5 ms; FOV, 22 cm 2). Thirty-eight oblique axial
slices were collected in interleaved fashion with 0.8 mm spacing. To
reduce dropout in orbitofrontal cortex, the slices were tilted at a 10 –15°
angle off of the anterior-commissure–posterior-commissure line and
higher-order shimming was used. A T2-weighted anatomical image with
the same prescription as the functional scans was collected with a fast-
spin echo sequence (TR, 5100) in addition to a high-resolution T1-
weighted anatomical image. A fixed intertrial interval of 2 s was chosen to
maximize the number of trials per condition for contrasting the experi-
mental conditions (no null events were included).

DICOM data were converted to NIFTI images and before applying the
trial-specific estimation model, and data preprocessing was performed in
FEAT, version 5.98, part of FSL (Smith et al., 2004). The following pre-
processing operations were applied: image time series were aligned using
the MCFLIRT tool (resulting in six motion parameters describing the
x/y/z translation and rotation of the brain over time); the skull was re-
moved from the image using the brain extraction tool (BET); spatial
smoothing was performed using a Gaussian kernel of FWHM of 5 mm;
grand-mean scaling of the entire 4D data set was performed using a single
multiplicative factor; and high-pass temporal filtering was performed
(Gaussian-weighted least-squares straight line fitting with � � 50 s).
Note that this same high-pass filter was applied to the design matrix when
estimating the trial-by-trial estimates.

The general linear model (GLM) included nuisance regressors for RT,
error trials, correct trials, line trials, and dot trials. Motion over time was
also added to the model by using the six motion parameter time series
(described above). The RT regressors were orthogonalized relative to the
line and dot trial regressors. Modulated trialwise regressors for stimulus
size, criterion size, and difficulty were included based on the parameters
from the DDM for each participant. The values of each modulated re-
gressor were mean-centered before inclusion in the GLM. There was a
stimulus size and criterion size regressor for each stimulus type (dots and
lines), and one regressor for difficulty collapsed across stimulus type,
which was calculated as the negative of the absolute value of drift rate for
each condition. Each of these regressors was included for correct trials
only. Although the same mechanisms are expected to be active for both
correct and error trials, errors could arise from variability in perception,
criterion representation, and/or decision processing. Inclusion of errors
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could thus increase variability and decrease power, so only correct trials
were included when estimating the neural correlates of the DDM param-
eters. However, analyses with both correct and error trials were con-
ducted and show similar, albeit weaker, effects as those presented below.

All regressors were entered at the first level of analysis, and all but the
motion parameters were convolved with a double-gamma hemodynamic
response function. To account for potential slice timing differences, the
temporal derivative of each regressor was included in the model. The
model was estimated separately for each participant and each run. Func-
tional images were registered to the high resolution inplane scan using
the FLIRT linear registration tool of FSL (3 DOF), then the high-
resolution structural image using linear registration (6 DOF), and finally
the MNI_152 2 mm template using the FNIRT nonlinear registration
tool of FSL. Runs were combined within participant using a fixed-effects
model and combined at the group level using the FLAME 1 mixed-effects
modeling of FSL. All statistical maps were corrected using cluster-based
random field theory thresholding (z � 2.3; p � 0.05).

Contrasts were estimated for each regressor of interest relative to baseline.
Because of the modulated regressors, results from this analysis reflect neural
areas whose activation varies as a function of the corresponding DDM pa-
rameter values of stimulus size, criterion size, and difficulty. To assess motor
activation, the regressor for stimulus size was also calculated relative to but-
ton press by entering the button-mapping information for each participant
at the group level. Weighting the stimulus size regressor with a �1 or �1 at
the group level, dependent on whether a participant’s “big” responses were
made with the right or left hand, allowed assessment of response activation
dependent on button press but independent of stimulus size.

Results
Behavioral data
Data were analyzed separately for dot and line trials from the
scanning session only. RTs and accuracy were recorded for each
of 36 conditions (6 stimulus sizes � 3 criterion sizes � 2 stimulus
types). Responses faster than 200 ms or slower than 1.3 s were
excluded from analysis (�0.6% of the data). The data are pre-
sented in Figure 3, with dot trials on the top and line trials on the
bottom. The left panels show that the criterion manipulation was
effective; the probability of responding “big” shifted as a function
of the criterion size. The remaining panels plot accuracy and RT
as a function of the size of the stimulus relative to the size of the
criterion; thus, a value of �1 on the abscissa refers to trials in
which the stimulus was slightly larger than the criterion, whereas
a value of �4 refers to trials in which the stimulus was much
smaller than the criterion. Consistent with expectations, accuracy
was lower and RTs were longer for stimuli that were close in size
to the criterion. The data show a slight bias to respond “big” for
lines, but little or no bias for dots.

