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Abstract

Traumatic brain injury (TBI) continues to be a signature injury of our modern conflicts. Due in 

part to increased use of improvised explosive devices (IEDs), we have seen blast trauma make up a 

significant portion of TBIs sustained by deployed troops and civilians. In addition to the physical 

injury, TBI is also a common comorbidity with post-traumatic stress disorder (PTSD). Previous 

research suggests that PTSD is often associated with increased signaling within the amygdala, 

leading to feelings of fear and hyperarousal. In our study, we utilized a mouse model of mild blast-
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related TBI (bTBI) to investigate how TBI induces changes within the amygdala, which may 

provide favorable conditions for the development of PTSD. To do this, we performed Golgi 

staining on the stellate neurons of the basolateral amygdala and quantified dendritic amount, 

distribution, and complexity. We found increases in dendritic branching and in the density of 

dendritic spines in injured mice. Increases in spine density appears to be primarily due to increases 

in memory associated mushroom type dendritic spines. These changes observed in our bTBI 

model that are consistent with chronic stress models, suggesting an important connection between 

the physical changes induced by TBI and the neurological symptoms of PTSD.
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Blast-related traumatic brain injury; Post-traumatic stress disorder; Basolateral amygdala; Golgi 
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1. Introduction

Traumatic brain injury (TBI) is characterized by an acute brain injury which occurs as a 

result of external forces applied to the head. Some of the highest rates of incidence of TBI 

occur among military personnel and a significant proportion of these injuries result from 

being exposed to the shock wave associated with an explosive blast. The increased use of 

improvised explosive devices (IEDs) has led to blast TBI (bTBI) becoming a signature 

affliction of both combatants and civilians in recent conflicts. Importantly, TBI is also a 

major risk factor for the development of Post-Traumatic Stress Disorder (PTSD) (Tanev et 

al. 2014).

The essential feature of posttraumatic stress disorder is the development of characteristic 

symptoms following exposure to one or more traumatic events. Diagnostic criteria for PTSD 

include a history of exposure to a traumatic event that meets specific stipulations and 

symptoms from each of four symptom clusters: intrusion, avoidance, negative alterations in 

cognitions and mood, and alterations in arousal and reactivity (American Psychiatric 

Association 2013). PTSD has a long descriptive history, with an early definition closely 

linked to the experiences that soldiers suffered in combat. Before the PTSD diagnosis 

existed, many features of the syndrome following the terrible carnage of trench warfare 

during World War I were recognized, and led to systematic descriptions of the syndrome 

under names such as “shell shock” or “combat fatigue” (Andreasen 2014) – mixing the 

effects of ‘psychological trauma’ (PTSD) with those induced by explosive blasts.

However, even though there still is some controversy regarding diagnostic criteria for 

minimal traumatic brain injury (mTBI) when blunt trauma to the head is involved (Jackson 

et al. 2016), much less is known regarding blast-induced mTBI. There is research in both 

humans and animals to suggest that blast-induced TBI can result in behavioral symptoms, 

such as anxiety, that are indicative of PTSD, in addition to neural injury (Bogdanova and 

Verfaellie, 2012; Kaplan et al. 2018; Rachmany et al. 2017; Rubovitch et al. 2011; Sajja et 

al. 2015). The relationship between mTBI and some manifestations of PTSD can end in the 

erroneous misidentification of mTBI and the diagnosis of PTSD in individuals that do not 
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have it – a rather problematic condition that may hamper the administration of an efficacious 

treatment suitable for one condition but not for the other one.

A fairly substantial body of knowledge has been accumulated and published in the last 

decade and a half, detailing the effects of trauma exposure (either PTSD, or mTBI, or both) 

on brain morphology (mainly the impact on the hippocampus and to a lesser extent on the 

amygdala structure and function) (Admon et al. 2013; Ahmed-Leitao et al. 2016). The 

amygdala’s involvement in PTSD derives from its major role in fear conditioning and fear 

extinction activities (VanElzakker et al. 2014). In patients with PTSD the amygdala is 

“burning” with hyperactivity in reaction to trauma-related cues (Shin and Liberzon 2010) 

and this “burning” pattern is characteristically demonstrated on functional imaging 

modalities (i.e. fMRI, PET, SPECT) (Pitman et al. 2001; Rauch et al. 2006; Sartory et al. 

2013; Seedat et al. 2004). Changes in the volume of the amygdala may follow exposure to 

trauma, or precede it (then, predisposing for the development of PTSD) (Admon et al. 2009).

