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The simultaneous recording and analysis of electroencephalography (EEG) and fMRI data in human systems, cognitive and clinical
neurosciences is rapidly evolving and has received substantial attention. The significance of multimodal brain imaging is documented by
a steadily increasing number of laboratories now using simultaneous EEG-fMRI aiming to achieve both high temporal and spatial
resolution of human brain function. Due to recent developments in technical and algorithmic instrumentation, the rate-limiting step in
multimodal studies has shifted from data acquisition to analytic aspects. Here, we introduce and compare different methods for data
integration and identify the benefits that come with each approach, guiding the reader toward an understanding and informed selection
of the integration approach most suitable for addressing a particular research question.

Introduction
The simultaneous recording and analysis
of electroencephalography (EEG) and
fMRI data in human systems, cognitive
and clinical neurosciences has received
substantial attention (Herrmann and
Debener, 2008). Its significance is docu-
mented by the steadily increasing number
of laboratories now using simultaneous
recordings. Much of the motivation to ex-
plore the applicability of simultaneous
EEG-fMRI comes from the selective view
of brain functioning that the two record-
ing modalities separately provide. fMRI
suffers from an ill-posed temporal inverse
problem, i.e., a map with regional activa-
tions does not readily permit inferences
about “when” and in which order these

activations have occurred (Logothetis,
2008). This is analogous to the well known
spatial inverse problem in EEG, whereby
one cannot infer with certainty the spatial
location of sources in the brain from elec-
trical potentials on the scalp (Michel et al.,
2004; Grech et al., 2008). However, be-
cause the strengths and weaknesses of
EEG and fMRI are complementary, si-
multaneous EEG-fMRI may achieve what
seems otherwise largely impossible, namely
the noninvasive recording of human brain
activity with both high spatial and high tem-
poral resolution.

The first applications of EEG-fMRI
were born of a clinical interest in the im-
proved localization of the neural sources
of epileptogenic EEG activity for diagno-
sis and presurgical planning (Ives et al.,
1993). Although the onset of pathological
brain activity can clearly be inferred from
EEG measurements, locations in the cor-
tex from which these pathogenic neuronal
events spread cannot unambiguously be
derived from EEG alone. The simultane-
ous measurement and concurrent analysis
of EEG and fMRI for presurgical evalua-

tion of epilepsy provides insights beyond
what is possible with separate recording
protocols (Mulert et al., 2008; Gotman
and Pittau, 2011). Based on this clinical
line of research, then intrinsic brain states
reflecting cognitive default modes were
identified by assessing associations be-
tween spontaneous EEG oscillations and
fluctuations of the fMRI signal in resting
state (Laufs et al., 2003; Laufs, 2008). For
example, negative correlations of fMRI
activity in visual cortex with occipital al-
pha EEG (8 –12 Hz) further corroborated
the idea that these alpha oscillations cor-
respond to an idling rhythm indicating
cortical inactivation (Goldman et al.,
2002; Moosmann et al., 2003). In more
recent years, EEG-fMRI integration pro-
cedures have been developed to address
basic research questions in cognitive neu-
roscience by applying simultaneous EEG-
fMRI in the context of classical cognitive
experiments (Mulert and Lemieux, 2009;
Ullsperger and Debener, 2010).

One important challenge with simul-
taneous EEG-fMRI is the decreased signal
quality potentially evident in both modal-
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ities. The necessity to introduce conduct-
ing materials for EEG recordings in the
environment of the magnetic resonance
system may interfere with image acquisi-
tion (Mullinger et al., 2008), and strongly
degrades EEG signal quality due to the
induction of electromagnetic currents
(Kruggel et al., 2000; Debener et al., 2008;
Yan et al., 2009). Most of the technical
difficulties have now been solved, how-
ever, and commercial systems are readily
available (Kruggel et al., 2001; Debener et
al., 2007; Mullinger et al., 2011). Never-
theless, depending on the research ques-
tion under investigation and the methods
used for combined analyses, simultaneous
EEG-fMRI does not necessarily yield both
the spatial and the temporal resolution
that might be desirable given the proper-
ties of each recording modality alone.
Since the intrinsic features of the chosen
analysis method strongly influence the
putative outcome, the choice of the
method used for data integration is of cru-
cial importance.

