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Abstract

Objective—To develop machine learning models for classifying the severity of opioid overdose 

events from clinical data.

Materials and Methods—Opioid overdoses were identified by diagnoses codes from the 

Marshfield Clinic population and assigned a severity score via chart review to form a gold 

standard set of labels. Three primary feature sets were constructed from disparate data sources 

surrounding each event and used to train machine learning models for phenotyping.

Results—Random forest and penalized logistic regression models gave the best performance 

with cross-validated mean areas under the ROC curves (AUCs) for all severity classes of 0.893 and 

0.882 respectively. Features derived from a common data model outperformed features collected 

from disparate data sources for the same cohort of patients (AUCs 0.893 versus 0.837, p value = 

0.002). The addition of features extracted from free text to machine learning models also increased 

AUCs from 0.827 to 0.893 (p value < 0.0001). Key word features extracted using natural language 

processing (NLP) such as ‘Narcan’ and ‘Endotracheal Tube’ are important for classifying 

overdose event severity.

Conclusion—Random forest models using features derived from a common data model and free 

text can be effective for classifying opioid overdose events.
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1. Introduction

1.1 Background

Opioids are a class of drugs used to treat pain that exert most of their pharmacologic action 

through agonistic binding to mu opioid receptors located in areas of brain, spinal cord, and 

peripheral neurons. Common agents include the prototypical opioid morphine, which can be 

extracted from the opium poppy, derivatives of morphine such as hydrocodone, oxycodone, 

codeine, and heroin (diacetylmorphine), as well as synthetic opioids including tramadol, 

methadone, and fentanyl[1]. As with all drugs, the beneficial effect, in this case pain relief, 

is often also accompanied by a range of side effects. For opioids, many of these are related 

to its pharmacologic action in the central nervous system (CNS) and include drowsiness, 

euphoria, and in cases of overdose, a decrease in respiratory drive which can lead to hypoxia 

and death[2].

The untoward effects of opioids have dramatically impacted society in both the distant past 

(e.g. the opium wars in China) and with the current opioid epidemic the United States 

faces[3–5]. Prior to the 1990s, opioids were prescribed frugally by physicians mainly for 

palliative and acute pain. A mixture of heavy marketing for drugs such as OxyContin, well 

intentioned groups such as the American Pain Society advocating for undertreated pain, and 

the adoption of pain as the 5th vital sign by the Joint Commission (the accrediting body for 

health care organizations), ultimately led to a shift in medical culture and an explosion in 

opioid prescribing in the first decade of the 21st century[5–7].

This liberal use of opioids has directly correlated with a dramatic rise in overdose events 

over the last two decades garnering the attention of the medical community, mainstream 

media, and both federal and state governments. Opioids were involved in 3 out of every 5 

overdose deaths in the United States in 2015, with total numbers having quadrupled since 

1999[8]. The economic burden of opioid overdose is enormous and amounts to billions of 

dollars in spending each year. Estimates from 2013 put the total cost of prescription opioid 

overdose at $78.5 billion with $28.9 billion attributed to increased health care costs and 

abuse treatment programs[9]. Overdoses associated with illicit drug use are also a significant 

problem. Heroin overdose deaths have rapidly surpassed prescription overdoses and show no 
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signs of slowing or leveling off. The most recent data from 2016 estimate more than 60,000 

deaths related to drug overdose, an increase of 20% in a single year driven by an influx of 

fentanyl and extremely potent synthetic derivatives such as acetylfentanyl and carfentanyl 

into the drug supply of heroin users[10–13].

1.2 Prior work

Clearly, development and assessment of strategies to combat the opioid epidemic warrants 

intense research activity. A large body of work has been devoted to studying fatal overdose 

events, though common wisdom and evidence suggest that nonfatal overdose events are 

much more common than fatal ones[14]. In addition, nonfatal events follow a spectrum of 

severity with corresponding medical treatment that varies in intensity from overnight 

observation to mechanical ventilation and prolonged hospital stay. Contemporary works on 

opioid overdose have also relied on using International Classification for Disease (ICD) 

codes and Current Procedure Terminology (CPT) codes for cohort identification and/or end 

point analysis, but billing code based strategies alone can be inferior to methods that include 

combinations of data from the electronic health record(EHR)[15–21].