DDM parameters
A DDM was fit to the behavioral data for each stimulus type (dots
and lines) for each participant to extract relevant parameters to use

Figure 3. Behavioral data from scanning sessions. Mean values across participants are shown with 95% confidence intervals for each condition. Dot trials are shown in the top panels and line trials
in the bottom panels. The left column shows probability of “big” response across each stimulus size, with each line corresponding to a different criterion value. The shift in responses shows that the
criterion manipulation effectively biased behavior. The middle and right columns show mean accuracy and median RTs, respectively, grouped as a function of the stimulus position relative to the
decision criterion (note there are 8 possible distances from the criterion even though only 6 stimuli). Trials in which the stimulus and criterion were similar were more difficult, and are reflected by
the longer RTs and lower accuracy near 0 in the graphs.
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in the fMRI analysis. For our purposes, this includes estimating val-
ues for the size of the stimulus and the size of the stimulus criterion
for each trial (see Materials and Methods). The best fitting parame-
ters, averaged across participants, are shown in Table 1. The percep-
tual criteria estimates (rS � rL) are plotted in Figure 4 relative to the
stimulus size estimates (dashed gray), and the actual criteria that
were presented at the beginning of each block (solid black). The
criteria estimates in solid gray show that the small and large criterion
values were shifted away from the middle of perceptual space, but
not as far as they should have been based on the physical properties
of the presented criteria. The criteria for dot trials were roughly un-
biased, but they were smaller for lines (reflected by the leftward shift
from 0), accounting for the bias to respond “big” for lines observed
in the behavioral data (Fig. 3).

The DDM parameters provide estimates for the size of the
stimuli and the perceptual criteria used by the participants. These
values were calculated for each participant and thus do not per-
fectly correspond to the expected values based on the physical
properties of the criteria, but instead reflect individual differences
in the internal representations of the criteria. Consequently, the
DDM parameters better reflect the values used by participants to
adjust their decisions than the raw criteria values presented at the
beginning of each block and thus provide more sensitive mea-
sures to inform the fMRI analyses below.

fMRI data
Analyses were based on the full general linear model analysis that
relied on the DDM parameters. The inclusion of the DDM pa-
rameters provided a highly constrained model that simultane-
ously accounted for stimulus size, criterion size, trial difficulty,
and button press. The primary regressors in the model included
modulated values for stimulus size (based on the si parameters for
dots and lines), stimulus size relative to button press (which was
mapped differently across subjects) (see Materials and Methods),
criterion size (based on the ri parameters for dots and lines), RT,
and trial difficulty (see Materials and Methods for the full model).
Thus, stimulus value, difficulty, and RT were controlled for when
estimating activation for the criteria. The peak voxel coordinates
from the group analysis are shown in Table 2, and the activation
maps are shown in Figure 5. All presented contrasts were for the
modulated regressor relative to baseline; thus, active voxels show
regions whose activation varied with the parameter of interest.

Perceptual stimuli
Figure 5a shows the regions that demonstrated a positive rela-
tionship to stimulus size. Because “big” and “small” responses
were mapped to different hands across participants, the motor
response was controlled for in these contrasts. For stimulus size,
the contrasts of dot size versus baseline and line size versus base-
line revealed regions of occipital cortex reflecting the difference
in size among the conditions within each block of trials. These

regions showed stimulus-related activation independent of
which perceptual criterion was being used, and thus were reflec-
tive of the size of the perceptual input rather than abstract deci-
sion variables. Note that line activation had more activation in
the right than left hemisphere because the line stimuli were pre-
sented to the left of the central fixation cross. Activation of visual
cortex in relation to object size is consistent with the role of this
region in processing relevant visual information (Murray et al.,
2006), as visual stimuli were presented in the task.

Perceptual criteria
The size of the perceptual criterion was associated with activation
in regions of the left inferior temporal cortex (Fig. 5b). Impor-
tantly, this activation was only detectable using the DDM param-
eters; analyses using the physical values instead of the DDM
parameters resulted in weaker activation of these regions that did
not reach threshold. Because the DDM parameters better capture
the values driving the decision behavior (e.g., the slight bias for
line trials), they provide a more sensitive measure than the phys-
ical values for probing the fMRI data.

