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Induction of Cerebellar Long-Term Depression
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Many cellular processes involve a small number of molecules and undergo stochastic fluctuations in their levels of activity. Cerebellar
long-term depression (LTD) is a form of synaptic plasticity expressed as a reduction in the number of synaptic AMPA receptors
(AMPARs) in Purkinje cells. We developed a stochastic model of the LTD signaling network, including a PKC-ERK-cPLA2 positive
feedback loop and mechanisms of AMPAR trafficking, and tuned the model to replicate calcium uncaging experiments. The signaling
network activity in single synapses switches between two discrete stable states (LTD and non-LTD) in a probabilistic manner. The
stochasticity of the signaling network causes threshold dithering and allows at the macroscopic level for many different and stable mean
magnitudes of depression. The probability of LTD occurrence in a single spine is only modulated by the concentration and duration of the
signal used to trigger it, and inputs with the same magnitude can give rise to two different responses; there is no threshold for the input
signal. The stochasticity is intrinsic to the signaling network and not mostly dependent on noise in the calcium input signal, as has been
suggested previously. The activities of the ultrasensitive ERK and of cPLA2 undergo strong stochastic fluctuations. Conversely, PKC,
which acts as a noise filter, is more constantly activated. Systematic variation of the biochemical population size demonstrates that
threshold dithering and the absence of spontaneous LTD depend critically on the number of molecules in a spine, indicating constraints
on spine size in Purkinje cells.

Introduction
Many experimental and theoretical studies have shown that noise
plays a central role in important cellular processes (Arkin et al.,
1998; Elowitz et al., 2002). Biochemical processes in small sys-
tems undergo extensive and inevitable stochastic fluctuations of
their levels of activity, which can lead to substantial different
behavior in identical systems (Simpson et al., 2009; Eldar and
Elowitz, 2010). In many signaling networks, noise may be detri-
mental and is minimized through structural changes (Becskei
and Serrano, 2000). Yet, in other systems, noise provides func-
tional advantages (Rao et al., 2002; Simpson et al., 2009; Eldar
and Elowitz, 2010). However, little attention has been given to the
role of noise in the signaling networks mediating long-term
forms of synaptic plasticity.

Induction of synaptic plasticity at excitatory synapses is con-
trolled locally by signaling networks within dendritic spines
(Kennedy et al., 2005; Sheng and Hoogenraad, 2007). Usually,
these signaling networks consist of few copies of several distinct
proteins (Peng et al., 2004; Cheng et al., 2006; Sheng and Hoogen-

raad, 2007) that are likely to undergo stochastic fluctuations in
their levels of activity. Here, we investigate the role of stochastic
fluctuations in cerebellar long-term depression (LTD).

Cerebellar LTD is a robust and persistent decrease in the syn-
aptic transmission between parallel fibers (PFs) and Purkinje
cells (PCs), expressed as a reduction in the number of synaptic
AMPA receptors (AMPARs) (Matsuda et al., 2000; Linden, 2001;
Steinberg et al., 2004). It is induced experimentally by protocols
that promote transitory rises in the postsynaptic intracellular cal-
cium ions concentration ([Ca 2�]) (Konnerth et al., 1992). Con-
sequently, LTD can be induced directly through uncaging of
[Ca 2�] (Tanaka et al., 2007), which promotes the activation of
the cytosolic phospholipase A2 (cPLA2) (Mashimo et al., 2008;
Burke and Dennis, 2009) and of the Ca 2�-dependent protein
kinase C� (PKC) (Newton, 2001). PKC regulates the trafficking
of AMPARs, leading to the synaptic depression (Matsuda et al.,
1999, 2000; Chung et al., 2003). Additionally, PKC activates the
mitogen-activated protein kinase (MAPK) pathway (Bhalla and
Iyengar, 1999; Kuroda et al., 2001; Tanaka et al., 2007; Tanaka
and Augustine, 2008). The MAPK extracellular signal-regulated
kinase (ERK) then activates cPLA2 (Bhalla and Iyengar, 1999;
Kuroda et al., 2001; Tanaka and Augustine, 2008), which pro-
duces arachidonic acid (AA), a PKC activator (O’Flaherty et al.,
2001). After a brief elevation of [Ca 2�], the feedback loop formed
by PKC-ERK-cPLA2 self-perpetuates its activation and promotes
LTD (Fig. 1A; see Materials and Methods for a more detailed
description) (Kuroda et al., 2001; Tanaka and Augustine, 2008).
However, although extensive progress has been made in experi-
mental characterization of the signaling network involved in LTD
(Ito, 2002; Tanaka and Augustine, 2008), the network dynamics
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remain poorly understood. To investigate its dynamics we built
the first detailed stochastic model of cerebellar LTD, which was
extensively validated using quantitative and qualitative data ob-
tained from the literature (Momiyama et al., 2003; Masugi-
Tokita et al., 2007; Tanaka et al., 2007; Tanaka and Augustine,
2008).

Materials and Methods
We developed a detailed kinetic model of the signaling and trafficking
network involved in the induction of cerebellar LTD based on exten-
sive experimental data. Cerebellar long-term potentiation (LTP) was
not considered. The model was solved stochastically and determinis-
tically using STEPS (http://steps.sourceforge.net/), a well validated
simulator (Hepburn et al., 2012) that implements the Stochastic Sim-
ulation Algorithm (SSA) (Gillespie, 1977). The model script and a
table listing all reactions and all model parameters with full reference
to the relevant data are available at ModelDB (http://senselab.med.
yale.edu/ModelDB/ShowModel.asp?model�141270). The model
contains three components described separately: the Ca 2� dynamics,
the signaling network (Fig. 1 A), and the AMPAR trafficking mecha-
nism (Fig. 1 B).

Ca2� dynamics. Based on Ca 2� uncaging experimental results (Tanaka et
al., 2007), in most simulations elevations in the level of [Ca 2�] were used
to trigger LTD. Consequently, the mechanisms of Ca 2� dynamics are a
crucial property of the model: they are responsible for the maintenance of
[Ca 2�] during resting conditions and for restoring it to the basal level
following an elevation. The Ca 2� mechanisms simulated included extru-
sion, leak, and buffering.

Ca 2� extrusion was implemented according to a previous model (Doi
et al., 2005). It contains the plasma membrane Ca 2�-ATPase (PMCA)
and sodium (Na �)/Ca 2� exchanger (NCX) located in the cytoplasmic
membrane and SER Ca 2�-ATPase (SERCA) placed in the membrane of
smooth endoplasmic reticulum (SER). The reaction mechanisms and
parameters used to simulate each species were taken from the literature
(Doi et al., 2005). However, differently from the original model, third-
order reactions used to simulate the interaction between Ca 2� and
SERCA and between Ca 2� and NCX were simulated as sequential
second-order reactions. To keep a steady-state [Ca 2�] in absence of
Ca 2� inputs, a constant leak (zero-order reaction) was defined opposing
the action of the Ca 2� extrusion mechanisms.

Two types of Ca 2�-buffers were incorporated in the model: calbindin
(CB) and parvalbumin (PV), binding four and two ions, respectively.