Current methods for phenotyping, whether rule-based or developed using machine learning, 

often draw data from a number of disparate sources such as procedures, medication, labs, 

and terms extracted from text notes using NLP, in addition to diagnosis codes[21,22]. While 

this additional data often adds a real performance boost to phenotyping metrics, it makes 

validation and implementation of algorithms more challenging across institutions as all 

sources of data must first be mapped to a set of common terminologies. Adopting a common 

data model (CDM) has been recommended as a way to standardize EHR data 

representations for interoperability[23]. The Observational Medical Outcomes Partnership 

CDM (OMOP CDM), originally designed to assist in drug safety research, has an extensive 

ontology that harmonizes data from numerous medical vocabularies including ICD-9, 

ICD-10, CPT, national drug code (NDC), and many others into standard concepts[24]. 

Concepts from the mapping include Systematized Nomenclature of Medicine (SNOMED) 

for condition occurrences, RxNorm for medications, and Logical Observation Identifiers 

Names and Codes (LOINC) for lab results and clinical observations.

1.3 Contributions

In this work, we explore strategies for phenotyping opioid overdose events on high 

dimensional data using machine learning and address some of the issues mentioned above. 

We introduce a severity score for opioid overdose phenotypes based on human expert 

interpretation of event severity and clinical interventions, allowing for higher granularity in 

the non-fatal overdose scenario. Data from multiple sources including demographics, 

diagnoses codes, procedures, observations, medications, and free text are used to compare 

the performance of machine learning models. We also examine how translation of disparate 

data sources to the OMOP CDM affects phenotyping accuracy, especially in light of data 

that includes diagnoses from both the ICD-9 and ICD-10 coding sets[24].
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2. Materials and methods

The opioid overdose phenotyping task can be defined as follows:

Given:

patient data as evidence E from

• Diagnoses codes

• Opioid medications

• Procedures

• Labs

• Observations

• Clinical notes

Do:

Assign phenotype p ∈ {false positive, mild, moderate, severe}

As a prototypical example imagine a fictitious patient, whom we will call CE, recently 

admitted to the ICU having arrived by ambulance. CE was found unconscious in his home 

with pinpoint pupils and a respiration rate of 10 breaths per minute by first responders, who 

were first notified by a 911 call from a family member. Two doses of naloxone were 

administered in the field and CE was intubated after failing to regain consciousness. This 

example, which may appear as part of a clinical care note, indicates the event should likely 

be labeled as a severe case of opioid overdose. The remainder of this section details the 

workflow utilized to automate label assignment utilizing machine learning.

The phenotyping pipeline involves an initial screening for our opioid overdose cohort, then 

manual chart review for gold standard labeling, followed by feature extraction; it ends with 

the application of machine learning to produce models for phenotype prediction (Fig. 1). We 

have three main feature sets we use in the machine learning models. The first feature set, 

labeled native, consists of feature vectors constructed directly from the primary tables 

(diagnoses, procedures, labs, etc.) of our data warehouse. The second, labeled OMOP, is 

constructed from the same cohort of patients, but uses data that has been transformed into 

the OMOP version 5.2 Common Data Model. Our third data set, which we call NLP, 

consists of terms extracted from free-text clinical notes. We explored how the use of 

combinations of these feature sets (native, OMOP, and NLP) and underlying feature 

representation (counts or binary) affect phenotyping performance with additional details for 

each step described below.

2.1 Patient selection and case review

Patients in the Marshfield Clinic Health System were screened for ICD-9 and ICD-10 codes 

related to opioid overdose and poisoning (Table A.1) from January of 1999 to June of 2016, 

yielding 2525 distinct events and 1428 unique individuals. After initial screening the study 

plan was evaluated by the Institutional Review Board and approved with exemption of 
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informed consent. Events from the initial cohort were then chosen at random, and a manual 

chart review was conducted by either a pharmacist, JCB, or expert reviewer, AMN, to assign 

gold standard labels. Of 457 reviewed cases, 149 events had insufficient records for label 

assignment and 32 events remained unclear even after careful review. In total, this left a final 

population of 278 individuals, some of whom had multiple events, giving a final total of 298 

labeled overdose events.

2.2 Phenotype definitions

We define an opioid overdose event as toxicity due to opioids that leads to profound 

untoward effects on the CNS with or without respiratory depression. Opioid overdose events 

were scored based on severity according to the intensity of clinical interventions employed 

during the health system encounter (Table 1). Common side effects such as constipation, 

nausea, and mild drowsiness, or lack of any medical intervention other than assessment were 

counted as false positives. Patients requiring overnight monitoring, activated charcoal, or 

oxygen were counted as mild cases, events where naloxone was administered and a marked 

response was noted were designated moderate cases, and finally events where the patient 

was placed on mechanical ventilation or where the patient expired as a result of opioid 

overdose were considered severe cases.

