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Previous studies of feature-selective attention have focused on situations in which attention is directed to one of two spatially superim-
posed stimuli of equal salience. While such overlapping stimuli should maximize stimulus interactions, it is still unknown how
bottom-up biases favoring one or the other stimulus influence the efficiency of feature-selective attention. We examined the integration
of bottom-up contrast and top-down feature-selection biases on stimulus processing. Two fully overlapping random dot kinematograms
(RDKs) of light and dark dots were presented on a gray background of intermediate luminance. On each trial, human participants
attended one RDK to detect brief coherent motion targets, while ignoring any events in the unattended RDK. Concurrently, through
changes in background luminance, stimulus contrast could be set to five different levels: the stimuli could either be equal, or one of the
two stimuli could have twice or four times the contrast of the other stimulus. This manipulation introduced a bottom-up bias toward the
stimulus with the higher contrast while keeping the difference between the stimuli constant. Stimulus processing was measured by means
of steady-state visual evoked potentials (SSVEPs). SSVEP amplitudes generally increased with higher contrast of the driving stimulus. At
earlier levels of processing, attention increased the slope of this linear relation, i.e., attention multiplicatively enhanced SSVEP ampli-
tudes. However, at later levels of processing, attention had an additive effect. These effects of attention can be attributed to the differential
integration of gain enhancement and inhibitory stimulus competition at different levels of the visual processing hierarchy.

Introduction
The visual system needs to be selective because the resources lying
at its disposal are limited. Situations in which attention needs to
select a faint stimulus from spatially close or even overlapping
distracting stimuli of greater saliency pose a profound challenge,
whereas the opposite case in which a very salient stimulus must be
selected should only pose small demands on attention. Studies of
feature-selective attention approximate such situations by com-
monly using closely intermingled stimuli that only differ in the
feature of interest (Saenz et al., 2002; Andersen and Müller,
2010). The extent to which visual stimuli compete for neuronal
representation has been shown to increase with spatial proximity
(Kastner et al., 2001; Fuchs et al., 2008), hence such displays with
superimposed stimuli should maximize the influence of stimulus
interactions on attentional selection.

However, most research on feature-selective attention has re-
frained from directly manipulating stimulus properties that
would bias processing toward one or the other stimulus. In fact,
the vast majority of studies relied on superimposed stimuli
equated for properties such as luminance, contrast and size.
However, a stimulus that included systematic variations in con-
trast would provide results that would be highly relevant from a

theoretical standpoint. There are two separate main accounts of
the neuronal mechanisms of selective attention, but their inter-
relation remains unclear. The feature-similarity gain model de-
scribes effects of feature-selection but leaves out stimulus
competition (Treue and Martinez-Trujillo, 1999; Martinez-
Trujillo and Treue, 2004; Maunsell and Treue, 2006). On the
other side, the biased competition model is concerned with com-
petition between stimuli within the same receptive field but has
mainly focused on spatial or object-based attention (Desimone
and Duncan, 1995; Duncan et al., 1997; Reynolds et al., 1999).
Hence, although feature attention is most prominent in situa-
tions that maximize stimulus competition, the two frameworks
have mainly been considered separately in both experiment and
theory (notable exceptions: Boynton, 2005; Reynolds and
Heeger, 2009; Andersen and Müller, 2010).

To experimentally bridge the gap between the two accounts,
we manipulated voluntary feature-selective attention to one of
two superimposed random dot kinematograms (RDKs) that dif-
fered in both luminance polarity and luminance contrast. The
dark dots flickered at 10 Hz and the light dots flickered at 12 Hz,
thereby driving distinguishable steady-state visual evoked poten-
tials (SSVEPs), an oscillatory brain response of the same fre-
quency as the driving stimulus. SSVEP amplitudes are enhanced
by attention (for review, see Andersen et al., 2011a), thus this
technique of “frequency-tagging” allows one to concurrently as-
sess the amount of processing resources allocated to each stimu-
lus. Through changes in background luminance, processing was
biased in favor of one or the other stimulus while keeping the
brightness of the dots constant. A multiplicative enhancement by
a constant factor across all levels of these bottom-up biases would
be most consistent with the feature-similarity gain model. On the
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other hand, the biased competition account would predict that
attention has the biggest relative effect when competition is
strongest, which is the case for low contrast stimuli.