Figure 1. Diagram of the signaling network involved in Ca 2�-induced LTD and mechanisms of AMPAR trafficking. A, Transient elevations of [Ca 2�] activate the positive feedback loop formed
by PKC, ERK pathway, and cPLA2. PKC is responsible for the phosphorylation of AMPARs leading to the synaptic depression. PP2A counteracts this process by dephosphorylating the AMPARs. PKC also
activates the ERK pathway that then activates cPLA2 that produces the PKC activator AA. B, Mechanisms of AMPAR trafficking simulated. The terms AMPARsyn, AMPARextra-syn, AMPARdend, AMPARcyt

refer, respectively, to synaptic, extra-synaptic in the spine, dendritic and cytosolic AMPAR, and P refers to the phosphorylated forms of AMPAR in different locations.
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The kinetics describing the interaction between each buffer and Ca 2�

and the parameters for all reactions were taken from the literature
(Schmidt et al., 2003).

Signaling network model. Increasing [Ca 2�] in the model leads to the
activation of the positive feedback loop composed by PKC-ERK-cPLA2

fundamental for LTD occurrence (Kuroda et al., 2001; Tanaka et al.,
2007; Tanaka and Augustine, 2008). This feedback loop was initially
proposed in a model of hippocampal long-term potentiation (Bhalla and
Iyengar, 1999), which was later adapted to simulate cerebellar LTD (Ku-
roda et al., 2001). However, the implementation of the feedback loop
described in this paper was updated and altered extensively compared
with the previous models, based on recent experimental data. Thus, in
addition to the inclusion of mechanisms of Ca 2� dynamics and AMPARs
trafficking, the model described in this study was built using parameters
that are different from previous models (Bhalla and Iyengar, 1999; Ku-
roda et al., 2001; Tanaka et al., 2007) for most of its reactions (the list
containing the references for each parameter used can be obtained at
http://senselab.med.yale.edu/ModelDB/ShowModel.asp?model�141270).
Most importantly, the stoichiometry for the reaction between Ca 2� and
PKC and Ca 2�and cPLA2 were altered, and the reaction mechanisms for
the activation of PKC, cPLA2, and ERK pathway were extensively refined.

The parameters of the model were taken from experimental literature
when possible, however, not all parameters are known. To simulate re-
actions with unknown parameters, the rate constants used in the simu-
lations were approximated from experiments performed with peptides
or molecules sharing sequences similar to those involved in the reactions
simulated. In those cases, a range of possible parameters was taken from
the literature, and a specific value was tuned to fit two constraints. The
model had to reproduce the experimentally observed relation between
different Ca 2� pulse maximum concentrations and durations and the
mean magnitude of LTD (Tanaka et al., 2007), and the fact that, during
rest, PCs exhibit no spontaneous macroscopic LTD (Launey et al., 2004).
The final value used for these parameters was further evaluated with a
sensitivityanalysis(http://senselab.med.yale.edu/ModelDB/ShowModel.
asp?model�141270). This demonstrated that change of up to �10% of
the parameter value did not alter the typical relationship between the
depression and the magnitude of the input signal described by Equation
1, but affected at least one of its three parameters by �20%.

Components of the feedback loop. The first molecule implemented in
the model was PKC. It comprises a family of 11 serine/threonine isoen-
zymes divided into three subfamilies (conventional, novel, and atypical)
based on their domain composition, which dictates the cofactor depen-
dence of each class (Newton, 2001). Experimental evidences have impli-
cated one PKC isoform in the occurrence of LTD: PKC�, referred in the
rest of the text as PKC, a member of the subfamily of conventional PKCs
(Leitges et al., 2004). Structurally, PKC is a multidomain protein com-
posed of a Ca 2�-dependent lipid-binding domain C2, a lipid-binding
domain C1, and a kinase core C terminal (Newton, 2001; Corbalán-
García and Gómez-Fernández, 2006). This multidomain composition
determines the stimulation of PKC activity by several cofactors including
Ca 2�, AA, and the phospholipid phosphatidylserine (PS) (Corbalán-
García and Gómez-Fernández, 2006; López-Nicolás et al., 2006). In the
model, two cofactors of PKC were simulated explicitly: Ca 2� and AA. To
become fully activated, following its interaction with Ca 2� or AA, PKC
must interact with membrane phospholipids, especially PS. This interac-
tion was simulated as a pseudo-first order reaction, implicitly simulating
the amount of PS in the membrane. Therefore, it was assumed that the
PKC structure allows its cofactors to act synergistically leading to PKC
interaction with the membrane, where it switches conformation and
becomes fully activated (Newton, 2001). The synergism among PKC
cofactors is not caused by allosteric interaction between these domains,
but by an increase in its affinity for anionic lipids in the membranes
(Newton, 2001). Thus, the model of PKC assumed that the binding of
three Ca 2� (Torrecillas et al., 2004) to its structure promotes its binding
to PS-containing membranes, causing the full activation of the enzyme
(Medkova and Cho, 1999; Bittova et al., 2001). Additionally, high con-
centrations of AA can lead to PKC translocation and activation in the
model, according to experimental data, or low concentrations of AA can

act synergistically with Ca 2� to promote PKC translocation and activa-
tion (O’Flaherty et al., 2001; López-Nicolás et al., 2006).

PKC is responsible for the activation of the MAPK pathway (Tanaka
and Augustine, 2008). Mammalian MAPK comprises a family of serine/
threonine kinases subdivided in three distinct subgroups that coordinate
diverse cellular processes: ERKs, Jun N-terminal kinases, and p38 kinases
(Pearson et al., 2001). ERK is the only subgroup of MAPK that has been
implicated with the occurrence of cerebellar LTD (Ito-Ishida et al., 2006).
Similarly to other members of the MAPK family, ERK activation requires
the sequential activation of at least two upstream kinases, an MAPKK and
an MAPKKK (Pearson et al., 2001).

The kinase immediately upstream to ERK is a member of the MAP/
ERK kinase (MEK) family. The components of MEK family are dual-
specificity enzymes that phosphorylate hydroxyl side chains of serine/
threonine and tyrosine residues of the MAPKs, simulated as a two-step
bimolecular collision (Burack and Sturgill, 1997). A dual-specificity
phosphatase termed MAPK phosphatase (MKP) dephosphorylates the
tyrosine and threonine residues of ERK promoting its inactivation (Fa-
rooq and Zhou, 2004), which was simulated as a distributive catalysis.

The MAPKK MEK is activated by dual phosphorylation, simulated
as distributive catalysis, catalyzed by the MEK kinase (MAPKKK) Raf
(Kyriakis and Avruch, 2001; Pearson et al., 2001). PP2A reverts Raf
action by dephosphorylating and inactivating MEK (Sontag et al.,
1993; Silverstein et al., 2002), a process that was simulated as distrib-
utive catalysis.