In this experimental context, the perceptual criteria are simply
internally represented objects (lines or patches of dots) of differ-
ent sizes; thus, criteria-related activation in inferior temporal
cortex might reflect the representation of the physical properties
of the criteria. Temporal fusiform gyrus has been shown to be
involved in the representation of visual objects and their physical
properties (Freedman et al., 2002), containing feature codes for
different images corresponding to natural objects in humans
(Haxby et al., 2001) and primates (Desimone et al., 1984; Kiani et
al., 2007) (for a comparison between humans and primates, see
Kriegeskorte et al., 2008). Consistent with this interpretation,
previous work has demonstrated that activation in temporal cor-
tex might serve as an input to downstream decision regions [e.g.,
prefrontal cortex (Heekeren et al., 2004, 2006)]. This suggests
that the criterion is represented in stimulus space and used as an
input to the decision comparison. Related work found criteria-
related activation of occipitotemporal regions thought to be in-
volved in representing visual form [i.e., stimulus properties (Li et
al., 2009)], supporting this interpretation. Importantly, unlike
their results, there was no significant criteria-related activation in
the frontoparietal decision network (e.g., dlPFC) outside of those
related to trial difficulty (see below).

Difficulty
Neural systems that are associated with the calculation and for-
mation of the decision should show activation that is affected by
the values of both the stimulus and the perceptual criterion. We
identified these systems using the difficulty (uncertainty) mea-
sure derived by the DDM analysis, which was based on the values
of the stimulus and the criterion. We calculated the absolute
value of drift (calculated as �si � ri�) for every trial and reversed the
order so that higher values reflected greater difficulty. For exam-
ple, comparing the largest line to the smallest criterion results in
the same low difficulty as comparing the smallest line to the larg-
est criterion. Because difficulty is based on the value of the stim-
ulus after it has been compared with the criterion, subsequent
activation is reflective of later decision variables that are down-
stream from the stimulus and criterion activation. Furthermore,
the difficulty regressor was calculated for all correct trials, inde-
pendent of stimulus type, and thus activation is not specific to
one type of perceptual input. Regions showing a positive relation-
ship with difficulty are shown in red, and regions showing a neg-
ative relationship with difficulty are shown in blue (Fig. 5c). Note

Table 1. DDM parameters averaged across participants

DDM
parameters a Ter z/a s1 s2 s3 rS rM rL sz st � �2

Dots 0.12 387 0.49 0.50 0.33 0.10 �0.08 0.01 0.09 0.04 162 0.11 174
Lines 0.12 357 0.53 0.52 0.33 0.11 �0.16 �0.05 0.06 0.03 164 0.12 159

For DDM parameters: a, boundary separation (response caution); Ter, nondecision time; z/a, starting point of evi-
dence accumulation (values �0.5 indicate bias for big response); s1 , stimulus size for items farthest from middle of
perceptual space (1 and 6); s2 , stimulus size for items medium distance from middle of perceptual space (2 and 5);
s3 , stimulus size for items nearest middle of perceptual space (3 and 4); rS, value for small decision criterion; rM, value
for medium decision criterion; rL, value for large decision criterion; sz, across-trial variability in starting point; st,
across-trial variability in nondecision time; �, across-trial variability in drift rate; �2, best fitting �2 value. Note:
Table 1 is related to Figure 4.
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that this difficulty effect is separate from an overall effect of re-
sponse times, which were modeled using an additional trial-
based RT regressor.

The difficulty measure can be thought to reflect two impor-
tant aspects of the decision process that could be performed by
distinct neural systems: the calculation of decision evidence from
the stimulus/criterion comparison and the accumulation of the
corresponding decision evidence to reach the decision. Impor-
tantly, these two decision components should have opposite re-
lationship with difficulty. Easy trials are associated with strong
decision evidence (from an easy stimulus/criterion comparison)
and thus should show greater activation in regions involved in the
comparison process. However, easy trials are also associated with
shorter duration of evidence accumulation, and thus they should
show weaker activation in regions involved in the accumulation

of decision evidence (from shorter response duration). In this
framework, neural systems involved in comparing the stimulus
to the criterion should show a negative relationship with diffi-
culty, whereas systems involved in the accumulation of evidence
should show a positive relationship with difficulty.