Materials and Methods
Participants. The study included 16 participants (11 female, 3 left-
handed, aged 19 –34 years, mean age 24.4 years) with normal or
corrected-to-normal vision. Individual written informed consent was
obtained and the study conformed to the ethical guidelines of the Uni-
versity of Leipzig.

Stimuli and procedure. Each trial started with the presentation of a gray
fixation cross for 1000 ms. Subsequently, a stationary dot pattern con-
sisting of 120 dark dots or 120 light dots was presented for 700 ms,
indicating which dots to attend on that trial. After a 200 – 400 ms period
with only the fixation cross on screen, participants were presented with
two superimposed, flickering RDKs which stayed on the screen for 8500
ms. The stimulus was followed by a final fixation interval which lasted
500 ms (Fig. 1).

The 120 light dots (80 cd/m 2) flickered at 10 Hz and the 120 dark dots
(40 cd/m 2) flickered at 12 Hz. The luminance of the background was
manipulated in five steps (48, 54, 60, 66, and 72 cd/m 2) to create exper-
imental conditions that differed in the relative contrast of light and dark
dots. Relative contrast was defined as the ratio of Weber contrasts of the
two stimuli

R �
�LS1 � LB�

LB
��LS2 � LB�

LB

for each background luminance LB, where LS1 and LS2 are the luminances
of the RDK stimuli. The resulting values for R were 0.25, 0.53, 1.00, 1.86
and 4.00 for both light and dark dots, i.e., the contrast of one stimulus
could be one quarter, approximately half, equal, approximately two
times or four times as high as the contrast of the other stimulus. This
resulted in a total of 10 experimental conditions, as participants could
attend light or dark dots at five different levels of contrast ratio (i.e., 2
attentional � 5 stimulus conditions). Trials from different conditions
were presented in randomized order and the appropriate background
luminance was presented throughout each trial, i.e., starting from 1000
ms before cue onset (Fig. 1B).

Although RDK contrast is usually expressed in terms of the SD of
luminance of all the elements in the RDK area (Moulden et al., 1990), we
based our contrast ratios on Weber contrasts of individual dots. This is
due to the fact that in the context of our experiment, bright and dark dots
operate as distinct features that are either attended or ignored and thus it
is more meaningful to associate their respective SSVEPs to their relative
saliency as opposed to associating them to the overall contrast of the
RDK.

All dots moved in random, independent directions (0% coherence)
except for brief intervals (400 ms) of 50% coherent motion which could

Figure 1. Illustration of contrast ratio manipulation and trial sequence. A, The luminance of the background was manipulated over five different levels on different trials. The luminance, and
hence the difference, between light and dark dots was held constant. This resulted in conditions in which either the contrasts of both stimuli could be equal, or one stimulus had approximately two
times or four times the contrast of the other stimulus. B, Trial sequence. Each trial began with the presentation of a fixation cross on a background of the luminance for that trial. Subsequently, a
stationary field of either light or dark dots indicated the attended color. After a short presentation of fixation cross only, the moving and flickering dots (dark dots, 10 Hz; light dots, 12 Hz) were
presented for 8500 ms. Any combination of one to five coherent motion targets or distractors could occur within this duration. Before the beginning of the next trial, a fixation cross only was
presented for another half second.
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go in any of the four cardinal directions (up, down, left or right). These
intervals of coherent motion could occur randomly in either the attended
(targets) or unattended (distractors) RDK. From 500 ms after RDK on-
set, a total of one to five targets and distractors could appear during each
single trial and their onsets were separated by at least 700 ms. Participants
were instructed to press a button whenever they detected a target while
ignoring distractors. Responding hand was changed half way through
each recording session. Responses occurring within an interval from 250
to 900 ms after onset of a target or distractor were counted as hits or false
alarms, respectively.

The experiment consisted of 300 trials distributed over 10 blocks of 30
trials each. For each of the 10 experimental conditions, a total of 30
targets and 30 distractors were presented. Two or more training blocks of
15 trials each were performed to achieve stable performance before the
start of the EEG recording.