Mammalian MEK kinases have an extremely complex regulation that
remains largely unknown. Raf is regulated mainly by small GTP-binding
proteins and by phosphorylation (Avruch et al., 2001; Kyriakis, 2007). In
addition, Raf can be regulated by several different adapter and scaffolding
proteins (Kyriakis, 2007). Phosphorylations of two sites of Raf, serine 338
and tyrosine 341, have been implicated with its activation and interaction
with MEK (Diaz et al., 1997; Zang et al., 2008), but the enzymes that
phosphorylate these two sites remain unknown (Chaudhary et al., 2000;
Dhillon et al., 2007; Zang et al., 2008). PKC phosphorylates Raf (Kolch et
al., 1993) and is implicated with ERK activation (Adams and Sweatt,
2002), and, therefore, direct activation of Raf catalyzed by PKC was used
in previous models (Bhalla and Iyengar, 1999; Kuroda et al., 2001;
Tanaka et al., 2007). However, phosphorylation of Raf by PKC does not
lead to its activation (Schönwasser et al., 1998; Yip-Schneider et al.,
2000), which indicates that PKC acts on the MAPK pathway through
different mechanisms that are poorly understood in PCs. According to
experimental data, PKC may lead to the activation of MAPK pathway
through direct phosphorylation of the small GTPase Ras (Villalonga et
al., 2002; Bivona et al., 2006), or through the phosphorylation of the
complex Src/Proline-Rich Tyrosine Kinase 2 (PYK2), which leads to Ras
activation (Lev et al., 1995; Litvak et al., 2000). Sequentially to these
possible reactions, there is the recruitment and phosphorylation of Raf
(Avruch et al., 2001; Kyriakis, 2007). Thus, to simulate the process of Raf
activation in the absence of conclusive data, it was described by PKC
acting on a Raf-activator (Raf-act) that phosphorylates and activates Raf,
leading to the sequential activation of MEK and ERK. The parameters
selected to simulate the reactions of PKC action on Raf-act and Raf-act
on Raf were based on the typical time window of Ras activation, followed
by reactions of phosphorylation. In the model, Raf is dephosphorylated
by protein phosphatase 5 (PP5), according to experimental data (von
Kriegsheim et al., 2006; Dhillon et al., 2007). Raf activity can be regulated
by other phosphatases including PP2A and protein phosphatase 1 (PP1).
Both PP2A and PP1 act on Raf as positive regulators, dephosphorylating
sites involved in Raf inhibition mediated by 14-3-3 proteins (Jaumot and
Hancock, 2001; Adams et al., 2005; Dhillon et al., 2007). As the model did
not include 14-3-3 proteins negatively interacting with Raf, the activating
role of PP2A and PP1 on Raf was not simulated. A limitation of previous
models was to simulate PP2A as a negative regulator of Raf (Bhalla and
Iyengar, 1999; Kuroda et al., 2001; Tanaka et al., 2007), which has no
support in the literature (Jaumot and Hancock, 2001; Adams et al., 2005;
Dhillon et al., 2007).

The activation of the MAPK pathway leads to the subsequent activa-
tion of cPLA2 (Tanaka and Augustine, 2008). PCs express several sub-
types of phospholipase A2 (Shirai and Ito, 2004), but only one subtype,
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group IV cytosolic phospholipase A2� (GIVA cPLA2�, termed cPLA2

in the remaining of the text), has been implicated with cerebellar LTD
(Mashimo et al., 2008). cPLA2 catalyzes the sn-2-position of mem-
brane phospholipids, releasing AA in the intracellular medium (Pio-
melli et al., 1987, 2007). As mentioned previously, AA is a PKC
activator (O’Flaherty et al., 2001; López-Nicolás et al., 2006), and its
production leads to the persistent activation of the PKC-ERK-cPLA2 feed-
back loop during LTD occurrence (Tanaka and Augustine, 2008).

Structurally, cPLA2 is composed of a Ca 2�-dependent lipid-binding
C2 domain, and a C-terminal catalytic domain, and is activated by several
different mechanisms (Burke and Dennis, 2009). The most studied form
of cPLA2 activation involves its Ca 2�-dependent recruitment to anionic
membranes (Channon and Leslie, 1990; Nalefski and Falke, 1996). Two
Ca 2� bind to the C2 domain of cPLA2 sequentially and with positive
cooperativity, promoting its translocation to membranes (Nalefski et al.,
1997; Nalefski et al., 2001). Additionally, cPLA2 activity is regulated by
phosphorylation catalyzed by ERK (Das et al., 2003; Tucker et al., 2009)
and by anionic phospholipids (Burke and Dennis, 2009). Thus, in the
model, following the binding of Ca 2� or the phosphorylation by ERK,
cPLA2 translocates to the membrane where its substrates are located. The
phosphatases PP2A and PP1 dephosphorylate cPLA2 causing its inacti-
vation (Gordon et al., 1996; Moscardó et al., 2006). We also included a
Ca 2�- and phosphorylation-independent membrane interaction with
low affinity, as has been demonstrated experimentally (Hixon et al.,
1998).

To access its substrates, cPLA2 exhibits a type of interfacial catalysis
called scooting mode that involves a tight binding of the enzyme to
anionic phospholipids allowing it to hydrolyze many phospholipids be-
fore leaving the membrane surface (Bayburt and Gelb, 1997; Berg et al.,
2001), which was implemented in our model, but not considered in
previous models of LTD (Kuroda et al., 2001; Tanaka et al., 2007).

AMPA receptors trafficking. In PCs, LTD is expressed postsynaptically
as an attenuation of the current mediated by AMPAR channels, caused by
a decrease in the number of synaptic AMPARs (Linden, 2001). There-
fore, the synaptic depression was simulated as a reduction in the number
of synaptic AMPARs, implemented according to the mechanisms of AM-
PAR trafficking (Fig. 1 B). This is a major improvement of our model

compared with previous models of LTD that
used the concentration of phosphorylated AM-
PARs as a measurement of depression (Kuroda
et al., 2001; Tanaka et al., 2007). The trafficking
was simulated taking into account that AM-
PARs exhibit continuous movements that hap-
pen in two reversible steps. One step is the
lateral diffusion of the receptors from the syn-
aptic membrane to extrasynaptic areas and
vice-versa (Borgdorff and Choquet, 2002;
Ashby et al., 2004; Makino and Malinow,
2009). The other step is the endocytosis/exocy-
tosis of the phosphorylated extrasynaptically
located receptors (Wang and Linden, 2000;
Passafaro et al., 2001; Steinberg et al., 2004).
Thus, AMPARs were assumed to exist in four
different cellular locations: in the postsynaptic
membrane, in the extrasynaptic membrane of
the spine, in the dendritic membrane, and in
the cytosol. The transition of receptors from
one location to another was simulated as a first
order reaction. The first-order rate constant
for transition of AMPARs from one location to
another was calculated by dividing their diffu-
sion coefficients by the area of the compart-
ment considered (Borgdorff and Choquet,
2002; Earnshaw and Bressloff, 2006; Bats et al.,
2007). The rate constants for exocytosis/endo-
cytosis were calculated based on the experi-
mentally observed time constant (Ehlers, 2000;
Passafaro et al., 2001). Both endocytosis and
exocytosis were considered to take place exclu-
sively in the dendritic membrane, following ex-

perimental data (Adesnik et al., 2005; Makino and Malinow, 2009).
Not all AMPARs participate in the constitutive trafficking. A fraction

of the receptors interacts with anchoring proteins located in the postsyn-
aptic density, and, consequently, shows restricted movements (Bats et al.,
2007). Therefore, two distinct populations of synaptic AMPAR were in-
cluded in the model, one that is mobile and undergoes lateral diffusion in
both phosphorylated and non-phosphorylated states and undergoes en-
docytosis/exocytosis only in its phosphorylated state, and another that is
immobile because of interactions with a specific PDZ-containing protein
termed glutamate receptor interacting protein (GRIP) (Dong et al., 1997;
Burette et al., 1999).