2.3 Data and feature extraction

Data of interest were collected from the Marshfield Clinic Research Data Warehouse and 

included diagnoses, procedures, labs, free text clinical notes, medication lists from the EHR, 

and prescription claims data. Feature vectors were constructed by concatenating summary 

data from two discrete time intervals before and surrounding each suspected overdose event 

(Fig. 2). In the window of time surrounding the event (incident date) we examine the 30 days 

preceding, and the 14 days following the event. This allows us to capture clinical data points 

such as an opioid dose change or onset of major illness that may precipitate an overdose 

event or be associated with overdose severity. We then form a second window further back 

in time to collect 90 days of additional historical data which, again, may provide information 

useful to the phenotyping task. Discrete data types such as diagnoses and procedures were 

aggregated as counts and continuous data points such as lab values were summarized with a 

combination of min, max, and mean. A binary representation for all count data was also 

explored in separate models. Using tables directly from our data warehouse, which we call 

our native dataset, this yielded 16,448 features. To test how the use of a common data model 

may affect phenotyping performance we constructed a second dataset, OMOP, in identical 

fashion, but using the Marshfield Clinic implementation of the OMOP CDM. This yielded a 

vector of OMOP concepts with 8,597 features.

For medications, only opioid prescriptions were considered in this study. The presence of 

opioid active ingredients (oxycodone, hydrocodone, etc.) were recorded as binary features in 

each interval, and the total morphine milligram equivalent (MME) daily dose for each opioid 

as well as a grand total for all prescriptions were calculated and included as a continuous 

features using conversion tables from the CDC[25]. Prescription claims data were used 

preferentially over med lists when available, in addition to any data on opioid use extracted 
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from clinical notes for models that included natural language processing (NLP) extracted 

features.

2.4 NLP

A total of 7241 free-text EHR documents were collected from relevant patient intervals and 

scanned using Apache cTakes 3.2.2 with the default clinical pipeline[26]. In post processing 

the non-negated terms were matched with Concept Unique Identifiers (CUIs) from the 

Unified Medical Language System (UMLS) Metathesauras for a total of 8362 unique 

terms[27]. Keyword searching of the Metathesouras browser was then performed by a 

domain expert to form a list of overdose related CUIs for a priori feature selection, a strategy 

that has proven effective in a number of previous studies[28–30]. Some of the common risk 

factors for opioid overdose include: total opioid dose > 90 MME, concomitant use of alcohol 

and or benzodiazepines, history of previous overdose, and mood disorders. Terms related to 

these risk factors, brand and generic names of opioid medications, and pertinent medical 

interventions such as ‘activated charcoal’, ‘naloxone’, and ‘intubation’ were included in the 

search. The final curated list, which included 362 CUIs, was then used to filter NLP results 

and form a bag-of-words feature vector (Table A.2). Similar to the count data, both counts 

and a binary representation were explored in machine learning models.

2.5 Machine learning hyperparameter tuning and evaluation

Cross-validation is a common data splitting procedure typically used on small to modest-

sized datasets for hyperparameter tuning or evaluation. When used for hyperparameter 

tuning, cross-validation provides the means to test multiple parameter settings with less risk 

for overfitting. In the context of method evaluation, cross-validation reduces the variance 

often seen from a single train/test split by utilizing all examples as test cases exactly once 

and computing the average performance over all folds. In this work, we utilized nested, 

stratified cross-validation which allows for simultaneous execution of both tasks[31]. The 

overall procedure can be seen as a repetition of train-tune-test splitting where inner loops of 

cross-validation are utilized for selecting optimal hyperparameter settings and the outer loop 

is utilized for evaluating overall performance (Fig. 3). This setup prevents information used 

in training from leaking into tuning/testing folds, which can lead to an overly optimistic 

assessment of performance. Details of the procedure specific to this work are described next.

We initially randomly partition patients into 10 parts, such that any two parts have nearly the 

same representation of the various classes. We treat each fold of 10-fold cross-validation as a 

single train-test split, training on nine of the folds and testing on the tenth. We then average 

the results (AUCs in our case) across the ten folds, thus ensuring that every example 

(patient) is a test case exactly once (on exactly one fold). The result is a nearly-unbiasted 

estimate, slightly pessimistic because the training set size is smaller than the full data set, 

with lower variance than that of an estimate from any single train-test split.