The experiment was run on a 19-inch CRT monitor set to a resolution
of 640 � 480 pixels and a refresh rate of 120 Hz. At a viewing distance of
80 cm, each RDK formed a circle with a diameter corresponding to 12.94°
of visual angle. Each dot subtended 0.29° and changed its position in a
random direction by 0.05° per frame of screen refresh. To prevent sys-
tematic overlapping of dark and light dots, which might induce a depth
cue, the dots were drawn in random order. The presentation of stimuli
and collection of responses was controlled in Matlab (The MathWorks)
using Cogent Graphics (John Romaya, Laboratory of Neurobiology at
the Wellcome Department of Imaging Neuroscience).

SSVEP recordings and data processing. Participants were seated in a
comfortable chair in an electrically shielded chamber. Brain electrical
activity was recorded at a sampling rate of 256 Hz from 64 Ag/AgCl
electrodes mounted in an elastic cap using an ActiveTwo amplifier (Bio-
Semi). Lateral eye movements were monitored with a bipolar outer can-
thus montage (horizontal electrooculogram). Vertical eye movements
and blinks were monitored with a bipolar montage positioned below and
above the right eye (vertical electrooculogram).

EEG data were processed using the EEGLab toolbox (Delorme and
Makeig, 2004) in combination with custom-made procedures in Matlab
(The MathWorks). A period of 500 ms after stimulus onset was discarded
to exclude the evoked response to stimulation onset and to allow the
SSVEP sufficient time to build up. Eight epochs of 1000 ms duration were
extracted from each 8.5 s stimulus train.

All epochs with target or distractor onsets occurring either within the
epoch or later than 250 ms after onset of the previous epoch were ex-
cluded from the SSVEP analysis. This ensured that the analyzed data were
not contaminated by activity related to coherent motion or manual re-
sponses and left a total of 160 one second epochs for each condition. All
epochs were detrended (removal of mean and linear trends). Epochs with
eye movements or blinks were rejected from further analysis, and all
remaining artifacts were corrected or rejected by means of an automated
procedure (SCADS (statistical correction of artifacts in dense array stud-
ies); Junghöfer et al., 2000). The total rejection rate was 9.2% of all epochs
and did not differ between conditions. Subsequently all epochs within the
same condition were averaged for each participant and subjected to a scalp
current density (SCD) transformation (Pernier et al., 1988; Perrin et al.,
1989). Compared with scalp potentials, SCDs are independent of the choice
of reference, afford higher spatial resolution and show better correspon-
dence with underlying cortical generators (Tenke and Kayser, 2005).

The SCD-transformed averaged 1000 ms epochs were Fourier-
transformed and SSVEP amplitudes were quantified as the absolute value
of the complex Fourier-coefficients at the two stimulation frequencies
(10 and 12 Hz).

Behavioral data analysis. To quantify participants’ ability to discrimi-
nate coherent motion targets and distractors, observer sensitivity (d�)
was calculated for each contrast condition and stimulus as the difference
of the inverse Gaussian transformed hit and false alarm rates for that
stimulus. Response bias C was calculated correspondingly. Reaction
times, d� and C were averaged over light and dark dots, since both types of
dots showed analogous patterns of effects. The results were subjected to
repeated-measures ANOVA with the factor contrast ratio that had five
levels (0.25, 0.53, 1.00, 1.86 and 4.00) using the Greenhouse-Geisser
correction for non-sphericity.

EEG data analysis. SSVEP amplitudes were maximal over occipital and
parietal electrodes for both stimulation frequencies (Fig. 2A). Based on
an examination of amplitude and phase of SSVEPs at all electrodes, we
defined three clusters of neighboring electrodes for further analysis: cen-
tral occipital (O1, Oz, O2, Iz, POz), left parieto-occipital (P3, P5, P7,
PO3, PO7) and right parieto-occipital (P4, P6, P8, PO4, PO8). The def-
inition of these clusters was based on three criteria: high signal strength of
all included electrodes (Fig. 2A), similar signal phase for all electrodes
within a cluster and unequal signal phase between electrodes of neigh-
boring clusters (Fig. 2 B, C). SSVEP amplitudes were averaged over the
five electrodes in each of these clusters, normalized to a mean of 1.0
(Andersen et al., 2011b) and subsequently collapsed across frequencies
(i.e., dark and light dots) for conditions with equal contrast ratio. The
resulting normalized amplitudes were subjected to a regression analysis
over log contrast ratios for each participant and each attentional condi-
tion separately. The resulting values for slope and offset (offset corre-
sponds to the amplitude for equal contrast (r � 1) since log 1 � 0) of the
regression lines were used to calculate the intercept with zero on the
horizontal contrast ratio axis. Slope and intercept were then compared
statistically between attentional conditions (attended vs ignored) by Wil-
coxon signed ranked tests.