During LTD, PKC phosphorylates the GluR2 subunit of AMPARs
promoting a decrease in their affinity for GRIP (Matsuda et al., 1999,
2000; Chung et al., 2003). As a result, some of the phosphorylated recep-
tors stop interacting with GRIP and leave the postsynaptic membrane
through lateral diffusion and endocytosis (Matsuda et al., 2000; Wang
and Linden, 2000; Steinberg et al., 2004). PP2A reverts PKC activity in the
model dephosphorylating AMPAR (Launey et al., 2004). Combining the
activity of the signaling network (Fig. 1 A) and the mechanisms of AM-
PAR trafficking (Fig. 1 B), we were able to accurately simulate the early
phase of cerebellar LTD.

Inputs of the model. Cerebellar LTD is induced experimentally by si-
multaneous and repeated activation of the PFs and the climbing fibers
(Ito, 2002), which causes a large and transitory elevation of [Ca 2�] (Kon-
nerth et al., 1992). Consequently, LTD can be induced through elevations
in [Ca 2�] directly, using photolysis of Ca 2�-caged compounds (Tanaka
et al., 2007). Elevations of [Ca 2�] used to induce LTD were modeled
through Gaussian functions simulating the influx of pulses of Ca 2� in the
cytosol with different duration and concentrations. More than 60 differ-
ent Ca 2� inputs were used in this work, with durations varying from 1 to
60 s and concentrations ranging from 0.5 to 5.0 �mol.L �1. However, in
each simulation, a single pulse was used to induce LTD. The input was
always given at simulated time 10 min.

Pulses of components of the feedback loop in their activated state were
also used to induce LTD (see Fig. 4 E). Similarly to Ca 2� pulses, these
pulses were modeled using Gaussian functions with different durations

Figure 2. Mean responses of the model and sigmoidal relationships between LTD and the peak concentration of the Ca 2�

pulses used to trigger it. A, Time course of the depression induced by Ca 2� pulses with different concentrations. Each curve shows
the mean time course obtained for 156 runs of the model (Ca 2� pulses of 3 s of duration, legend at right indicate the maximum
concentration of the pulses). The magnitude of the depression observed, measured as percentage of synaptic AMPARs removed
from the synaptic membrane, matches experimentally observed values (Tanaka et al., 2007), and, at rest, the model reproduces the
number of AMPARs in accordance with values observed in a single synapse in PCs (Momiyama et al., 2003; Masugi-Tokita et al.,
2007). Additionally, the reduction in the number of synaptic AMPARs has a time course in accordance with experimental data,
reaching stable state �20 min after LTD induction (Tanaka and Augustine, 2008). B, The [Ca 2�] requirement observed for LTD
induction is regulated by the duration of the Ca 2� pulses. Each dot (legend on right side applies to B–E) represents the mean result
of 156 simulations measured 30 min after the input, and the error bars indicate SEM. The sigmoid curves were obtained by
nonlinear least square regression to Equation 1. C, The duration of the Ca 2� pulses has no effect on the nHill observed during LTD.
D, The Ca 2� requirement (K1/2) during LTD induction depends on the pulse duration. E, The maximum depression (LTDmax) is
independent of pulse durations.
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varying from 10 to 120 s of duration, and with peak value varying from 1
to 100% of activation. The decays of pulses of active forms of the com-
ponents of the feedback loop tested (ERK, MEK, PKC, and cPLA2) were
mediated by their specific mechanisms of inactivation.

Biochemical population sizes. Changes in the biochemical population
size (BPS) were performed through the alteration of the biochemical
compartment where the reactions take place (Bhalla, 2004a,b). The sur-
face was scaled proportionally considering a spherical shape for the bio-
chemical compartment. Varying the volume of the biochemical
compartment alters linearly the number of cytoplasmic molecules with-
out changing their concentrations. To keep the ratio among different
species balanced, membrane species were scaled proportionally to the
change in numbers of cytoplasmic molecules.

Additional methods. The total time window (50 min) used for prepar-
ing the figures and analyzing the date was based on the consideration that
the positive feedback loop formed by PKC-ERK-cPLA2 is essential for
LTD occurrence only during the initial 20 –30 min after an input signal
has been applied (Tanaka and Augustine, 2008). In all simulations, an
initial interval of 10 min was included to allow the signaling network to
reach steady state. This initial 10 min interval was removed for analysis,
and all figures and analyses have time 0 set at the end of this interval.

LTD magnitude was measured 30 min after input. The sigmoid curves
described by Equation 1 (Fig. 2 B; see Fig. 9B), as follows:

LTD � LTDmax� �Ca2��nHill

K1/ 2
nHill � �Ca2��nHill�, (1)

were obtained by nonlinear least square regression using cftool, which is
an open curve fitting tool of Matlab (MathWorks). The parameters of the
curves [Hill coefficient (nHill), the [Ca 2�] required to achieve the half-
maximum magnitude of LTD (K1/2), and maximum depression (LTDmax)]
were estimated with 95% confidence intervals in all figures.

In some figures, triggering inputs of Ca 2� (see Figs. 4C, 8 A) are inte-
grated over time. Integration was performed to reduce the small varia-
tions in the input signals caused by the stochasticity of the model and to
allow the identification of a threshold for LTD induction, if present. This
integration was performed from the beginning to the end of the pulse
considered, and data were sampled at 0.05 s.

The coefficient of variation (CV) (see Fig. 5) was calculated by dividing
the SD by the mean of 156 simulations, taken over consecutive intervals
of 30 s.

In Figure 6, the sustained activity of the network is analyzed in single
runs over time windows of 10 –50 min of simulated time. Power spectral
analysis with Fast Fourier transform (FFT) was performed using the
function fft of Matlab (MathWorks). Linear correlations (see Fig. 6 B)
between the powers of the analyzed frequencies (1–30 cycles/h) of sto-
chastic fluctuations of different components were calculated using the
function corrcoef of Matlab (MathWorks). Other ranges of frequencies
were considered in preliminary analyses, but they were not used because
the powers obtained are very low. The values of Pearson correlation
coefficient (r) were estimated with 95% confidence intervals.

Results
The model replicates macroscopic properties of LTD
Elevations of [Ca 2�] induce LTD in PCs, measured as a reduction
in the number of synaptic AMPARs in the model (Fig. 2A). The
averaged curves of depression obtained with the model exhibit
time courses in accordance with experimental data, reaching sta-
ble state �20 min after LTD induction (Tanaka and Augustine,
2008). During resting conditions, the model reproduces a num-
ber of AMPARs in accordance with values observed in a single
synapse in PCs (Momiyama et al., 2003; Masugi-Tokita et al.,
2007), and it also exhibits [Ca 2�]-dependent levels of depression
within the range of values typically observed experimentally (Fig.
2A) (Tanaka et al., 2007; Tanaka and Augustine, 2008).