Hyperparameters are tuned on each fold with a further, internal cross-validation that uses 

only the training set (i.e., nine parts of the data) for that fold. For convenience our internal 

cross-validation is nine-fold. On each fold, we hold aside one of the nine parts of the training 

data as a tuning set, train on the other eight with each possible setting of hyperparameters 
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considered, and evaluate (in our case, compute the AUC) on the tuning set. For each 

considered setting of hyperparameters, we average the AUCs over the nine folds. We then 

take the best setting of the hyperparameters, train on the full training set (all nine folds), and 

only then supply this model to the test set fold (tenth fold) of the external cross-validation. 

Algorithm-specific hyperparameters and settings considered are provided in Section 2.6, 

where we discuss the specific machine learning algorithms employed.

We applied the preceding tuning and evaluation methodology to each considered machine 

learning approach. Regarding approach, the severity of opioid overdose, our phenotype of 

interest, can be modeled as either a multiclass classification problem or a regression problem 

if one considers the implied ordering in our class labels. We explored both modeling 

strategies along with combinations of feature sets and feature representation to find the most 

suitable amalgamation for phenotyping opioid overdose events. From cross-validation we 

generated receiver operating characteristic (ROC) curves using vertical averaging, and report 

area under the ROC curve (AUC-ROC). For our best performing model and feature 

combination we report sensitivity, positive predictive value (PPV), accuracy, and mean 

absolute error (MAE) in addition to AUCs for each severity class.

2.6 Classification models

Experiments with classifiers included naïve Bayes, support vector machines (SVM), L1 

penalized (LASSO) logistic regression, and random forests. For models not supporting 

multiclass labels out-of-the-box (SVM and logistic regression) we used a one-versus-rest 

approach and accounted for the heavy skew in our dataset (Table 1) by weighting examples 

inversely by the proportion of samples in each class.

Naïve Bayes is a fairly straightforward probabilistic model derived from Bayes’s theorem 

that uses the classification rule y = arg max p(y)∏i = 1
n p xi | y , where y is a variable 

representing each class and xi is a variable representing one of the features in the dataset. 

This formulation assumes that all features in the dataset are conditionally independent from 

one another given the class, which is a strong assumption, but often works well in practice. 

Here we constructed class predictions by combining probabilities from multinomial and 

Gaussian models using the discrete and continuous portions of our feature vectors 

respectively. Laplace estimates were used in the multinomial model and no priors were 

assigned in Gaussian models. Combined class probabilities were calculated by multiplying 

individual model predictions, dividing by the class probabilities, and normalizing the result 

to sum to one across all categories.

Support vector machines are a non-probabilistic binary classification model where the data 

points lying near a decision boundary, also known as the support vectors, are used to define 

the boundary and a “margin” that separates those points from the boundary [32]. Training an 

SVM requires solving a quadratic optimization problem:
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Given xi for all 1 ≤ i ≤ ℓ, find w and b to:

min 1
2 w

2
+ C ∑

i = 1

ℓ
ξi

s . t . yi w′xi − b ≥ 1 − ξi ∀i = 1…ℓ .

In a simple example (Fig. 4) one might image a two-dimensional plane with a group of 

circles on the left side and a group of squares on the right; an SVM classifier would find the 

vertical line that separates circles from squares while making sure that squares and circles 

near the line are as far away from that line as possible. Using the kernel trick SMVs can be 

used to efficiently fit lines, polynomials, Gaussians, and other functions. For this work we 

employed an initial dimensionality reduction followed by SVM using a linear kernel with 

the default square-hinged loss and l2 penalty. We tuned the number of features, penalty 

parameter C, and l2 penalty using a grid search in the second, nested layer of 9-fold cross-

validation described previously. To tune C, which varies the tradeoff between enlarging the 

size of the margin and misclassification of training examples, we vary the parameter with 10 

values evenly spaced on the log scale from 10−3 to 103. For dimensionality reduction, we 

used singular value decomposition (SVD) and varied the number of components by 

sweeping over ten values, evenly spaced from 50 to 500.