Given the important role of the amygdala in PTSD and its common comorbidity with TBI, it 

stands to reason that TBI may be influencing the amygdala in such a way that facilitates the 

development of PTSD. In fact, one recent study of a rat model of midline fluid percussion 

injury did note dendritic hypertrophy within the basolateral amygdala following injury 

(Hoffman et al. 2017). There remains, however, a dearth of information on how the 

amygdala is affected by injury, especially with respect to explosive blasts. One of the best 

ways to examine the effect of TBI on the amygdala is by utilizing Golgi staining. Golgi 

staining is a silver staining technique which has been used for over a century to allow whole 

individual neurons to be visualized. This powerful tool lends itself to numerous analysis 

techniques to examine the cellular effects of any number of conditions within the brain 

(Koyamaet al. 2013). Importantly, Golgi staining allows for specific analysis of the dendrites 

of individual neurons without interference of neighboring neurons. We are able to evaluate 

dendritic complexity, density, and branching, in addition to analyzing dendritic spines and 

spine subtypes. Several previous studies have shown how TBI significantly alters these 

dendritic measures in ways that would not be detected using other traditional analyses 

(Casella et al. 2014; Gao et al. 2011; Saykally et al. 2017; Winston et al. 2013).

In our study, we investigate the effect of injury on the stellate neurons of the amygdala in a 

mouse model of mild bTBI using Golgi staining and dendritic analysis. This model 

recapitulates the injuries experienced by humans exposed to an explosive blast and we have 

shown previously (Rubovitch et al. 2011; Tweedie et al. 2013). With this model we found 

evidence of increased dendritic spine density and increased branching in the amygdalar 

neurons of TBI exposed mice, providing a possible explanation for the hyperactivity within 

this region seen in PTSD patients.

2. Materials and methods

2.1. Animal husbandry

Male ICR mice weighing 25–30 g were kept five per cage under a constant 12 h light/dark 

cycle at room temperature. Food and water were available ad libitum. For experimental 

group, at least 6 different mice were used. The ethics committee of the Sackler Faculty of 
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Medicine approved the experimental protocol, in compliance with the guidelines for animal 

experimentation of the National Institutes of Health.

2.2. Blast trauma model

The blast-induced procedures took place in the experimental site of “Tamar Explosives” and 

of “Sadwin Consultancy” in central Israel (Rubovitch et al. 2011). Mice (both blast and 

sham) were anesthetized with an i.p. mixture of ketamine (100 mg/kg) and xylazine (10 mg/

kg), a combination that induces deep anesthesia and still enables spontaneous respiration. 

Mice were held in a restricted plastic net in a holder clamped to the floor with screws, which 

fixed their position but did not protect them from the blast (Fig. 1A). Tied to each holder 

next to the mouse was a gauge, measuring blast levels (in PSI) and temperature. The 

explosion device was constructed as a cast of 500 g TNT. We used different distances 

between the explosive device and the animals in order to obtain different levels of blast 

intensity (Fig. 1B). The mice at a distance of 4 m were exposed to 5.5 psi peak over-

pressure. The animals, pressure gauges and the explosive charges were elevated 1.0 m above 

ground level. All animals used in this experiment were exposed to a single explosion, on the 

same trial, such that all experimental parameters are equal. Each animal was anatomically 

positioned such that the angle and distance relative to the blast was identical. The pressures 

at both distances were measured ‘side-on’ with Free-Field ICP® Blast Pressure Sensor 

“pencil gauges” (PCB Piezoelectronics, Depew, NY, USA; Model 137). The recorded blast 

waves showed the “direct” shock wave and the reflected wave from the ground, as expected. 

There was also a reflected wave from the embankment surrounding the arena that was 

insignificant relative to the direct and ground reflected pressure waves. The sampling rate 

was 61.25 kHz or 16 microseconds between readings on all channels. The pressure-time 

curves were recorded for each experiment.

2.3. Dendritic analysis

Phosphate buffered saline followed by 4% neutral buffered formalin was used to perfuse 

mice 72 h days post injury. Brains were placed in 10% formalin overnight at 4 °C and then 

cryoprotected in 15% sucrose for 24 h. Formalin-fixed tissue blocks (2–3 mm thick in the 

coronal plane) incorporated the cortical samples and were stained using the Rapid Golgi 

method. Fixed tissue blocks were first placed in potassium dichromate and osmium tetroxide 

for approximately 6 days, then transferred to 0.75% silver nitrate for approximately 40 h. 