A fundamental property of Ca 2�-induced LTD is the sigmoi-
dal relationship between the concentration of the triggering
[Ca 2�] and the magnitude of the depression (Tanaka et al.,

2007), observed for mean results of several runs of the model (Fig.
2B) and described by Equation 1. Similar to experimental data
(Tanaka et al., 2007), Ca 2� induces LTD in a highly cooperative
manner (nHill � 5–7) (Fig. 2C), and the level of change of the
[Ca 2�] required to trigger LTD is dynamically controlled by the
duration of the Ca 2� pulses. Thus, increasing the duration of
the [Ca 2�] elevations shifts the sigmoid curves of LTD to the left
(Fig. 2B), reflected by a decrease of K1/2 (Fig. 2D) (Tanaka et al.,
2007). However, the maximum depression observed is indepen-
dent of the duration of the Ca 2� pulses tested (Fig. 2E) (Tanaka
et al., 2007).

In single spines LTD is bistable and probabilistic
In contrast with mean results, single run results of the model
show a strong bistability, with LTD induced in a completely all-
or-none manner (Fig. 3A,B), which is also observed in other
forms of synaptic plasticity (Petersen et al., 1998; O’Connor et al.,
2005). Increasing the amplitude of the Ca 2� pulse reduces the
number of failures of LTD induction (present in Fig. 3, A, but not
in B) without changing the amplitude of successful induction.
The magnitude of LTD obtained in a single run, which is equiv-
alent to the occurrence of LTD in a single synapse, is independent
of the duration and peak concentration of the triggering signal.

To understand how this property arises, we analyzed the acti-
vation of the most important components of the feedback loop in
single runs of the model (Fig. 4A,B). The Ca 2� pulse causes a
transient, direct activation of PKC and to a lesser degree of cPLA2,
proportional to the amplitude of the pulse. Note that the AMPA
trafficking system filters out this rapid PKC transient, leading to
the experimentally observed LTD induction curves (Fig. 4A,B,
right panels). This filtering could not be observed in previous
models (Kuroda et al., 2001; Tanaka et al., 2007) that only con-
sidered phosphorylated AMPAR as model output.

After the transient, PKC activation either returns slowly back
to baseline and LTD fails (Fig. 4A,B, blue lines), or, sometimes
after a delay, it continues to increase and LTD induction is suc-
cessful (red lines). In the case of LTD induction, both ERK and
cPLA2 are also strongly activated, confirming the importance of

Figure 3. Bistable induction of LTD. A, B, Single run results of the model demonstrate that
LTD in a single synapse is an all-or-none process. LTD was induced by pulses of 4 s and maximum
[Ca 2�] of 1.5 (A) and 3.5 �mol.L �1 (B).
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the positive feedback loop. A critical property of this feedback
loop is the ultrasensitivity of ERK activation, which requires dual
phosphorylation happening in a two-collision mechanism
(Huang and Ferrell, 1996) and determines its ability to respond
strongly to suprathreshold inputs (Ferrell, 1996, 2002). These
two structural properties, positive feedback loop and ultrasensi-
tivity, filter small inputs and promote strong responses to su-
prathreshold stimuli (Ferrell, 1996, 2002), forcing the system to
adopt one of two discrete stable states of activity (LTD and
non-LTD).

Note that in Figure 4, A and B, each shows an example of Ca 2�

inputs with the same magnitude that give rise to opposite re-
sponses in the model. This suggests that the induction of LTD has
no fixed threshold for the input signals. Indeed, when the Ca 2�

concentration (integrated over stimulus time to reduce noise) is
plotted versus the amount of LTD obtained, the distributions for
LTD and non-LTD overlap almost completely (Fig. 4C). There-
fore, the induction of LTD in single spines is probabilistic, and its
probability is modulated by the concentration and duration of
the signal used to trigger it: inputs with higher peak concentra-
tion and longer duration are more likely to induce LTD than
weak and brief signals (Fig. 4D), but there is no defined thresh-
old. Such probabilistic behavior and threshold dithering are typ-
ical properties of biochemical systems undergoing inherent and
unavoidable stochastic fluctuations or noise in their level of ac-
tivity (Arkin et al., 1998; Rao et al., 2002; Simpson et al., 2009;
Eldar and Elowitz, 2010).

Stochasticity influences the function of many systems, and it
can have a variety of consequences. However, to understand its
role during LTD occurrence, it is necessary to identify how it
affects different parts of the signaling network. The absence of a
fixed threshold extends to all components of the positive feed-

back loop tested (Fig. 4E). LTD can be triggered by a brief eleva-
tion of activity of any of these components, as observed
experimentally (Tanaka and Augustine, 2008), but no thresholds
can be discerned.

Next, we turned our attention to the pronounced stochastic
fluctuations present in the activation of ERK and cPLA2 (Fig.
4A,B) and characterized them qualitatively and quantitatively.

Stochastic fluctuation of activation of different components
of the network
The qualitative analysis of the stochasticity of the signaling net-
work was performed through analysis of the patterns of activa-
tion presented by different components of the model. The
activation of the signaling network during LTD induction exhib-
its a pronounced variety of responses among its components. We
focused our analysis on three components of the model belong-
ing to three different legs of the positive feedback loop (PKC,
ERK, and cPLA2). When LTD induction is successful, PKC shows
an overall constant activation with small magnitude fluctuations
(Fig. 4A,B, red lines). Conversely, ERK activation presents high
magnitude stochastic fluctuations without presenting a stable
on-state, as reported previously (Bhalla, 2004a,b; Shankaran and
Wiley, 2010). cPLA2 follows a similar pattern of noncontinuous
activation caused by intense stochastic fluctuations. These differ-
ences in activations are not caused by differences in the number
of copies of the components of the model. PKC and ERK, for
example, have similar population sizes (48 and 49 molecules,
respectively), but exhibit distinct patterns of activation. Thus,
these differences must be caused by specific reactions operating
on each component of the model, which suggests that the sto-
chastic fluctuations are transmitted nonuniformly through the
network.

