Skip to main content
. 2019 Jul 8;7:e7271. doi: 10.7717/peerj.7271

Table 1. Comparison of various printed bone scaffolds in several in vitro and in vivo studies.

Authors Materials Strategies Evidence Model of study Periods Effects
Leukers et al. (2005) HA DP+ Sintered In vitro MC3T3-E1 7 days The cells proliferated deep into the structure forming close contact HA granules.
Williams et al. (2005) PCL SLS In vitro In vivo BMP7 transduced HGF, Mice 4 weeks SLS printed PCL scaffolds enhance bone tissue in-growth.
Mapili et al. (2005) PEGDMA SLA In vitro Acryl-PEG-RGD 24 h Heparan sulfate allows efficient cell attachment and spatial localization of growth factors.
Arcaute, Mann & Wicker (2006) PEGDMA SLA In vitro Human dermal fibroblasts 24 h Cell viability reaches at least 87% at 2 h and 24 h following fabrication.
Li et al. (2007) epoxy resin (SL, 7560, Huntsman); CPC(scaffold) SLA In vitro OB 7 days Negative molds were generated by SLA. Cell density increased.
Khalyfa et al. (2007) TCP/TTCP 3DP, Sintered, polymer infiltration In vitro MC3T3-E1 3 weeks Objects with high compression strengths are obtained without sintering. Cell proliferation and osteogenic differentiation are achieved.
Goodridge et al. (2007) SLS In vivo Rabbit tibiae 4 weeks Bone was seen to have grown into the porous structure of the laser-sintered parts.
Habibovic et al. (2008) Bioceramic 3DP In vivo 12 adult Dutch milk goats 12 weeks Bone formation within the channels of both monetite and brushite, indicate osteoinductivity of the materials.
Lee et al. (2008) PPF/DEF SLA In vitro Fibroblasts 1 week Cells were adhering to and had proliferated at the top surface of the scaffold.
Geffre et al. (2009) Polymer (NG) FDM In vivo Femoral condyles (animal NG) 5 months Biomimetic porous design largely enhances bone ingrowth.
Lan et al. (2009) PPF/DEF SLA In vitro MC3T3-E1 2 weeks MC3T3 pre-osteoblast compatibility with PPF/DEF scaffolds is greatly enhanced with biomimetic apatite coating
Fedorovich et al. (2009) photosensitive hydrogel (Lutrol) Hydrogel extrusion, UV In vitro MSCs 3 weeks MSCs embedded in photopolymerizable Lutrol-TP gels remain viable of 60% and keep potential of osteogenic differentiation.
Zigang et al. (2009) PLGA/PVA 3DP In vitro Human Osteoblasts CRL-11372 3 weeks Expression of ALP and osteonectin remain stable whilst collagen type I and osteopontin decrease.
Ge et al. (2009) PLGA/PVA 3DP In vivo Rabbit: 1 intra-periosteum model. 2 bone defect of Ilium. 24 weeks In both models, the implanted scaffolds facilitated new bone tissue formation and maturation.
Duan & Wang (2010) Customized Ca–P/PHBV SLS In vitro SaOS-2, C3H10T1/2 cells 3 weeks Affinity of rhBMP2 on immobilized heparin facilitated the osteogenic differentiation of C3H10T1/2 cells during the whole period.
Warnke et al. (2010) TCP, HAP 3DP+ Sintered In vitro Primary human osteoblasts. 1 week Superior biocompatibility of HAP scaffolds to BioOss@ is proved, while BioOss@ is more compatible than TCP.
Melchels, Feijen & Grijpma (2010) poly(D,L-lactide) resin SLA In vitro MC3T3 11 days Pre-osteoblasts showed good adherence to these photo-crosslinked networks.
Detsch et al. (2011) HA, TCP, HA/TCP 3DP In vitro RAW 264.7 cell line 21 days The results show that osteoclast-like cells were able to resorb calcium phosphate surfaces consisting of granules.
Torres et al. (2011) b-TCP powder 3DP In vivo Rabbit calvaria vertical bone augmentation 8 weeks Synthetic onlay blocks achieve vertical bone augmentations as as high as 4.0 mm.
Rath et al. (2012) biphasic calcium phosphate (BCP) 3DP + Sintered In vitro OB BMSC 3 weeks, 6 weeks Application of a bioreactor system increases the proliferation and differentiation potential
Blanquer, Sharifi & Grijpma (2012) PDLLA 3-FAME/NVP SLA In vitro MC3T3 NG Mouse preosteoblasts readily attach and spread onto porous structures with the well-defined gyroid architectures by SLA.
Korpela et al. (2013) PCL/bioactive glass(BAG), PLA FDM In vitro Fibroblasts 2 weeks FDM printed PLA has better cell friendly surface than PCL and PCL/BAG.
Luangphakdy et al. (2013) PLGA TCP PPF HA TyrPC MCA 3DP VS SLA VS PL VS CM In vivo Canine Femoral Multi-Defect Model 4 weeks TyrPCPL/TCP and PPF4SLA/HAPLGA Dip are better in biocompatibility than PLGA and PLCL scaffolds. MCA remains the best.
Wang et al. (2013) biogenic polyphosphate (bio-polyP) and biogenic silica (bio-silica) SFF/ indirect 3DP/ direct 3DP In vitro SaOS-2 cells, RAW 264.7 cells 10 days Bio-silica ans bio-polyP increase release of BMP2 while bio-polyP inhibits osteoclasts activity.
Van Bael et al. (2013) PCL SLS In vitro hPDCs 2 weeks The double protein coating increased cell metabolic activity and cell differentiation
Feng et al. (2014a),Feng et al. (2014b) β-TCP SLS In vitro MG-63 5 days, 4 weeks The mechanical and biological properties of the scaffolds were improved by doping of zinc oxide (ZnO).
Feng et al. (2014a),Feng et al. (2014b) nano-HAP SLS(NTSS) In vitro MG-63 5 days Cells adhered and spread well on the scaffolds. A bone-like apatite layer formed.
Temple et al. (2014a),Temple et al. (2014b) PCL FDM In vitro hASCs 18 days ASCs seeded on the PCL scaffold are successfully induced in to both vascular and osteogenic differentiation.
Shim et al. (2014) PCL/PLGA FDM In vitro in vivo hTMSCs Rabbit radius defect 4 weeks 8 weeks PCL/PLGA/collagen released rhBMP2 over one month in vitro, induced the osteogenic differentiation of hTMSCs in vitro and accelerated the new bone formation in the 20-mm rabbit radius defect.
Inzana et al. (2014) Calcium phosphonate powder CPS 3DP In vitro In vivo C3H/10T1/2 cells, Murine critical size femoral defect. 9 weeks 3D printed CPS are enhanced through alternative binder solution formulations. Tween improve the flexural strength of CPS.Implants are osteoconductive.
Pati et al. (2015) PCL/PLGA ECM FDM In vitro In vivo hTMSCs, Rat calvarial defect. 8 weeks The differentiation and mineralization may be augmented by combined effect of cell-laid extracellular matrix, exogenous osteogenic factors, and flow-induced shear stress