Results
Behavioral data
Participants were able to discriminate targets from distractors
rather well, as indicated by an average observer sensitivity d� of
2.64 � 0.13 (95% confidence interval for mean over all condi-
tions and subjects). Higher contrast ratio of a stimulus led to
responses that were more frequent (response bias C: F(4,15) �
10.066, p � 0.0005) and faster (reaction time: F(4,15) � 42.368,
p � 10�10). A post hoc t test revealed that response bias C did not
differ significantly between the two highest levels of contrast ratio
(t(15) � 1.168, p � 0.1), indicating that increasing the contrast
ratio �2 did not cause more responses to a stimulus. Observer
sensitivity d� showed a shallow V-shaped dependency upon con-
trast ratio (F(4,15) � 6.157, p � 0.001), with the lowest sensitivity
at equal contrast (Fig. 3A). At equal contrast, discrimination of
coherent motion targets from distractors could only be based on
luminance polarity of the moving dots. Unequal contrast how-
ever would have caused the perceived strength of coherent mo-
tion to differ between targets and distracters (Banton and Levi,
1993). This would have facilitated their discrimination causing the
observed pattern. Note that SSVEP amplitudes were calculated from
epochs without coherent motion and thus are not directly affected
by possible differences in perceived strength of coherent motion. An
indirect effect is, however, still conceivable. If a possible difference in
perceived strength of coherent motion made the equal contrast con-
ditions unduly harder, then participants might have increased effort
to make up for some of this effect. If this were the case, one would
expect increased attention effects for contrast ratio 1. However, nei-
ther SSVEP amplitudes nor reaction times (Fig. 3A,B) show any
signs of increased attentional deployment for contrast ratio 1 condi-
tions. Thus, if at all present, any such effect would necessarily be of
very minor magnitude.

SSVEP amplitudes
Figure 3B displays the regression for SSVEP amplitudes averaged
over all subjects. The statistical analysis was done by fitting re-
gression lines separately for attended and unattended conditions
for each single subject and submitting the regression parameters
(Fig. 3C) to a robust nonparametric Wilcoxon signed ranked test.
SSVEP amplitudes increased linearly with higher log contrast
ratio for both attended and unattended stimuli at all three elec-
trode clusters (all t(15) � 0, all p � 0.0005). For the central occip-
ital cluster, attention increased the median slope of this linear
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contrast-amplitude relation by 43% (t(15)

� 7, p � 0.005). The intercept with the
x-axis, which was extrapolated to a value
of �1:12, did not differ with attention
(t(15) � 55, p � 0.1). Hence, attention and
contrast ratio multiplicatively modulated
signal gain in early visual areas reflected in
the central occipital cluster. This differed
from the pattern of attention effects ob-
served at the two lateral parieto-occipital
clusters: here, the slope of the linear
contrast-amplitude relation was unaf-
fected by attention (left: t(15) � 61, right:
t(15) � 49, both p � 0.1) while the offset
was increased by attention (left: t(15) � 3,
right: t(15) � 2, both p � 0.001). Hence
attention additively enhanced SSVEP am-
plitudes at both lateral parieto-occipital
clusters.

Note that the assignment of electrodes
to clusters was based on the mean over all
subjects. Due to topographical differences
between subjects, this assignment was not
optimal for some electrodes in some sub-
jects. To test the robustness of our results,
we repeated the above regression analysis
excluding all electrodes at the borders of
neighboring clusters (PO3/4, O1/2, POz).
This analysis yielded virtually identical re-
sults to the main analysis.