Figure 4. Probabilistic induction of LTD implies the absence of clear thresholds. A, B, Comparison between activation of network components and LTD induction between two different pairs of
single runs of the model stimulated by Ca 2� pulses with same peak concentration (high in A and low in B) and duration. These runs were selected to have similar noisy fluctuations of the Ca 2� pulse
but opposite responses of the model: successful LTD induction (red) or failure (blue). C, There is no threshold for the Ca 2� pulse: single runs of the model demonstrate a large overlap of opposite
responses (LTD and non-LTD) triggered by similar Ca 2� input signals integrated over time (pulses of 1– 60 s, and 0.5–3.5 �mol.L �1). D, The probability of LTD induction (computed from 156
simulations, mean and SD shown) is regulated by the duration and concentration of the input signal. E, LTD can also be induced by a pulse of activated component of the feedback loop (Tanaka and
Augustine, 2008). Similarly to the results obtained for Ca 2�-induced LTD, single run results of LTD induced by pulses of different activated components of the feedback loop (PKC, ERK, cPLA2 , and
MEK indicated by colors) show a large overlap of opposite responses caused by a wide range of inputs signals (pulses varying from 10 to 120 s of duration, and peak value varying from 1 to 100% of
activation) integrated over time. This indicates that threshold dithering is spread throughout the signaling network.
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To characterize how the stochasticity is propagated, the CVs
of all components of the feedback loop (Fig. 1A) were analyzed.
The CV is a measure of noise, and it reflects how each component
of the network amplifies or reduces, through its reaction mecha-
nisms, the stochasticity of its upstream components. The change
of the CV during LTD induction reveals that most components of
the ERK cascade (Rafact, Raf, and MEK) present similar low lev-
els of noise, but the CV of ERK is considerable higher (Fig. 5).
Therefore, ERK is an important locus of stochasticity in the
model, increasing abruptly the variability of responses in the net-
work. This property arises from the ultrasensitivity of ERK (Fer-
rell, 1996, 2002), described above. The variability in ERK
activation is especially high at the beginning of LTD occurrence,
when the number of its activated molecules is usually low, adding
more noise to its responses. ERK stochasticity is transmitted
through the next two downstream components of the network,
cPLA2 and AA, respectively.

However, PKC, the next component of the feedback loop,
filters considerable the noise and shows the lowest level CV of all
components throughout. PKC activation, in contrast with the
other components of the feedback loop, does not involve its
phosphorylation catalyzed by other enzymes of the model. In-
stead, it depends on the interaction with second messengers, es-
pecially with AA. AA is responsible for the persisting activity of
PKC during LTD occurrence after the level of Ca 2� has been
restored to the resting concentration. To become fully activated,
PKC requires high concentrations of AA (O’Flaherty et al., 2001),
which has an important consequence in the model. The high AA
concentration increases considerably the rate of the second-order
reaction between AA and PKC, and, consequently, augments the
rate of PKC activation without changing the rate of PKC inacti-
vation, which is a first-order reaction. Thus, the activation of
PKC by AA during LTD happens with a strong apparent affinity,
which makes PKC activity less susceptible to undergoing high
amplitude fluctuations.

To further characterize the fluctuations of the signaling net-
work, power spectral analysis was used to estimate the noise fre-
quency (NF) of the components during single runs of the model.
Then, NF analysis was used to quantify how the different compo-
nents interact with noise in the network. As expected from the
results shown in Figure 4A, LTD promotes a strong shift in the
power of the NFs of ERK and cPLA2 but not for PKC (Fig. 6A).
Instead, PKC always exhibits high power at slow frequencies
(1–10 cycles/h) independent of the success of LTD (Fig. 6A). The
pattern is very different for ERK and cPLA2. In the absence of
LTD (right part of the panels, centered �0%), very little NF
power is present, significantly less than for PKC. But when LTD is
successful (left side), these components show fluctuations with a

larger variety of frequencies than PKC (1–30 cycles/h) (Fig. 6A).
Moreover, the powers of the NFs of ERK and cPLA2 are strongly
correlated with each other, while the correlation of the powers of
their NFs with that of PKC is much weaker (Fig. 6B). These
results confirm that the stochasticity is nonuniformly transmit-
ted within the feedback loop. The transmission of noise in a sig-
naling network highly depends on the susceptibility of each
downstream reaction to its upstream reaction (Paulsson, 2004).
Our results demonstrate that the reactions involving cPLA2 are
very susceptible to the reactions of ERK and, consequently, these
two enzymes exhibit similar frequencies and intensities of sto-
chasticity. However, the pattern of activity of PKC differs strongly
from these two components.

These results suggest that stochasticity can have distinct con-
sequences for LTD occurrence, depending on the magnitude and
frequency of the fluctuations and on the components that are
affected. Strong stochastic fluctuations of PKC activation could
be detrimental for LTD if they happen with high frequency and
amplitude, because the feedback loop downstream of PKC may
require prolonged and continuous stimulation. To test this hy-
pothesis, we performed simulations where we introduced artifi-
cial perturbations of PKC activity in the model and observed that
perturbations with strong intensities (Fig. 7A) or high frequen-
cies (Fig. 7B) led to failure of LTD induction.

In contrast, the components downstream to ERK and cPLA2

do not seem to require constant stimulation and respond effec-
tively to large variations in the activity of their upstream signals.
The permissivity of the components of the model downstream to
ERK and cPLA2 to a wide range of fluctuations of their activities is
an important property of the signaling network of LTD. Thus,
the stochasticity of ERK and cPLA2 can modulate the proba-
bility of activation of the signaling network (Fig. 4 D), without
affecting downstream activity too much. This suggests that the
system is making functional use of the stochastic fluctuations
(Simpson et al., 2009; Eldar and Elowitz, 2010). To verify this
hypothesis, we systematically manipulated the stochasticity of
the signaling network.

Effect of biochemical population size
Stochastic fluctuations have a central role in many biochemi-
cal processes (Rao et al., 2002; Simpson and Cummings,
2011), and are caused mainly by small number of molecules
(Simpson et al., 2009). Therefore, alterations in the popula-
tion size of a given system are a good way to manipulate noise
and address its role (Bhalla, 2004a,b). Most species of the
model have populations with �50 copies (Peng et al., 2004;
Cheng et al., 2006; Sheng and Hoogenraad, 2007). Thus, to
investigate the role of the stochasticity during LTD, the bio-
chemical population size (BPS) was systematically altered. For
each component analyzed, the BPS regulates the overlap be-
tween the levels of its activity triggered by Ca 2� inputs with
different magnitude (Fig. 8 A). For the standard model (BPS1),
there is no clear threshold for activation of any of the network
components analyzed; this is comparable to Figure 4C where a
similar lack of threshold for LTD induction was shown. In-
creasing the BPS gradually reduces the overlap of responses
leading to the appearance of a clear threshold from BPS16 on
(Fig. 8 A). Conversely, lowering the BPS increases the overlap
and for BPS0.2 the distributions are almost symmetric.

The BPS also controls the magnitude and width of the stochas-
tic fluctuations in the signaling network (Fig. 8B). Increasing the
BPS decreases the amplitude and frequency of the stochastic fluc-
tuations and diminishes the probability of LTD induction to

Figure 5. Propagation of noise within the network over time. The CV, a common measure of
noise, of different components of the network shows that the level of stochasticity of the
network has limited propagation. ERK greatly increases the stochasticity of the network, and, in
consequence, acts as important locus of variability in the model. Molecules downstream from
ERK, cPLA2, and AA act in a similar way. In contrast, PKC is a locus of filtering, decreasing the
stochasticity of the network.

9294 • J. Neurosci., July 4, 2012 • 32(27):9288 –9300 Antunes and De Schutter • Probabilistic Induction of Long-Term Depression



weak or intermediary inputs. It reduces the NFs in trials with
successful LTD induction (Fig. 8B) and greatly increases the cor-
relation of the powers of NFs of stochastic fluctuations between
PKC and ERK from 0.488 (BPS1) to 0.762 (BPS128) and between
PKC and cPLA2 from 0.628 to 0.813, making the behavior of
different components of the network more homogeneous. The
slower fluctuations strengthen the activation of the feedback loop
(Weinberger et al., 2008), avoiding the failure of LTD induction
to suprathreshold inputs and contributing to the appearance of a
clear threshold in the input signal. Conversely, reducing the BPS
amplifies the magnitude and frequency of stochastic fluctuations
even before the input signal has been applied, causing the net-
work to exhibit spontaneous activation.