Logistic regression is a generalized linear model of the form logit(y) = β0 + β1x1 + β2x2 … 

+ βnxn that utilizes the logit link function to calculate the log-odds of a binary class variable 

y given the features in x. Various extensions to the model can be used to allow for fitting 

more than two classes (multinomial), ordered classes (ordinal logistic regression), and to 

control model complexity (penalized models). For our logistic regression models we add the 

L1 or LASSO penalty as a means to simultaneously perform feature selection and reduce the 

risk of overfitting. As with SVMs, training a logistic regression model involves solving an 

optimization problem. In the lasso case: argminβ λ | β | xTβ + ∑i = 1
N yi − xi

Tβ . We again, used 

a second nested layer of 9-fold cross-validation to tune the L1 penalty parameter by 

sweeping over 10 values evenly spaced from 10−4 to 104.

A decision tree learner recursively divides a dataset on its features, choosing at each split the 

feature (and split point for a continuous feature) that maximizes the overall gain in class 

purity as measured by either Gini or Entropy, e.g., in the binary feature case respectively np 
or − p log(p) − n log(n) where p and n are the fractions of positive and negative examples. At 

leaf nodes the majority class at the node is predicted. Decision trees can represent complex 

functions, including highly non-linear functions such as exclusive-or (XOR), but if allowed 

to grow to maximum depth and purity decision tree learners can suffer from overfitting, so 

final models are usually pruned. Random forests extend decision trees by creating an 

ensemble of decision trees that each cast a vote in classification[33]. Diversity in the trees 

(and hence a low correlation in errors made by different trees) is promoted by bootstrap 

sampling of examples for learning each tree, as well as random sampling of features to 
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consider at each split. With a large number of trees the ensemble is less apt to chance 

overfitting that is sometimes seen in single tree models and better at generalizing on 

previously unseen examples. Random forest models in our experiments were constructed 

with 500 trees in each forest and the number of features to use at each split was tuned in a 

nested layer of cross-validation as previously described. We used the default setting of Gini 

impurity for choosing feature splits and allowed for trees of maximum depth.

2.7 Ordinal models

Penalized ordinal logistic regression was carried out using a cumulative proportional odds 

model with LASSO penalty similar to our standard logistic regression (section 2.6). 

Preliminary experiments yielded models overfit to moderate overdose, our majority class, so 

classes were balanced by upsampling with replacement on the minority classes. Models 

using the native data set failed to converge after a runtime of 5 days as they contain twice the 

number of features as OMOP and are not included in the results.

For ordinal regression trees splits were chosen using generalized Gini impurity with 

misclassification costs equal to the squared difference in scores. The complexity 

parameter(cp) was tuned with 13 values equally spaced between 10−3 to 10−1. Trees were 

then pruned, as is standard, to help reduce overfitting using the cp value that minimized 

cross validation error. Class probabilities were calculated as the number of examples of each 

class ending on a leaf node over the total number of examples ending on that leaf during 

training.

To test for significant differences in model performance we use a paired t-test for repeated 

samples on the AUCs obtained during 10-fold cross-validation for select random forest 

models.

To probe our trained models for salient features we ran 10 replicates of our best performing 

models, which were logistic regression and random forest. For logistic regression we 

calculated the mean coefficients for all 10 runs and ranked the top features by their 

magnitude. For random forests we use the mean Gini importance of the 10 runs for each 

feature[34].

3. Results

3.1 Performance Overview

Phenotyping performance was highly variable across algorithms, feature sets, and overdose 

event severity (Fig. 5). Using the micro-averaged mean AUC from 10-fold cross validation 

of all classes we saw the best classification performance using random forest, followed 

closely by logistic regression (0.893 and 0.882 respectively). Performance across feature sets 

and representation (as indicated by a single colored strip in Fig. 5) were highly variable, 

with the differences between the best and worst performing feature sets showing a difference 

in AUC greater than 0.2 in some cases. We also see a rough trend in classification 

performance based on event severity with the lowest AUCs for phenotyping false positive 

cases and the highest AUCs for severe cases.
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3.2 Effects of feature engineering

Using our best performing algorithm, random forest, we explored how combinations of 

features and their underlying representation can affect classification performance (Fig. 6). 

We found nominal differences in AUC using a binary representation for our discrete features 

as opposed to counts with random forest. More interesting differences were found in the 

choice of feature sets. There was a statistically significant difference in AUC using OMOP + 

NLP binary (AUC 0.893) versus native + NLP binary (AUC 0.837, p value = 0.002) 

indicating the OMOP CDM provided some advantage in this phenotyping task. The addition 

of NLP to phenotyping has a more dramatic effect. The binary OMOP features alone had an 

AUC of 0.827, which rose to 0.893 when adding NLP (p value <0.0001). Logistic regression 

showed similar benefits with the use of the OMOP dataset and addition of NLP features, but 

using a binary feature representation had a more dramatic effect on classification 

performance (Fig. 7).