Initial studies using both electrophysi-
ology and hemodynamic data often fo-
cused on qualitatively or quantitatively
comparing the outcomes of simultane-
ously acquired but separately analyzed
EEG and fMRI data (Horovitz et al., 2004;
Mulert et al., 2004). To take full advantage
of the information from multimodal da-
tasets, analytic approaches were needed
that allowed more direct integration of in-
formation across modalities. The tech-
niques currently available, however, differ
in terms of their necessity for prior knowl-
edge as well as their underlying biophysi-
cal and mathematical assumptions.

Asymmetric data integration
Asymmetric approaches for EEG-fMRI
integration are characterized by a biased
weighting of modalities in as much as
information from one modality is used
to guide the analysis of the other. Most
influential of these approaches have
been fMRI-informed EEG and EEG-
informed fMRI.

fMRI-informed EEG
fMRI-informed EEG (Fig. 1) aims at alle-
viating the spatial EEG inverse problem by
guiding electromagnetic source imaging
using results obtained from fMRI (Heinze
et al., 1994; Babiloni et al., 2000, 2002). To
do this, the head geometry and most rele-
vant biophysical characteristics of the
brain (e.g., tissue conductivity) are first
estimated to establish a forward model
from which, given a simulated neural
event, the paths of currents to the scalp

can be calculated (Hallez et al., 2007).
These forward models differ dramatically
in terms of their neuroanatomical detail,
ranging from simple interleaved spheres
to individually approximated cortical
representations computed from struc-
tural MR images. Given such a forward
model and the measured data, source lo-
calization algorithms can then be applied
that try to find the most optimal constel-
lation of neural generators best explaining
the observed scalp potential field. This in-
verse modeling step incorporates assump-
tions on how neuronal activity itself is
approximated; e.g., either by a limited num-
ber of single equivalent current dipoles rep-
resenting focal mass neuronal activity
(Scherg and Berg, 1991; Mosher et al., 1992)
or a large number of widely distributed cur-
rent sources (Fig. 1; Hämäläinen and
Ilmoniemi, 1994).

To derive concurrent spatiotemporal
information from scalp-recorded EEG us-
ing information from fMRI, for example,
the number of potential EEG generators
(or equivalent current dipoles) can be in-
ferred from the pattern of activations in
fMRI maps. These dipoles are then seeded
to locations in the brain corresponding to
local fMRI maxima, subsequently allow-
ing the time course of neural activity for
each of these locations to be estimated.

However, many researchers prefer so-
called distributed source models which
compute a reconstruction of neuroelec-
tric activity at each point in a 3D grid of
possible current sources (Hämäläinen
and Ilmoniemi, 1994). In this context, the
statistical maps of the fMRI result can be
used to confine the putative source space
by providing the probability of a particu-
lar region being the origin of the electro-
physiological signal (Dale et al., 2000; Ou
et al., 2010). Hence, whichever of these
combinations is chosen, fMRI data help to
reveal the locations while EEG-derived in-
formation provides the time courses of
neural events at millisecond resolution
(Vanni et al., 2004; Wibral et al., 2009,
2010).

Bledowski et al. (2006), for example,
gathered EEG and fMRI data, albeit dur-
ing separate sessions, while subjects per-
formed a visual working memory task.
Subsequent to a unimodal fMRI analysis,
multiple discrete dipoles were seeded to
the activation maxima as revealed from
fMRI. Using this fMRI-derived source
model, the time courses of relevant brain
regions could be derived with high tem-
poral resolution. Thereby, the sequence of
neuronal processing stages during work-
ing memory retrieval could be studied
concurrently at both the spatial and tem-

Figure 1. Illustration of fMRI-informed EEG source reconstruction. To estimate the location and activity of active cortical
patches in the brain that lead to measurable EEG signal changes on the scalp, forward or head models are constructed from
individual MR images. Here, volumes representing skin, skull, and brain tissue have been extracted. Based on such a model and the
EEG time courses as well as corresponding scalp topographies (the pattern of EEG activity as recorded on a participant’s head), EEG
sources can be inferred (inverse modeling). Statistical maps from a standard fMRI analysis are used to further constrain possible
source constellations. The procedure used here for inverse modeling computes a high number of dipolar sources distributed across
the brain, each of which is characterized by its position, orientation (pointing direction of an arrow), and strength (as indicated by
coloring).

6054 • J. Neurosci., May 2, 2012 • 32(18):6053– 6060 Huster et al. • Toolbox



poral scale, revealing serial and parallel
processing elements in working memory.