The alterations in the signaling network caused by increas-
ing the BPS reduce the variability of the mean LTD curves,
causing the loss of stable and persistent intermediary depres-
sions and converging the model to a bistable system (Fig. 9A).
The reduction of the stochastic fluctuations improves the
filtering of small inputs and increases the responses to su-
prathreshold inputs. As a consequence, the behavior of the
stochastic model with large BPS becomes very similar to the
deterministic version of the model (Fig. 9E). Conversely, de-
creasing the BPS increases the stochasticity of the signaling
network, which increases the probability of LTD induction in
absence of input, causing the loss of stable weak and interme-
diary levels of depression and moving the model to a monos-
table system (always LTD, Fig. 9A).

These changes can be further analyzed by fitting sigmoidal
curves (Eq. 1) relating LTD amplitude to the peak concentration
of the Ca 2� pulses used to trigger it (Fig. 9B). Changes of the BPS
lead to a great alteration in the cooperativity (nHill) observed for
Ca 2� during LTD induction (Fig. 9C), but only to a small alter-
ation in the Ca 2� requirement (K1/2) (Fig. 9D).

The combined results of Figures 8 and 9 demonstrate the im-
portance of threshold dithering and stochastic fluctuations for
attaining the normal macroscopic behavior of the system. They
also indicate that there is an optimum level of stochasticity in the
signaling network of LTD, which is obtained around BPS1. This
level of stochasticity allows the system to have a macroscopic
stable off-state and an extensive variety of stable macroscopic
on-states (Tanaka et al., 2007).

Figure 7. Detrimental effects of large fluctuations of PKC activity during LTD occurrence.
Fluctuations in PKC activation are detrimental for the activation of the signaling network if they
happen with high peak-to-peak amplitude fluctuations or with high frequency. Single runs of
the model using equal seeds to initiate the simulations illustrate this detrimental effect. Each
column (A, B) shows the results of simulations using the same seed. In these examples, a Ca 2�

pulse of 4 s and peak concentration of 3.5 �mol.L �1 applied at 10 min was used to induce the
activation of the signaling network, and two (A) or six (B) transient perturbations (indicated by
arrows) reducing PKC activity to a level varying from 80% to 0% of its activation (top to bottom)
were applied. Each perturbation had a duration of 3 s. Both larger amplitude and high-
frequency fluctuations in PKC activity negatively interfere with the activation of the signaling
network, leading to failure of LTD (indicated by asterisks in the panel).

Figure 6. Discrete activity-dependent changes of NFs in the signaling network during LTD. A, LTD occurrence (LTD 	 10%) promotes a small shift in the power of NFs of PKC and large shifts for
the powers of NFs of ERK and cPLA2, calculated for single runs of the model. B, Correlation between the powers of stochastic fluctuations is strong only between ERK and cPLA2. In all panels, LTD was
induced by Ca 2� pulses of 1– 60 s and 0.5–3.5 �mol.L �1.
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Discussion
Stochastic model of cerebellar LTD
Our model builds on previous work that simulated the PKC-
ERK-cPLA2 positive feedback loop (Bhalla and Iyengar, 1999;
Kuroda et al., 2001), but expands it in several aspects. First, many

reaction parameters were updated according to recent literature
and several additional reactions were included. Next, an AMPAR
trafficking model was added, which allowed for direct compari-
son with experimental data. Previous models used the concentra-
tion of phosphorylated AMPARs as an LTD measure (Kuroda et

Figure 8. The role of stochastic fluctuations investigated through alterations in the BPS. A, The percentage activation of the three network components investigated is plotted against Ca 2� input
signal integrated over time for different BPS. For the standard model (BPS1), no thresholds are visible to Ca 2� pulses of 4 s and 0.5–3.5 �mol.L �1. Enlarging the BPS of the standard model (BPS1)
from 4 (BPS4) to 64 times (BPS64) decreases the overlap of responses and a fixed threshold emerges gradually. Reducing BPS1 to 60% (BPS0.6) and 20% (BPS0.2) has the opposite effect. B, Altering
the BPS changes the magnitude and frequency of stochastic fluctuations during single runs of the model, modifying the probability of activation of the network for different inputs [Ca 2� pulses of
4 s and 0.5 (top), 1.5 (middle) and 3.5 �mol.L �1 (bottom)]. For small BPS, LTD induction is always successful, while for large BPS the number of failures (shown by asterisks) at low Ca 2� pulses
increases and the intensity of stochastic fluctuations during successful induction decreases.

Figure 9. Dependence of the macroscopic LTD responses on BPS. A, Macroscopic curves of LTD (means of 156 runs, Ca 2� pulses of 4 s applied at 10 min) showing the reduction in the variability
and stability of responses when BPS is altered. Lowering BPS leads to a monostable system with spontaneous LTD while increasing it leads to a bistable system, similar to deterministic versions of
the model (E). Stable intermediary mean levels of LTD, similar to those observed experimentally, are present only between BPS0.6 to BPS4. B, Sigmoidal relationship between the macroscopic LTD
and peak [Ca 2�] (pulses of 4 s) obtained using different BPSs. Data from 156 runs are plotted as mean � SEM. Inset shows the responses of BPS0.2 that could not be fitted with a sigmoid. C, D, nHill

and K1/2 for different BPSs. E, The same model was solved deterministically (using the Runge–Kutta method). In the absence of stochasticity the model shows a bistable behavior (see A for legend).
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al., 2001; Tanaka et al., 2007). However, there is no indication
that this measures LTD (Linden, 2001). In fact, some phosphor-
ylated AMPARs remains in the postsynaptic membrane during
depression (Chung et al., 2000; States et al., 2008), because
AMPAR phosphorylation promotes a reduction but not the com-
plete loss of affinity for GRIP (Matsuda et al., 1999, 2000).

The most important difference between our model and previ-
ous ones is, however, the use of stochastic simulation methods.
Despite the small numbers of molecules present in dendritic
spines (Sheng and Hoogenraad, 2007), most models of long-term
synaptic plasticity are deterministic (Kotaleski and Blackwell,
2010). We clearly demonstrate the importance of stochastic sim-
ulation because the deterministic solution of the same model
leads to substantially different results, namely a bistable system
with strong thresholds.

The model was tuned to reproduce with good accuracy many
experimental properties of cerebellar LTD. It matches qualitative
characteristics (time course of LTD, sigmoidal relationship be-
tween Ca 2� and the depression), but also quantitative results
(nHill, K1/2, LTDmax) (Momiyama et al., 2003; Masugi-Tokita et
al., 2007; Tanaka et al., 2007; Tanaka and Augustine, 2008). The
quantitative characterization of the relation between Ca 2� and
synaptic plasticity (Tanaka et al., 2007) is unique in the literature
and provided strong constraints. However, these data reflect the
response of hundreds of PC spines to the uncaging signal and is
therefore only relevant toward the mean response of the model.
We have assumed that reactions in single spines are independent
of those in nearby spines and can be simulated as separate runs of
the model, but it cannot be excluded that spatial chemical gradi-
ents within the dendrite (Schmidt and Eilers, 2009) cause corre-
lations between spines.