3.3 Interclass performance

Metrics for the best performing model, random forests with OMOP + NLP binary features, 

are shown in Table 2. Severe events were identified with sensitivity 0.804 and PPV 0.881. 

Performance dropped with decreasing severity, especially for the mild and false positive 

events with both PPVs less than 0.6. The mean absolute error over all classes was 0.446 as 

most predictions are either correct or within one level of their true severity (Fig. 8). Similar 

to the other metrics, MAE was lowest for severe and moderate cases, with larger assignment 

errors made in the false positive and mild classes.

3.4 Feature importance

Tables 3 and 4 show the features averaged from ten trained models each of logistic 

regression and random forest. Both logistic regression and random forest models contain a 

significant proportion of top ranking features from the NLP dataset (yellow) and tend to be 

dominated by features indicative of moderate and severe overdose (‘Narcan’, ‘Endotracheal 

tube’, ‘Ventilator’, etc.). To gain additional insight on features important to classifying false 

positive and mild cases we also trained separate models using only the false positive and 

mild overdoses cases (Table A.4). In the two class models the terms ‘drowsiness’, 

‘confusion’, ‘suicide’, and ‘LFTs’ (liver function tests) were important features.

4. Discussion

Well defined phenotypes and methods for accurate cohort identification are vital precursors 

to observational studies. During our chart review it became clear that a simple definition of 

overdose using diagnoses codes might lead a researcher to false conclusions. Two patients 

with identical overdose diagnoses codes often had dramatically different clinical courses. 

One patient might have sat in the emergency room for four hours under observation (false 

positive) while the other ended up intubated and on life support (severe overdose). This 

difference is not surprising as neither the ICD-9 nor ICD-10 coding systems grade overdose 

events by severity, but is a vital consideration when studying opioid overdose and the 

primary reason we developed a phenotyping system that stratifies events by severity.
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Given the clarity in our clinical descriptions of event severity it is natural to ask why 

machine learning was employed over simpler rule-based methods. One reason is that 

Boolean logic can cause misclassification of examples not following a general rule. As an 

example, ‘administration of naloxone with marked response’ is a class defining feature for 

moderate overdose cases, but naloxone can and does get administered in multidrug overdose 

situations even when opioids are not the cause of CNS depression. Another reason is that we 

do not have a convenient set of features and rules that can be used to identify false positive 

cases. Many arise out of the need for billable diagnosis codes or in miscoded cases. Machine 

learning has the potential to correctly classify in both situations by discovering a richer set 

features that cover both prototypical examples as well as edge cases.

The choice of machine learning algorithm proved to be an important consideration for 

phenotyping. Our dataset is high dimensional but contains a relatively small number of 

examples, so we avoided deep learning and non-linear SVMs, and we instead focused on 

algorithms that are known to be more resilient to over-fitting even when given more features 

than examples. Ordinal models proved to be inferior to one-vs rest classifiers. Ordinal 

logistic regression may have performed poorly because key independent variables in the data 

violate the proportional odds assumption (POA), which assumes independent variables have 

an identical effect for each dependent level in the model. Of the four one-vs-rest classifiers 

we examined, random forest and L1 penalized logistic regression gave the best results with 

AUCs of 0.893 and 0.882 respectively.

Using a binary feature representation gave performance more or less identical to counts for 

the random forest models and provided a slight benefit with logistic regression. The 

performance difference in logistic regression models might be attributable to normalization 

that was applied in count models. We scaled each count feature in the interval [0,1] in count 

models so as not to let any one feature have more weight than another in the model. As a 

result, if there is high variability of counts in an important feature, examples with lower 

counts may be unjustly down-weighted and potentially have a negative effect on the model.

The choice of dataset(s) had a much larger impact on phenotyping performance than the 

underlying feature representation. We saw significant gains in AUC when adding NLP 

features to our training models. We believe that some of the important features indicating 

overdose severity are recorded in free text that do not appear in any coded pieces of the 

EHR. As an example, the administration of naloxone, which indicates a moderately severe 

overdose based on our definition, has procedure codes that exist but are seldom used. In 

addition, during chart review we noted that first responders often administer naloxone in the 

field. This is recorded in free text as part of the event history, but not included anywhere else 

in the EHR as it constitutes care outside of the facility.