Hence, although approaches for fMRI-
informed EEG are used on simultaneously
measured data, their strengths are most
apparent in the context of separate re-
cordings. As information derived from
single trials is not taken into account, it is
quite possible to work with EEG and fMRI
data acquired under comparable, but not
necessarily identical, experimental cir-
cumstances. This allows for an individual
optimization of experimental conditions
for each modality, for example by avoid-
ing the otherwise inevitable gradient- and
cardiac-related artifacts in the EEG when
measured concurrently with fMRI. The
validity of this approach strongly relies on
the twin assumptions that the fMRI signal
at a given location does carry information
about the local dipole activity and that
neural generators of scalp-recorded EEG/
MEG do trigger a metabolic response
(Wibral et al., 2010). While there is sub-
stantial evidence that under many cir-
cumstances there is indeed a tight coupling
between electrophysiological and fMRI

markers of neuronal activity (Logothetis
and Pfeuffer, 2004), situations that violate
such assumptions can easily be conceived.
This would be the case, for example, when
regions exhibiting an fMRI response
remain electrically silent at the scalp (e.g.,
due to cortical “closed-field” geometry—a
constellation of sources leading to a cancel-
lation of current flow; Nunez and Silber-
stein, 2000) or when a stimulus-triggered
synchronization of neuronal activity leads
to a detectable electrophysiological response
at no metabolic cost (which might be the
case when the mean firing rate of the popu-
lation does not change). Whereas the first
situation is unproblematic for an fMRI-
weighted source reconstruction, the latter
is not: an fMRI-based weighting will
adversely affect the reconstruction of
sources in brain regions devoid of clear
fMRI activations, eventually leading to
gross localization errors. However, by
carefully combining different methods for
EEG source analyses, it might be possible
to identify such ambiguous situations
(Wibral et al., 2010).

EEG-informed fMRI
Elaborating on the idea of a direct cou-
pling between EEG and fMRI, EEG-
informed fMRI considers associations of
changes over time between EEG and fMRI
signals at a within-subject level (Fig. 2;
Ullsperger, 2010). Here, EEG is prepro-
cessed to a point where a specific EEG fea-
ture of interest over the time course of the
recording can be extracted. In event-
related designs this corresponds to the
quasi-continuous stream of epochs sur-
rounding the events of interest (e.g., the
presentation of a stimulus or the occur-
rence of a behavioral response). Several
features of the EEG are suitable, such as
ERP amplitudes (Debener et al., 2005),
ERP latencies (Bénar et al., 2007), EEG
synchronization and phase coherence
(Mizuhara et al., 2005; Jann et al., 2009),
or the power within specific EEG fre-
quency bands (Scheeringa et al., 2009).
Whichever EEG-derived features are used,
the basic assumption is that their fluctua-
tions over time covary with fluctuations
seen in the fMRI signal during the course of
an experiment.

With this method, the processing of
fMRI data simply follows standard proce-
dures up to the point of first-level statistics,
usually including slice-time correction,
spatial realignment, spatial normaliza-
tion, and smoothing (Strother, 2006).
When setting up the regressors for first-
level statistics (i.e., calculating statistical
tests for a single subject), however, these
regressors are not derived solely from the
timing of stimulus onsets convolved with
a modeled hemodynamic response. Rather,
the modeled hemodynamic responses are
additionally parameterized using the trial-
wise extracted EEG feature, such that an en-
larged potential amplitude in the single-trial
EEG leads to an upscaling of the hemody-
namic response function for a given event
(Fig. 2). The resulting indices representing
the model fit (beta estimates) are then tested
at the group level either against other condi-
tions or simply against zero to reveal brain
regions exhibiting significant covariations
and, thus, coupling of electrophysiological
and hemodynamic responses.

Debener et al. (2005), for instance,
used EEG-informed fMRI to test whether
EEG correlates of performance monitor-
ing (more specifically, the error-related
negativity; ERN) predicts fMRI signal
changes in the midcingulate cortex. For
each erroneous response recorded during
flanker task performance, the amplitude
of the single-trial ERN was determined
from EEG. This information was subse-
quently used for a parameterized analysis