Consistent with previous research, the difficulty contrast
showed activation in a distributed network of frontoparietal re-
gions. A negative relationship with difficulty was found for left
dlPFC, posterior cingulate cortex (PCC), and bilateral intrapari-
etal sulcus (IPS). Left dlPFC has been shown in a number of
studies to show activation consistent with the comparison pro-
cess that determines the decision variable. Our results add to a
growing set of findings implicating the involvement of dlPFC in
the formation of the decision variable across a range of perceptual
inputs (for review, see Heekeren et al., 2008). Previous work has

Figure 4. DDM parameters. A, Estimated values of stimulus size (dashed gray) and criteria size (solid gray) from DDM fits are displayed (see text). The black lines represent the physical values of the criteria
presented at the beginning of each block, and the gray lines represent the estimated values used by the participants. The estimated model parameters were regressed onto the objective physical sizes to show
how they relate. Values of si correspond to the size of the stimulus relative to the 0 point (e.g., 50 dots in the dot trials), and values of ri correspond to the size of the perceptual criteria. The model fits show that
participants effectively shifted their criteria, but did not perfectly match the physical values that were presented. B, Fit quality from the best-fitting DDM parameters is displayed. Predicted versus observed values
areplottedforaccuracyandthequantilesoftheRTdistributions.Eachpointindexesaparticipant’svalueforaconditionandvaluesalongthediagonalshowgoodcorrespondencebetweenpredictedandobserved
values. The plot shows that the DDM parameters captured the accuracy and RT values successfully, supporting their use in the GLM analysis.

White et al. • Perceptual Criteria in the Brain J. Neurosci., November 21, 2012 • 32(47):16716 –16724 • 16721



also shown IPS activation relative to trial difficulty; however, the
relationship was positive, the opposite direction as the present
findings (Hare et al., 2011). They found that IPS showed a time
course similar to that predicted by a DDM in value-based deci-
sions (Hare et al., 2011), supporting its role in the formation of
the decision. However, they did not report any activation that
showed a negative relationship with difficulty for direct compar-
ison. The IPS activation in the present study is more lateral and
dorsal than in the study by Hare et al. (2011), and we did find
nearby parietal activation that showed the same positive relation-
ship with difficulty (see below). Thus, our findings suggest that
nearby but distinct regions of parietal cortex might have opposite
roles related to task difficulty and/or processing time.

In contrast to the negative relationship presented above, a
positive relationship with difficulty was shown for right superior
parietal lobule (SPL), dorsomedial PFC (dmPFC), and right PFC.
dmPFC has previously been shown to be associated with trial
uncertainty in a task similar to the present one (Grinband et al.,
2006). The region of superior parietal cortex is similar to that
found in the study by Hare et al. (2011) and has also been found
in other studies to correlate with decision uncertainty and con-
flict (Wendelken et al., 2009) and is implicated in the accumula-
tion of decision evidence (Heinen et al., 2006; Vickery and Jiang,
2009). This parietal activation was much stronger, widespread,
and bilateral when RTs were not controlled for, potentially ac-
counting for the discrepancy between these findings and the
study by Hare et al. (2011) in which response times were not
controlled.

Motor output
Motor activation was assessed by calculating the effect of stimulus
size relative to the motor response (left vs right hand) indepen-
dent of the type of stimulus (dots or lines). Because button map-
ping was counterbalanced across subjects, motor activation was
dissociated from stimulus size (see Materials and Methods). As
expected, activation was found in motor-related regions includ-
ing bilateral putamen, thalamus, and motor cortex (Fig. 5d). As

with the difficulty measure, this motor activation was indepen-
dent of stimulus type and thus reflected more abstract motor
commands.

Discussion
The ability to flexibly adjust behavior using internal criteria with
different values is critical for successful navigation of the environ-
ment. Our results provide novel insight into how the brain rep-
resents such criteria that can be rapidly adjusted to account for
task demands. Activity in left inferior temporal cortex corre-
sponded to the size of the visual object that served as the mid-
point, or criterion, for the perceptual decision. This region of
cortex has been shown to hold representations of objects and
their physical properties (Kriegeskorte et al., 2008). Our findings
are consistent with this interpretation and demonstrate how such
representations can be used to adjust or bias decision making; the
value of this internally represented criterion was used by partici-
pants to change the mapping between stimulus and response,
meaning the same item could be flexibly mapped to the small or
big response. This activation was dissociated from activity in vi-
sual cortex corresponding to the size of the perceptual stimulus,
from activity in a frontoparietal network of regions involved in
general decision processes, and from activity in motor regions
involved in the general motor response.