An examination of the top features in our trained models further supports the importance of 

free-text and may also partially explain the variability in performance observed across 

severity classes. The best performing random forest model achieved an AUC over all classes 

of nearly 0.9, but precision and recall were severely penalized by poor performance on mild 

and false-positive cases (Table 2). Class skew may be a contributing factor, but it is curious 

to note that severe overdose, the minority class, yielded the highest AUC (0.982), not the 
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lowest as one would expect from a classifier biased by data skew. The presence of high-

quality NLP features in moderate and severe cases provides a possible explanation. The 

terms ‘Narcan’ (naloxone) and ‘Endotracheal Tube’ can be used almost exclusively to 

classify an event as moderate or severe, which explains both why they are given so much 

weight in [dummy_strikeofftext] our trained models and why their inclusion leads to 

improved precision and recall. In contrast, succinct features indicative of class membership 

were not observed in the top features identified for mild and false positives classes which 

suggests that such features are poorly captured in the EHR or that a more complex set of 

rules is necessary for classifying these cases. Both factors could be contributing to poorer 

performance on mild and false positive cases.

The adoption of ICD-10 in October of 2015 created a distinct fault line in the EHR of 

recorded diagnoses. As a result, researchers are now faced with the question of how to 

conduct research involving data using both ICD-9 and ICD-10 coding sets. The option we 

explored in this work was using a common data model. The OMOP CDM attempts to map 

each drug, lab, and diagnosis to an appropriate concept from standardized ontologies such as 

RxNorm, LOINC, and SNOMED-CT, to provide a unified representation of medical data. In 

theory, this may distill similar pieces of information, such as ICD-9 and ICD-10 codes, to a 

single concept. This might explain why we saw a boost in phenotyping performance with the 

OMOP dataset. Our OMOP dataset has roughly half the number of features as the native 

dataset, but yielded better classification performance as measured by AUC (0.893 versus 

0.837, p = 0.002). As an additional benefit, the OMOP CDM allows for easier transport 

across institutions and will be useful for any follow up validation on our methods.

There are several important limitations to this work. Our initial screening for opioid 

overdoses used diagnoses codes as an exclusive means for event discovery, so we are falsely 

assuming that all potential cases have received proper coding. It is likely this method will 

underestimate the total number of true cases and some cases will go completely undetected. 

In our chart review we only used a single reviewer for each case, which could potentially 

mean there are examples in our dataset that could have resulted in disagreement on label 

assignment. Also, phenotyping was only conducted on patients that reside within the 

Marshfield Clinic Health Care System, which makes the external validity of our models 

unknown. Lastly, our examination of machine learning models was appropriate but by no 

means exhaustive. Anchor and Learn, XPRESS, and APHRODITE are three methods that 

perform well on noisy labeled (silver-standard) phenotypes and deep learning approaches 

that utilize embeddings are an active area of research that would have been interesting to 

explore [35–37].

There are a number of directions for future work involving opioid overdose worth 

mentioning. Replication and transportation of our phenotyping model to an outside 

institution for validation is an important next-step. It is unclear how differences in the 

distribution of overdose cases, underlying population characteristics, and medical coding 

will affect phenotyping performance at another institution, but the OMOP CDM has proven 

useful to phenotyping and should ease implementation on external data sets. In this work we 

have applied regularization and SVD for dimensionality reduction, but there are other 

interesting strategies that could be explored. Word embeddings, which project high 
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dimensional data into a lower dimensional feature space via the use of algorithms such as 

Word2Vec, Glove, and fastText have become commonplace in the NLP community and have 

recently been applied to tasks in the medical domain [38,39]. Vectors from embeddings 

provide dense representation, maintain semantic relationships, and help reduce the number 

of trainable parameters in recurrent neural network architectures, which could prove to be 

especially useful for future development of a deep learning surveillance system that tracks 

opioid usage and flags patients at the highest risk for overdose.

Widespread adoption of EHRs has vastly expanded the amount of digitized medical data 

available for observational research. However, medical data is known to be inherently messy. 

Diagnosis codes do not necessarily indicate the presence of disease as they are often used for 

billing out of exclusion, drug lists frequently contain errors, and most importantly data in the 

EHR are recorded using a mixture of human perspectives to assist with patient care, not 

research. This is precisely why phenotyping, which can be seen as a data cleaning step, is so 

important. In this work we provide machine learning models to accomplish this cleaning 

step for studies related to opioid overdose. Furthermore, we have stratified non-fatal 

overdose into useful severity categories, providing an opportunity for subgroup analysis in 

future work.