Figure 2. Schematic of EEG-informed fMRI. For an event of interest (e.g., the occurrence of a response error), a parameter value
of an EEG feature (e.g., the amplitude of an ERP) is extracted from every trial that includes this event. With respect to fMRI, the
onsets of these events during the course of the experiment are known, and the fMRI signal changes caused by hemodynamic
responses following the events are mathematically modeled. This is done via convolution: the multiplication and summation of a
vector of zeros and ones representing the event onsets and the hemodynamic response function (mathematically modeled fMRI
signal changes following an event). The result is the predicted time course of fMRI signal changes which can then be statistically
compared with the observed fMRI signal for each voxel (volume element) of a brain scan. In the case of EEG-informed fMRI, not
only is this model determined by event onsets and the hemodynamic response function (blue model prediction), but the expected
hemodynamic responses are additionally parameterized using the extracted EEG feature: signal changes following events on trials
with a large EEG response are scaled up as compared with trials with smaller EEG responses (green model prediction).
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of the fMRI data. Indeed, this analysis
scheme was able to prove the association
of midcingulate activations with varia-
tions in ERN amplitudes while differenti-
ating it from activity profiles of other
frontal regions and the anterior insula.
Moreover, single-trial amplitudes predicted
task behavior in the subsequent trial, dem-
onstrating that trial-by-trial fluctuations are
not random noise but carry functional in-
formation. A similar analysis technique was
developed by Eichele et al. (2005) to test the
temporal sequence of ERP-related fMRI
activations.

EEG-informed fMRI assumes only
that the neural properties contributing to
the signals captured by both modalities
partly overlap and exhibit a linear associ-
ation. In contrast to fMRI-informed EEG,
no specific assumption is made about the
spatial organization of activation pat-
terns. This implies that this strategy can
yield effects in brain structures or net-
works that are not necessarily the bio-
physical generators of, say, the ERP
recorded at the scalp (Debener et al., 2005;
Minati et al., 2008). One also has to bear in
mind that single EEG epochs contain high
levels of noise, and single-trial EEG anal-
yses therefore have to rely on techniques
that increase the signal-to-noise ratio of
individual trials. In the frequency do-
main, the consideration of a narrow fre-
quency band of the EEG can be thought of
as a filtering mechanism. Alternatively a

frequently used algorithm that enables the
unmixing of spatiotemporally overlap-
ping EEG signals before feature extraction
is independent component analysis (ICA;
James and Hesse, 2005; Onton et al.,
2006). In any case, only a fraction of the
ongoing brain activity can be used for an
EEG-informed fMRI analysis at one time
and the selection of the feature of interest
is usually determined by the research
question addressed. For example, whereas
both ERP amplitudes and latencies have
been shown to be correlated with hemo-
dynamic responses, latencies are less likely
to directly reflect activations of potential
generators (Bénar et al., 2007).

Neurogenerative modeling
The methods described in the following
section aim to benefit from the comple-
mentary information available from both
modalities while avoiding an a priori bias
of either (Valdes-Sosa et al., 2009; Riera
and Sumiyoshi, 2010; Rosa et al., 2010).
Although they require a certain amount of
prior knowledge, these approaches follow
logic comparable to that of EEG source
modeling (Fig. 3). A forward model (or
generative model) first concurrently spec-
ifies those physiological processes that
give rise to EEG and those that give rise to
fMRI data. Based on such forward com-
putations, brain states can then be recon-
structed from simultaneous EEG-fMRI
recordings that best explain the observed

data (the inverse modeling). Within such
a framework, data integration relies on
the ability to simulate the biophysical pro-
cesses of electrophysiological and hemo-
dynamic signal generation.

As the crucial element, a forward
model for multimodal data incorporates
assumptions about the link between elec-
trophysiological and hemodynamic activ-
ities as well as the neurovascular coupling
cascade (Logothetis and Wandell, 2004;
Stephan et al., 2004; Raichle and Mintun,
2006), i.e., the sequence of neural events
giving rise to changes in cerebral blood
flow that in turn cause variations in fMRI
signals. Hence, depending on richness of
detail, different levels of description may
be involved (Fig. 3; Rosa et al., 2010),
ranging from cellular mechanisms medi-
ating neurovascular coupling to connec-
tivity patterns at a gross morphological
level (Friston et al., 2008; Sotero and
Trujillo-Barreto, 2008; Valdes-Sosa et al.,
2009). Given real multimodal data, the
second step of the procedure incorporates
inverse modeling: estimating neural activ-
ity (e.g., EPSPs, along with other parame-
ters) from the simultaneous EEG-fMRI
observations. An intuitive approach is to
repeatedly generate EEG-fMRI simula-
tions and choose the one with the best fit to
the observed data. However, computation-
ally less demanding alternatives have been
proposed that are already in use (Friston et
al., 2008; Valdes-Sosa et al., 2009).