Although stimulus criteria are involved across a range of de-
cisions, our results suggest that they are represented in the brain
in a stimulus-specific manner. Rather than abstract, task-general
biasing of the decision evidence, the perceptual criteria were re-
flected by activity related to their physical properties. This finding
suggests that the perceptual criterion can be thought of as an
internal representation of the perceptual object against which the
stimulus is compared. More generally, the loci of stimulus criteria
activation would be expected to differ across different types of
decisions; for example, memory criteria might be reflected in
regions of the medial temporal lobe. Consistent with this, recent
work using glass pattern stimuli showed criterion-related activa-
tion in regions of occipitotemporal cortex that are known to be
involved in visual form processing, which is necessary for dis-
criminating the glass pattern stimuli (Li et al., 2007, 2009, 2012).

Our results also imply that the stimulus criterion is essentially
another input to the decision process that recruits the same deci-
sion network as other simple decisions. For instance, left dlPFC
has been shown across a range of studies to be involved in the
comparison process that underlies the formation of decision ev-
idence. One study had participants categorize degraded images as
houses or faces and found activation in dlPFC that was related to
the difference between house and face-related activity repre-
sented in temporal cortex (Heekeren et al., 2004). Thus, dlPFC
was involved in the comparison of the house and face informa-
tion contained in the visual stimulus (Hanes and Schall, 1996;
Kim and Shadlen, 1999; Heekeren et al., 2004, 2008; Gold and
Shadlen, 2007; Thielscher and Pessoa, 2007; Noppeney et al.,
2010; Philiastides et al., 2011), and similar effects have been
shown independent of modality (Heekeren et al., 2006). Recent
work with repetitive transcranial magnetic stimulation has pro-
vided evidence that dlPFC plays a causal role in calculating deci-
sion evidence (Philiastides et al., 2011). Our results are consistent
with this interpretation as left dlPFC showed activation related to
the difference between the external stimulus and the internal
criterion, with greater activation of dlPFC for trials with an easier
comparison.

The neural systems identified in relation to the difficulty of a
trial were highly consistent with previous work in this area. Su-

Table 2. Group level activations from GLM analysis

Group level activations contrast Region X Y Z Voxels Max Z

Stimulus size lines R occ fusiform 8 �76 �2 704 3.83
R occ pole 16 �92 20 378 3.47

Stimulus size dots L occ pole �22 �98 �4 1188 4.64
R occ pole 14 �96 �10 766 4.83

Criterion size lines Temporal pole �34 8 �32 264 3.24
Criterion size dots Temporal fusiform �40 �16 �34 426 4.19
Difficulty

Positive R IFG 50 10 26 720 4.04
R SPL 28 �56 38 793 3.97
dmPFC 8 22 42 718 4.11

Negative L IPS �42 �64 34 3164 4.71
R IPS 50 �72 20 1850 4.07
PCC 8 �40 44 1368 4.51
L dlPFC �34 28 38 951 3.87
R IPS 20 �84 20 467 3.46

Motor L c gyrus �44 �20 58 9233 5.81
Right hand R cerebellum 16 �60 �26 1999 5.69

R cerebellum 22 �70 �52 869 5.99
R c gyrus 42 �12 56 9836 5.63

Left hand L cerebellum �18 �58 �30 1993 5.84
L cerebellum �14 �74 �50 257 3.65

Presented clusters were significant at the p � 0.05 level using cluster-based thresholding. Each contrast was
relative to baseline. Voxel values are derived using a standard MNI-152 2 mm template. c, Cingulate; IFG, inferior
frontal gyrus; L, left; occ, occipital; R, right.

16722 • J. Neurosci., November 21, 2012 • 32(47):16716 –16724 White et al. • Perceptual Criteria in the Brain