Blocks were dehydrated using increasing concentrations of alcohol solutions and ethyl ether, 

and were then infiltrated with increasing concentrations of nitrocellulose solutions (5%, 

10%, 20%, 30%; 1–2 days each). Blocks were then placed in plastic molds and hardened 

with chloroform vapors. Tissue sections were cut to a thickness of 120 μm in the coronal 

plane using an AO sliding microtome, cleared in alpha-terpineol, rinsed with xylene, and 

mounted on slides using Permount. Neurons selected for dendritic analysis had to meet very 

strict criteria. Selected neurons must have been well impregnated; branches must be totally 

unobscured by other neurons, glia, blood vessels, or undefined precipitate (a staining by-

product), and the soma must have been located within the middle third of the section. 

Approximately 6 neurons were selected and analyzed per animal. A single blinded observer 

was used for the entire experiment. A Zeiss brightfield microscope with long-working 
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distance oil-immersion objective lessee and drawing tubes was used to prepare camera 

lucida drawings for analysis.

Dendritic arbors were analyzed using either of two methods: the Sholl Analysis, which 

defines the amount and distribution of the dendritic arbor, as well as an estimate of the total 

dendritic length, and the dendritic Branch Point Analysis (BPA) which characterized the 

complexity of the arbor based on the number of branch points and dendritic bifurcations 

within the dendritic domain, as previously described (Diamond et al. 2006). Additionally, 

soma sizes were measured using a digitizing tablet linked to the drawing tube of the 

microscope. We also evaluated the presence of various dendritic spine types using this 

method.

2.4. Statistical analysis

GraphPad Prism software was used for statistical analysis. Mean values are depicted ± 

standard deviation and were compared using the two tailed t-test. For Golgi analyses, the 

values of individual neurons were averaged per brain and statistical analyses considered each 

biological sample (brain) per group. For Sholl and Branch Point Analyses, the Wilcoxon 

signed-rank test was used. In both tests p < .05 indicates significance.

3. Results

3.1. Sholl analysis

A visual example of the dendritic arbor of an amygdalar neuron is shown in Fig. 2A. The 

Sholl analysis depicts the distribution of the dendritic arbor at increasing distances from the 

soma. The profile of the neurons from the control brains is in blue, and the profile of the 

neurons from the bTBI brains is in red. There is no difference between the two profiles. 

Thus, the bTBI paradigm had no significant effect on the amount and distribution of the 

dendritic arbors (Fig. 2B).

3.2. Dendritic length

The data from the Sholl analysis were used to generate an approximation of the total 

dendritic length (in microns). In this context, the average dendritic length of the Stellate cells 

(per brain) were 2017 ± 121um for the control (n = 33) and 2019 ± 125 for the bTBI mice (n 
= 36) (Fig. 3). Each data point represents the average length of approximately 6 neurons 

from the amygdala of that brain. There are no significant differences between the two 

groups. This would further confirm the notion that the mild blast did not modify the amount 

and/ or distribution of the dendritic arbors of amygdalar neurons from the basolaternal 

nucleus of the mouse.

3.3. Branch point analysis

The branch point analysis compares the number of dendritic branch bifurcations at 

increasing branch orders from the soma. A comparison of the profiles (Fig. 4) shows that 

there was significant difference (p = .031) between the two groups at the more distal 

portions (> 3 branch points) of the dendritic tree of the basolateral amygdalar neurons (e.g., 
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the higher branch orders). There is more complexity of the dendritic tree of the bTBI 

neurons at these higher branch orders.

3.4. Soma size

The soma size of the entire basolateral amygdalar neurons was evaluated. Although, on a per 

brain level, the bTBI neurons had somas which were approximately 6% smaller than the 

controls, there was no significant difference between the two groups. The same results were 

seen per neuron as well (data not shown).

3.5. Total spine density

Dendritic spines were counted along three internal branch segments from each neuron. We 

quantified approximately 5 neurons per brain from each of the six brains in each group. 

When we evaluated spine density per neuron, the total spine density for the bTBI amygdalar 

neurons were found to have significantly greater spine density, an approximately 10% 

increase (Fig. 5).

3.6. Spine configurations

In addition to the total dendritic spines, spine density was also evaluated in terms of specific 

spine configurations. Spines were characterized as either T-type (thin), M-type (mushroom), 

or S-type (stubby). Thin spines are characterized as having thin spine necks and a definitive 

spine head. They are often associated with learning phenomena and neuroplasticity. 