Figure 3. Illustration of neurogenerative models for EEG-fMRI data analysis. This approach relies on mathematically modeling the dynamics of neural ensembles at various scales ranging from
gross connectivity patterns to cellular events. In addition, biophysical forward models must specify the transformation of neural events to the measured EEG and fMRI signals. Based on these data,
the result of a predefined neural activity pattern can be simulated (forward modeling) or, given a multimodal EEG-fMRI dataset, the most likely neural events can be inferred based on the observed
EEG-fMRI signal properties (inverse modeling).
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The interested reader might consider a
recent study by Bojak et al. (2011) which
elucidates the application of neurogenera-
tive models. The authors used simulated
data to investigate the plausibility of a
neural population model for the analysis
of simultaneous EEG-fMRI. Although
confined to only few regions of the cortex,
the authors were able to identify the ef-
fects of connectivity changes in the visual
system on the activity pattern of simulta-
neous EEG-fMRI data. This study effec-
tively demonstrates the relevance of such
models for questions pertaining to the ba-
sic mechanisms of EEG and fMRI signal
generation.

The conceptual similarity between
EEG source reconstruction and EEG-
fMRI data integration by means of bio-
physical modeling is obvious, as is the
excelling need for prior information with
the latter. Given that many aspects of the
processes involved in fMRI and EEG sig-
nal generation are not yet fully under-
stood, current models focus on specific
aspects while strongly simplifying others.
For example, the cellular mechanisms un-

derlying neurovascular coupling have not
yet been implemented in every detail (Ri-
era and Sumiyoshi, 2010). Similarly, the
reconstruction of neural activity using a
brain-wide model has hitherto not been
accomplished, which is not surprising
given the complexity of the necessary
models and the resulting computational
demands. Thus, the ability to compare
models of various complexity and differ-
ing physiological specificity should be
considered one of the biggest strengths of
the neurogenerative approach (Rosa et al.,
2010).

Multimodal data fusion
Over the past years machine learning al-
gorithms have successfully been applied
to both EEG and fMRI data (Besserve et
al., 2007; Pereira et al., 2009). Whereas
unsupervised approaches are often used
to decompose given datasets into latent
variables, e.g., for artifact correction with
EEG or the identification of functional
networks from fMRI (Mennes et al., 2010;
Joel et al., 2011), supervised approaches
have drawn much attention due to their

classification capabilities. An example is
the prediction of the category of a pre-
sented stimulus from its evoked brain re-
sponse (Mitchell et al., 2008; Haynes,
2009). When applied to EEG-fMRI data,
most of these approaches hold the advan-
tage of a genuine multivariate analysis
scheme: the full spectrum of available
information in multimodal datasets is
explored. These “data fusion” methods
use a common or symmetric model to
jointly assess information from both
modalities, whereas “integration” ap-
proaches usually overlay or bias one
modality with the other.

Relevant methods for multimodal data
fusion strongly differ in the degree to
which they rely on physiological assump-
tions, require prior information, or share
other similarities with the approaches dis-
cussed above. ICA, for example, is an un-
supervised learning method which is used
to discover hidden factors (independent
components) from a set of observations
such that the identified components are
maximally statistically independent (not
merely uncorrelated; Bell and Sejnowski,
1995; Hyvärinen and Oja, 2000). Here, it
is assumed that the observed data origi-
nate from a linear mixture of these un-
derlying independent components. A
number of frameworks have been pro-
posed to use ICA for multimodal data fu-
sion. Taking joint ICA (Calhoun et al.,
2006, 2009; Mijovic et al., 2012) as an ex-
ample, the differing biosignal modalities
are first processed separately, and ICA is
subsequently applied to examine the rela-
tionships between data types (Fig. 4).
Hence, fMRI statistical maps and ERP
data of all subjects are merged into a single
matrix and subjected to a joint ICA.
Whereas in the unimodal case either tem-
porally (EEG) or spatially (fMRI) inde-
pendent components are revealed, this
multimodal approach provides a joint
spatiotemporal decomposition with joint
independent components corresponding
to electrophysiologically measured re-
sponses (indicating the timing of signal
changes) alongside associated clusters of
active regions (indicating spatial origins
of signal changes). Using this technique,
Calhoun et al. (2006) were able to exam-
ine the spatiotemporal dynamics of the
auditory oddball response. Activations
in auditory cortex and thalamus were
mapped to the N1 auditory evoked poten-
tial, whereas brainstem, temporal lobe, and
medial frontal activity showed a response
profile corresponding to the P3 ERP.