perior parietal cortex and bilateral dmPFC have all been impli-
cated in the accumulation of decision evidence under uncertainty
(Binder et al., 2004; Vickery and Jiang, 2009; Hare et al., 2011),
and our results support this interpretation as these regions
showed activation based on downstream decision variables
rather than the stimulus information itself. Recent work probed
the flow of information among these decision regions using dy-
namic causal modeling and found that dmPFC and bilateral IPS
showed activation consistent with transforming the stimulus in-
formation into the motor response (Hare et al., 2011). In partic-
ular, the value of the two choice options in their study,
represented in vmPFC, modulated activity in dmPFC and IPS at
the time of the decision. Furthermore, both dmPFC and IPS
activation was predictive of the eventual response. Our findings
are largely consistent with these results, although we did not ob-
serve activation in vmPFC, possibly because the decisions in the
present study were not explicitly value based (i.e., no feedback
during scanning sessions). We also found distinct regions of pa-
rietal cortex that correlated negatively or positively with diffi-
culty. Right SPL showed a positive relationship with difficulty,
and this effect was stronger, spatially larger, and bilateral when
RTs were not controlled. Thus, our finding of activation in this
region is largely consistent with previous work (Hare et al., 2011).
In contrast, more dorsal and lateral regions of parietal cortex
showed a negative relationship with difficulty, potentially reflect-
ing deactivation of the default mode network. Future work is
needed to investigate the relationship between difficulty and
these neural systems.

One region we expected to see activation relative to difficulty
was right anterior insula (aI). Right aI has been shown to present
a time course similar to that predicted by a diffusion process for
both button press and eye movement response modalities, sug-
gesting its role in accumulating evidence and mapping the deci-
sion to the physical response (Ho et al., 2009; Liu and Pleskac,
2011). Activation in aI has also been shown to correlate with RTs
and scale with the amount of differential sensory evidence in the
stimulus [which is similar to the difficulty measure presented
herein (Thielscher and Pessoa, 2007)]. These findings imply that
right aI might serve a role in accumulating the decision variable to

guide different motor responses, although aI is also active for a
range of different cognitive functions (Kurth et al., 2010). Right
aI did show a weak correlation with the difficulty measure in the
present study, consistent with the results above. However, when
RT was controlled for the aI activation did not pass the statistical
threshold. As aI is suggested to be one of the last accumulation
regions involved before the response (Ho et al., 2009), it is likely
more closely linked with the RT for each trial than the other
regions described above.

In addition to disentangling the different components of the
decision process, our design also allowed us to probe the flow of
stimulus information as it was translated into decision evidence
and eventually a response. We were able to dissociate these stages
to identify early stimulus and criterion activation, decision-
related activation that results from comparing the stimulus to the
criterion and accumulating the evidence, and finally motor acti-
vation that results from mapping the evidence to a response. The
inputs to the decision process consist of the stimulus value and
the criterion value, and thus should be sensitive to the type of
stimulus being presented but insensitive to the eventual motor
response. This corresponds to the stimulus signal in occipital
cortex and the criterion signal in inferior temporal cortex. These
inputs are fed into the decision process, which involves compar-
ing the inputs and accumulating the corresponding evidence.
The neural systems reflecting such decision processes, including
regions of the frontoparietal network described above, are inde-
pendent of the stimulus type and independent of the motor re-
sponse. Finally, the output of the decision process feeds the
motor response, reflected by activation of motor regions that was
independent of the stimulus type, but dependent on the button
press. These results provide insight into how the brain transforms
external information to guide behavior, and are consistent with
EEG findings that have decomposed trials into perceptual-,
decision-, and motor-related components (Ratcliff et al., 2009).

Internal criteria are a critical component of many decisions.
The results presented here demonstrate how such criteria are
represented in the brain for simple perceptual decisions. The use
of specific experimental manipulations, fMRI, and DDMs to
identify the value of such criteria presents a promising technique

Figure 5. Results from whole-brain GLM analyses. All results are for the modulated regressors contrasted with baseline, and thus significant voxels show activity that varies with the regressor of
interest. a, Positive activation relative to the size of the presented stimulus (red for dots; green for lines). b, Positive activation relative to the size of the perceptual criterion (red for dots, green for
lines). c, Positive (red) and negative (blue) activation relative to trial difficulty (uncertainty), independent of stimulus type. d, Activation relative to motor output independent of stimulus type
(yellow for left responses; red for right responses). All statistics were corrected for multiple comparisons using cluster-based thresholding (z � 2.3; p � 0.05).
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for separating stimulus processing from decision processing, al-
lowing for a deeper exploration of how these values are used by
the brain to formulate the decision evidence that drives the deci-
sion process. This approach provides insights into psychological
processing that would not be possible based on behavioral evi-
dence alone. Our results suggest that such criteria are reflected by
stimulus-specific representations of the item under consider-
ation. Thus, rather than using an general biasing signal in neural
systems involved in accumulating decision evidence, an inter-
nally represented object can be used to compare against the item
under consideration. This process allows for great behavioral
flexibility, as decisions can be made based on the comparison of
both external and internal information.
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