Discussion
We examined the influence of bottom-up
biases on the magnitude of feature-
selective attentional enhancement of neu-
ral markers of stimulus processing. By
changing the background luminance in
five steps, we systematically varied the
contrasts of superimposed light and dark
dots and thereby created conditions of
different or equal relative luminance con-
trast. This manipulation effectively mod-
ulated behavioral measures: stimuli with
higher relative contrast elicited responses
that were faster and more frequent. Selec-
tive stimulus processing, as assessed by
SSVEP amplitudes, was multiplicatively
enhanced by attention at central occipital electrodes, while the
effect at more lateral parieto-occipital sites was additive. Previous
source localizations of SSVEPs and SSVEP attention effects (Di
Russo et al., 2007; Andersen and Müller, 2010) found the early
visual areas V1–V3 and motion-sensitive MT to be the main gen-
erators of scalp-recorded SSVEPs. These visual areas lie directly
beneath the central occipital and lateral parieto-occipital elec-
trode clusters, respectively.

Our pattern of results is best explained by an attentional gain
mechanism working together with competitive inhibition be-
tween stimuli. A pure gain mechanism, as assumed by the
feature-similarity gain model, should lead to multiplicative at-
tentional enhancement, as we observed for SSVEP amplitudes at
central occipital electrodes. On the other side, according to the
biased competition model, attention biases the competition be-
tween stimuli (Reynolds et al., 1999), leading to the largest atten-

tional effects when competition is highest. Correspondingly,
attention effects are larger in single cells when two stimuli are
presented within the cell’s receptive field (Luck et al., 1997; Reyn-
olds et al., 1999) or in later visual areas in population measures of
activity (Kastner et al., 1998). The later effect is due to the fact that
larger receptive fields in these areas lead to a larger proportion of
neurons with multiple stimuli in their receptive fields. This is
consistent with the pattern of effects observed at lateral parieto-
occipital electrodes in the present experiment, where attention
had an equally large effect for all levels of contrast ratio. SSVEP
amplitudes increased linearly with log contrast ratio, hence the
largest relative enhancement indeed occurred for low contrast
stimuli which were subject to strong competition from superim-
posed high contrast stimuli.

A previous study investigating cued shifts of feature-selective
attention using a very similar stimulus display found that atten-

Figure 2. Topographical maps and phase coherence of SSVEPs. A, Grand mean scalp current density map for SSVEP amplitudes
for both stimuli (i.e., stimulation frequencies) averaged over all experimental conditions. Maximal amplitudes are located at
central occipital (black circles), lateral parietal left (gray triangles), and right (gray squares) electrodes. B, Grand mean scalp map
of SSVEP phase for the condition with the highest overall amplitudes (attended, highest contrast ratio). Central occipital electrodes
differ clearly in signal phase from the two lateral parieto-occipital electrode clusters, with the signals almost being counterphase
for the conditions shown here. To facilitate comparison between the two frequencies, all phases were rotated so as to yield a phase
of ��/2 for electrode Oz. C, Phase coherence for all pairs of electrodes from the three clusters averaged across all subjects and
conditions. Phase coherence was quantified as the cosine of the phase difference between electrodes, i.e., a value close to 	1
corresponds to almost identical phase of both electrodes of the pair for all conditions and subjects. Note: the diagonal is the pairing
of each electrode with itself and hence equals 	1.
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tional selection was the result of both enhancement of the at-
tended as well as suppression of the unattended stimulus
(Andersen and Müller, 2010). Enhancement preceded sup-
pression by 130 ms, consistent with the idea that gain enhance-
ment of the attended stimulus biases competition between the
overlapping stimuli, which in turn leads to suppression of the
unattended stimulus. The long delay between the onsets of en-
hancement and suppression led to the suggestion that suppres-
sion observed in the early visual areas (�V1–V3) resulted mainly
from feedback from downstream visual areas with larger recep-
tive fields such as V4 (�4°) or MT (�8°; Yoshor et al., 2007). If
the results of the present experiment are considered in this light,
one might assume that competition between attended and unat-
tended dots occurs in particular in those visual areas reflected in
the lateral parieto-occipital electrodes. The output of this com-
petition would then be fed back to the early areas reflected in the
occipital cluster, leading to the observed qualitative differences in
attention effects. Evidence for such a backward progression of
attentional effects was found in a recent study, which reported
earlier and larger effects of attention on neuronal firing rates in
V4 than in V1, with intermediate values for V2 (Buffalo et al.,
2010). Although our putative explanation is consistent with pre-
vious observations (Andersen and Müller, 2010; Buffalo et al.,
2010), it needs to be tested more directly in future studies.