Mushroom spines with a distinctive spine head and a thickened spine neck have been more 

closely associated with memory functions. Finally, the small (S-type) spines with no 

distinctive spine head or neck, and generally smaller than the T or M spines, has been 

associated with spine degeneration or dying-out.

3.6.1. T-type (thin) spines—No significant change was observed in the density of T-

type spines in the basolateral amygdala on a per neuron (Fig. 6A) basis. Blast TBI did not 

appear to influence the T-type of dendritic spine within the basolateral amygdala.

3.6.2. M-type (mushroom) spines—M-type spines show a 27% increase in their spine 

density on a per neuron basis which was significant (Fig. 6B). This suggests that blast injury 

may be selectively increasing M-type spines.

3.6.3. S-type (stubby) spines—There was a small (+9%) increasing trend in stubby 

spines in the bTBI amygdalar neurons, per neuron (Fig. 6C), though this was not statistically 

significant. Although overall spine density did not change, this is suggestive of a possible 

increase in bTBI-related turnover of spines in the amygdala.

3.7. Result summary

While our mouse model of blast-related mild TBI did not induce significant changes in the 

amount and distribution of the dendritic arbor within the basolateral amygdala, we did see 

several interesting changes related to dendritic branching and spine density. We saw that, 

particularly at distal regions, there was more dendritic branching in the amygdala of bTBI 

exposed mice. We also saw increases in dendritic spine density with bTBI, with memory-
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related mushroom spines accounting for the majority of this increase. Overall, our model has 

demonstrated increase connectivity within the amygdala as a result of exposure to mild blast 

trauma.

4. Discussion

Traumatic brain injury has become increasingly common, especially among combatants and 

civilians involved in recent conflicts. Among U.S. Forces, there have been approximately 

384,000 brain injuries sustained since 2000 (Defense and Veterans Brain Injury Center 

2018). Blast-related TBIs make up a significant portion of these injuries, especially within 

the context of training exercises and the increased use of IEDs (Hoge et al. 2008; Masel et 

al. 2012). TBI has also been linked as an important contributing factor to the development of 

PTSD (Hogeet al. 2008; Tanev et al. 2014). Previous experiments using our model of blast 

injury, at the same peak over-pressure, have yielded cognitive changes similar to that of both 

TBI and PTSD in humans, such as increased anxiety-like behaviors and deficits in spatial 

and recognition memory (Rachmany et al. 2017; Rubovitch et al. 2011). In this study, we 

have reproduced the effects of a blast TBI in a mouse model to better understand how mild 

bTBI may contribute to the development of PTSD through cellular changes within the 

amygdala.

Our model of blast TBI was mild, in that it did not produce significant changes in dendritic 

amount and distribution or soma size within the amygdala. We did, however, note changes in 

dendritic branching at more distal regions. Our branch point analysis showed significantly 

more branching distally in the bTBI exposed mice. This increased branching of stellate 

neurons may be indicative of increased communication within the amygdala. Similar 

increases in plasticity was observed in a recent model of fluid percussion injury in the rat 

(Hoffman et al. 2017), as well as in rodent models of stress alone (Lau et al. 2017; Vyas et 

al. 2002). This represents an important connection between the morphological changes 

associated with TBI and that of stress within the amygdala.

We also noted significant increases in dendritic spine density in the stellate neurons of the 

amygdala in mice exposed to bTBI. This increase in amygdalar dendritic spines has been 

observed previously in rodent models of chronic stress and depression (Mitra et al. 2005; 

Qiao et al. 2016; Qin et al. 2011) and that these increases in spine density correlate with 

deficits in fear extinction (Maroun et al. 2013). This suggests that the increase in dendritic 

spine density that we observed following bTBI may be representative of an amygdalar 

morphology similar to that which is observed following stress. Further, this morphological 

change may provide an explanation for the associated behavioral changes indicative of 

PTSD.

In order to better understand the specific morphological changes leading to this increase in 

dendritic complexity, we evaluated the distribution of dendritic spine types, including: T-

type (thin), M-type (mushroom), and S-Type (stubby). While we did not see significant 

changes in T and S-Type spines, we can attribute the increases in dendritic spine density in 

bTBI mice mainly to increases in M-type spines. This result is consistent with a rodent 

previous model of acute stress (Maroun et al. 2013), which showed its most pronounced 
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spine increases in the M-type. These spines have been associated with more stable memory 

functions (Bourne and Harris 2007; Kasai et al. 2003) and have been suggested to contribute 

to increases in stress-induced basolateral amygdala hyperexcitability observed previously 

(Chauveau et al. 2012).