LTD induction is bistable and probabilistic
An important prediction of the model is that LTD induction in a
single PF-PC synapse is an all-or-none process, as in other forms
of long-term synaptic plasticity (Petersen et al., 1998; O’Connor
et al., 2005). Commonly, bistability is observed in cellular pro-
cesses that should present the same pattern of responses under
different environmental conditions (Ferrell, 1996). Maximal
LTD involves a decrease of 30 –50% of postsynaptic current,
which suggests a similar reduction in the number of synaptic
AMPARs (Matsuda et al., 2000; Linden, 2001). This number
ranges �80 –140 U in a single PF-PC synapse (Momiyama et al.,
2003; Masugi-Tokita et al., 2007), while the number of copies of
most components of the spine signaling network is �50. In such
a system, graded changes in the number of synaptic AMPARs in a
single synapse, especially weak and medium ones, are likely to be
dispersed by stochastic fluctuations. Therefore, a switch-like oc-
currence of LTD in spines can be important to avoid undetectable
responses and to guarantee that depression in unitary synapses is
sufficiently strong to be efficiently integrated by the neuron.

A second and major prediction is that the induction of LTD is
probabilistic. Consequently, equal inputs can promote opposite
responses (LTD and non-LTD). Recently, several studies have
attempted to identify thresholds in the input signal to induce
LTD and LTP (Jörntell and Hansel, 2006; Vogt and Canepari,
2010). Our findings do not invalidate these results when a popu-
lation of synapses is considered. However, we demonstrate a
mismatch between the macroscopic and microscopic Ca 2� re-
quirement for LTD induction. An input threshold can be identi-
fied for the induction of strong LTD in a population of synapses
(indicated by the K1/2), but when single synapses are considered,
the intensity of the Ca 2� signals only regulates the probability of

induction. The history of each synapse may be crucial in modu-
lating this probability (Doi et al., 2005; Wang et al., 2005).

The probabilistic nature of LTD induction has important con-
sequences for experiments studying synaptic plasticity: in single
spine Ca 2� imaging (Higley and Sabatini, 2008) there is no
threshold that definitely predicts the occurrence of plasticity.
Moreover, although we do not simulate cerebellar LTP, our re-
sults imply that, in spines where bidirectional forms of synaptic
plasticity depend on the level of change of [Ca 2�], inputs with the
same magnitude can probably cause three different responses
(LTD, LTP, and no alteration).

Probabilistic events are important to synaptic physiology
(Kennedy et al., 2005; Ribrault et al., 2011) and we show that LTD
induction in single synapses is also probabilistic. The combina-
tion of two characteristics, bistable and probabilistic induction of
LTD, is sufficient to generate macroscopic curves of depression
matching experimental data. Moreover, the probabilistic nature
of LTD induction is not caused by the stochasticity of the Ca 2�

input signal as suggested previously in PCs (Tanaka et al., 2007)
and other systems (Graupner and Brunel, 2007), but rather by
stochastic fluctuations affecting the level of activity of most com-
ponents of the signaling network.

Functional role of nonuniform stochastic fluctuations
Noise in cellular processes is caused by the discrete nature of their
biochemical populations and reactions. Noise fluctuations are
important in small systems such as spines, where their magnitude
can exceed or approach the mean values of the state variables
(Simpson et al., 2009) and trigger responses for inputs that are
filtered in a deterministic system. Noise can provide probabilistic
selection of signaling pathways, generate differentiation strate-
gies, enable physiological mechanisms, coordinate the expression
of genes, and facilitate evolutionary adaptation (Arkin et al.,
1998; Rao et al., 2002; Raser and O’Shea, 2005; Weinberger et al.,
2008; Simpson et al., 2009; Eldar and Elowitz, 2010). For LTD,
noise affecting the level of activity of the network determines the
probabilistic induction in single synapses and causes threshold
dithering, producing variability of stable macroscopic responses.
Because of the large number of PF synapses onto a PC
(�175,000) (Napper and Harvey, 1988), it is reasonable to expect
that synaptic LTD induction protocols will activate hundreds of
them (Steuber et al., 2007). While single runs of the model are
totally binary, the macroscopic behavior of the model is de-
scribed by sigmoid curves with nHill ranging from 5 to 7. There-
fore, the network of LTD is using stochastic fluctuations to
increase the dynamic range of its macroscopic responses, similar
to other systems (Simpson et al., 2009).

Unexpectedly, stochastic fluctuations affect the activity of the
components of the network nonuniformly: while some compo-
nents fluctuate intensely, others present a more continuous pat-
tern of activity. Similarly, mammalian genes are transcribed with
a wide range of specific bursting kinetics (Suter et al., 2011),
which suggests that nonuniformly distributed stochasticity might
be an important property for cellular processes. Many factors can
determine how each biochemical component is affected by sto-
chastic fluctuations. Molecules presenting slow binding and un-
binding kinetics during complex formation, strong interactions,
or interactions with multiple steps are less likely to undergo in-
tense and brief fluctuations. Contrarily, ultrasensitive or cooper-
ative molecules such as ERK greatly amplify small changes of
their upstream signals (Ferrell, 1996; Huang and Ferrell, 1996),
making them important loci of variability. It would be interesting
to verify whether MAPK pathways present in other forms of syn-
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aptic plasticity act similarly and how noise propagates in signal-
ing networks exhibiting cross talk among different ultrasensitive
molecules, because the ultrasensitivities of different components
within a cascade combine multiplicatively (Ferrell, 1996).

However, to make functional use of noise, a signaling network
requires not only a good source of variation of responses, but it
must also have components capable of responding to these vari-
ations. In the LTD network, ERK acts as an important source of
variability; cPLA2 and AA follow similar patterns. Contrarily,
PKC filters the highly fluctuating activity of its upstream signals,
but it responds to it and robustly transmits the filtered responses
to its downstream components, including the AMPARs that ex-
press the physiological effect of LTD.

Effect of biochemical population size
Changes in the level of stochasticity of the model greatly alter its
properties. Reducing the noise by increasing the BPS improves
filtering of weak inputs and responses to suprathreshold signals
by strengthening the feedback loop activation (Weinberger et al.,
2008). This causes the appearance of a clear threshold in the LTD
input signal and changes the behavior of the model from proba-
bilistic to deterministic. As a result, macroscopic responses for
larger BPSs are highly cooperative and more similar to the re-
sponses obtained in single runs. Decreasing the BPS increases
stochasticity and causes a very different outcome by promoting
the induction of spontaneous LTD. Consequently, our results
indicate an ideal level of stochasticity that can be functionally
used to increase the variability of macroscopic responses during
LTD. The actual variability in PC spine head volume is quite
restricted (a factor three range in sizes) (Harris and Stevens, 1988;
Vecellio et al., 2000), suggesting that BPS may be closely regulated
in this system.
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López-Nicolás R, López-Andreo MJ, Marín-Vicente C, Gómez-Fernández
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