We observed proportional scaling of stimulus processing with
attention at central occipital electrodes. By comparison the pat-
tern observed at lateral parieto-occipital sites (Fig. 3B) presents a

stronger modulation for low contrast ra-
tios and a weaker modulation for higher
contrast ratios, which better reflects the
behavioral demands of the task. Note that,
despite this, top-down attention had a
smaller effect on SSVEP amplitudes than
the contrast ratio manipulation at all three
electrode clusters. Hence, the attended
stimulus could neurally “lose” competi-
tion at both earlier and later stages of the
visual processing hierarchy although it
still effectively controlled behavioral re-
sponses. This is inconsistent with the “in-
tegrated competition hypothesis,” which
assumes that the same stimulus wins com-
petition across all levels of the processing
hierarchy (Duncan et al., 1997). Atten-
tional modulation can be insufficient to
make a faint stimulus dominate visual
processing, but the stimulus can still con-
trol behavioral responses.

The present study differs from previous
studies in several ways. First, compared with
earlier studies of feature-selective attention
(Treue and Martinez-Trujillo, 1999; Saenz et
al., 2002; Martinez-Trujillo and Treue, 2004;
Andersen and Müller, 2010; Andersen et al.,
2011b), we systematically manipulated stim-
ulus contrast to investigate the interplay
of top-down and bottom-up biases on
stimulus processing. Second, compared
with previous studies on competitive
stimulus interactions (Kastner et al., 1998,
2001; Reynolds et al., 1999), we manipu-
lated feature rather than spatial attention
and through the use of frequency-tagging,

we were able to concurrently assess the allocation of processing
resources to both the attended and the unattended stimulus. In
sum, our approach thus signifies an important step toward un-
derstanding how the mechanisms described by the feature-
similarity gain and biased competition models work together to
achieve stimulus selection. However, an important limitation of
the present study is that while it allows us to concurrently assess
attentional modulation of both stimuli, it does not allow us to
separate how much of that modulation is due to enhancement
when the stimulus is attended or suppression when the same
stimulus is unattended. This important question remains to be
answered in the future and might also be instrumental to test the
consistency of our results with recent normalization models of
attention (Lee and Maunsell, 2009; Reynolds and Heeger, 2009).

In conclusion, we manipulated background luminance to bias
the processing of two overlapping stimuli toward one or the other
which has allowed us to assess the influence of such bottom-up
biases on top-down feature-selective attention. The feature-
similarity and biased competition models, which are both mainly
based on single cell recordings of monkeys, make opposing pre-
dictions on which physical conditions should show the biggest
effects of attention. Consistent with a gain enhancement mecha-
nism, as assumed by the feature-similarity gain model, we found
multiplicative enhancement of stimulus processing with atten-
tion at early levels of the processing hierarchy, while a later stage
of processing revealed an additive enhancement more consistent
with biased competition. This result suggests that feature-

Figure 3. Behavioral results and SSVEP amplitudes. A, Reaction time of target detection responses and response bias both
decrease with higher contrast ratio, indicating more and faster responses to stimuli with higher contrast Observer sensitivity d�
show a slightly V-shaped pattern with lowest sensitivity at equal contrast of both stimuli. B, Normalized grand mean SSVEP
amplitudes at medial occipital and left and right lateral parieto-occipital electrode clusters. Amplitudes increase linearly with
higher contrast ratio for all 3 clusters for both attended and unattended stimuli. Attention has a multiplicative effect at central
occipital electrodes and an additive effect at lateral parieto-occipital electrodes. C, Average of slope and offset parameters of the
regression analysis over all subjects. All three clusters showed equal attentional enhancement of the offset (i.e., at contrast ratio 1);
however, only the central occipital cluster showed an attention effect on the slope of the regression. Error bars in A–C correspond
to within-subjects 95% confidence intervals which in A and C were calculated by subtracting individual mean values over condi-
tions for variance estimation.
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selection is not the product of a unitary mechanism but results
from the interaction of gain enhancement and competitive stim-
ulus interactions.
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