Other methods extend the amount of
data processed by additionally consider-

Figure 4. Schematic illustration of joint ICA. EEG and fMRI for a set of subjects are concatenated within the same matrix and
subjected to a joint ICA. This procedure helps to capture the variance in brain responses across subjects and modalities on which
basis a decomposition to independent components can be computed. The resulting components represent spatial (fMRI) and
temporal (EEG) characteristics of brain responses. Here, the lower row shows the averaged ERP (blue) and time courses of two
components (red) alongside their associated spatial maps.
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ing variations at the level of single trials,
thereby not relying on prior information
from within-subject statistics (Martínez-
Montes et al., 2004; Goldman et al., 2009;
Correa et al., 2010), or by first extracting
components separately from each modal-
ity, and only then examining the pattern
of cross-modal correlations (Eichele et al.,
2005; De Martino et al., 2011; Huster et
al., 2011).

Although the majority of algorithms ap-
plied here have a long history in computer
science, their application to neuroscientific
problems is a rather new development.
Nonetheless, these methods have proven to
be of high utility by providing unbiased
and multivariate analysis schemes for si-
multaneous EEG-fMRI. In addition,
many of these approaches are, or could
be, easily generalized to frameworks that
include other modalities, such as diffusion
tensor imaging or genetic data (for review,
see De Martino et al., 2010; Sui et al., 2012).
On the other hand, as there is already a va-
riety of different mathematical approaches
for multimodal data fusion, the selection of
a fusion model tailored for a specific re-
search question might sometimes be diffi-
cult to accomplish. Moreover, some of the
current approaches still rely on canonical
models of the hemodynamic response or in-
volve other physiological presumptions,
thereby not yet taking full advantage of the
full power of these algorithms.

Conclusion
Despite its rather recent development, a
variety of differing methods have already
been proposed for the concurrent analysis
of EEG and fMRI data. The taxonomy ap-
plied here provides a natural starting
point from which to better judge the po-
tential advantages and limitations of such
analysis approaches. However, a given
procedure might very well share features
of more than one of the categories pro-
posed here. Ultimately, the method cho-
sen will strongly depend on the research
question addressed.

When one is primarily interested in the
neural generators of scalp EEG phenom-
ena, fMRI-informed EEG is the method of
choice. This approach is founded on well
established methods for EEG source re-
construction, and so constitutes the most
direct technique for assessing related
research questions. Additionally, it pos-
sesses high and well defined spatiotempo-
ral resolution. It does not, however, take
into account the variability of neural
events seen across the course of an exper-
imental session, and thereby neglects a
potentially powerful source of informa-

tion. Analyses based on EEG-informed
fMRI, on the other hand, use this exact
phenomenon and have already shown the
ability not only to link physiological mea-
sures of different modalities with each
other, but also to expose associations be-
tween physiology and variations in cogni-
tion, perception, and behavior. However,
the temporal precision available with
this technique is somewhat elusive, as it
could potentially reveal neuroanatomical
structures whose activity patterns are lin-
early linked to those of the generators,
even though their engagement might pre-
cede or succeed the EEG event under in-
vestigation. Hence, EEG-informed fMRI
seems most appropriate for revealing
functional networks characterized by a
linear relationship of cross-modal activity
patterns identified at the single trial level.
Neurogenerative models are particularly
strong for testing hypotheses about the
physiological mechanisms and biophysi-
cal properties underlying EEG and fMRI
signal generation, as well as their interre-
lationship, making these models powerful
tools in the field of theoretical neurobiol-
ogy. Although the application of such
models to whole brain analyses and com-
plex experimental paradigms is currently
lacking, its spatiotemporal resolution is in
principle limited only by the precision of
mathematical modeling and computa-
tional power. Finally, turning to the appli-
cation of multivariate fusion methods for
simultaneous EEG-fMRI, a definite rec-
ommendation is somewhat hindered by
the algorithmic heterogeneity of this field.
Associated approaches are well suited to
address a variety of research questions as
divergent as, for example, the identifica-
tion of links between modalities, the pre-
diction of behavior jointly from EEG and
fMRI, or the exposure of hidden factors
common to both modalities. Here, unsu-
pervised learning algorithms with their
data mining capabilities might thus con-
stitute a counterpart to the model-driven
neurogenerative approaches.
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