Using our mouse model of mild blast TBI, we have been able to identify several 

morphological changes within the stellate neurons of the basolateral amygdala which may 

provide an important connection between the physical trauma of TBI and the neurological 

symptoms of PTSD. It has been shown in previously that increased activity of the 

noradrenaline within the amygdala may contribute to the hyperarousal seen in PTSD 

(Ronzoni et al. 2016). The increased connectivity we have observed in our model may 

represent a means by which this noradrenaline signaling is enhanced. While previous studies 

have shown similar amygdalar changes in rodent models of chronic and acute stress and in a 

fluid percussion models, our study provides the first data on these changes in a rodent model 

of blast TBI. Overall, our model has shown that blast TBI induces changes that are 

suggestive of increased communication and memory functions within the amygdala, both of 

which could provide a foundation for PTSD-like behavioral changes. Further study of this 

model will help us better understand how changes within the amygdala following blast TBI 

can lead to or enhance comorbid PTSD and how we can identify treatments to prevent these 

changes from progressing.
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Fig. 1. 
Mouse model of mild blast TBI. (A) Anesthetized mice were held in a plastic net in a holder 

at a distance of 4 m from an explosive charge containing 500 g TNT. The explosion 

generates approximately 5.5psi peak over-pressure at the 4 m distance. The measured peak 

over-pressure for this experiment was 37.9kPa (5.4969psi). The animals, pressure gauges 

and the explosive charges were elevated 1.0m above ground level. (B) The rows are situated 

4 (b) and 7 (c) meters from the TNT cast (a). Only the 4 m distance was used in this study. 

Each row had space for 12 mice and two pressure gauges were mounted at the ends of each 

platform (d). (Rubovitch et al. 2011).

Ratliff et al. Page 11

Exp Neurol. Author manuscript; available in PMC 2019 July 11.

V
A

 A
uthor M

anuscript
V

A
 A

uthor M
anuscript

V
A

 A
uthor M

anuscript



Fig. 2. 
Sholl analysis of amygdalar neurons. (A) A depiction of a typical amygdalar neuron’s 

dendritic branching pattern is shown. (B) Sholl analysis is used to depict the distribution of 

the dendritic arbor at increasing distances from the soma. We found no significant 

differences in control (n = 6, 33 total neurons analyzed) and bTBI (n = 6, 36 total neurons 

analyzed) mice with regard to dendritic distribution (p = .514).
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Fig. 3. 
Average dendritic length of amygdalar neurons. Dendritic length was measured and 

averaged for whole brain. We found no differences between the control (n = 6, 33 total 

neurons analyzed) and bTBI (n = 6, 36 total neurons analyzed) mice (p = .992). This 

indicates that blast does not appear to have an effect on dendritic length within the 

amygdala.
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Fig. 4. 
Branch point analysis of amygdalar neurons. We utilized branch point analysis to evaluate 

the number of dendritic branch bifurcations at increasing orders from the soma. We showed 

that more distal portions (>3 branch points) of the dendritic tree were significantly more 

complex in the bTBI (n = 6, 36 total neurons analyzed) mice compared to controls (n = 6, 33 

total neurons analyzed) (p = .031).
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Fig. 5. 
Dendritic spine analysis of amygdalar neurons. To further evaluate morphological changes 

induced within the amygdala by blast TBI, we examined the density of dendritic spines on a 

per neuron basis. We saw significantly higher spine density among bTBI mice (n = 6, 31 

total neurons analyzed) compared to controls (n = 6, 30 total neurons analyzed) (p = .032).
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Fig. 6. 
Analysis of spine configurations. In addition to total spines, we also evaluated spine density 

based on three specific spine configurations on a per neuron basis in control (n = 6, 30 total 

neurons analyzed) and bTBI (n = 6, 31 total neurons analyzed) mice. (A) We examined T-

type (thin) spines and saw no significant differences (p = .695). (B) M-type (mushroom) 

spines showed a significant increase in M-type spine density in bTBI mice (p = .003). (C) S-

Type (stubby) spines showed small increases in density in bTBI, though this was not 

statistically significant (p = .289). A single control neuron outlier was removed from 

analysis of S-Type spines.
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