5. Lessons learned

The EHR can be a useful source of information but is far from complete. Events that happen 

before a patient reaches the doctor’s office, after they leave, and even during their stay are 

not necessarily contained in coded data types. We came to this realization in our work noting 

that naloxone administration was missing in the coded data, but often recorded in clinical 

notes. The addition of NLP to feature extraction, which has been cited as extremely useful in 

many contexts, cannot be understated as it provides a means to capture data that is otherwise 

poorly represented.

The diversity of EHRs and medical coding ontologies pose challenges to both multi-site and 

single-site informatics studies. In this project we encountered a mixture of ICD-9 and 

ICD-10 overdose cases and it was unclear as to whether the data should be mapped to a 

common vocabulary or left intact. With no previous studies to draw on we compared both 

approaches and showed that converting data to the OMOP CDM improved phenotyping. 

Transitioning to CDMs may prove useful to improving performance in other phenotyping or 

disease risk prediction tasks and provides an additional benefit of increased interoperability 

for multi-site studies.

There are many diseases such as cancer, heart failure, and chronic kidney disease that have 

an inherent ordering based on progression of disease and severity, but studies of ordinal 

phenotypes are uncommon. In this work we experimented with ordinal logistic regression 

and ordinal regression trees to phenotype overdose severity but found that traditional 

multiclass methods were superior. Future studies involving ordered classes should certainly 

explore fitting ordinal models, but classifiers such as random forest should not be excluded 

as this work has shown.
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6. Conclusion

Considerable effort has been put forth in recent years to battle the opioid epidemic. Raised 

awareness, more judicious opioid prescribing guidelines, increased funding, and state based 

prescription drug monitoring programs are having an impact on prescription related deaths, 

but both prescription and illicit opioid overdoses continue to take an unprecedented number 

of lives each year[40]. Health care institutions need effective tools to identify and mitigate 

overdose risk as well as monitor outcomes of locally deployed strategies.

In this work we have introduced a definition for overdose severity that we hope will be a 

useful tool for stratifying opioid overdose events into meaningful subgroups. Both penalized 

logistic regression and random forest are effective for phenotyping overdose events and can 

yield AUCs of nearly 0.9. Features extracted using NLP are extremely important for this task 

and can give a useful boost to overall performance.
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Highlights

• Phenotyping of opioid overdose cases stratified by severity using machine 

learning.

• Random forests were superior to all other methods (AUC = 0.893).

• Features derived from the OMOP CDM and NLP boost performance.

• Ordinal models were inferior to traditional classification methods
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Fig. 1. 
Phenotyping pipeline. Features for each dataset are labeled as native, OMOP, and NLP 

(blue, salmon, and yellow respectively). For machine learning models, native or OMOP 

datasets were used with or without NLP and using either counts or binary features for each 

algorithm tested.
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Fig. 2. 
Feature construction. For each overdose event, counts for feature were collected in two 

intervals. A 90 day interval preceding the overdose event, and in a 44 day period 

surrounding the event date.
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Fig. 3. 
Example of nested cross-validation. Data are split into 4 folds and colored as train data 

(blue) and held out data (green and orange). Inner cross-validation loops are used for 

hyperparameter tuning (light blue and light green). The optimal hyperparameter setting(s) 

from each inner loop is supplied to a model trained in the outer loop (blue) and evaluated on 

a held-out test set (orange). Expected performance of the method is measured by averaging 

over all four folds. This procedure is the current methodological gold standard for tuning 

and evaluation in the field of machine learning.
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Fig. 4. 
Visualization of SVM classification. Support vectors are used to form the margin and define 

the decision boundary. The hyperparameter C is used to balance a tradeoff between the size 

of the margin and number of misclassified examples (ξ1 and ξ2).
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Fig. 5. 
Strip plot of algorithm performance across classes. Each point represents the mean AUC 

after 10-fold cross validation for a given overdose class, algorithm, combination of features, 

and feature representation. Class ‘all’ is the micro-averaged mean AUC across all classes.

Badger et al. Page 22

J Biomed Inform. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
ROC curves of random forest models using combinations of features and feature 

representation. Each curve was generated using 10 fold-cross validation with micro-

averaging across the four severity classes. Feature representations (binary or counts) are 

paired by color and ordered from lowest to highest mean AUC in the legend.
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Fig. 7. 
ROC curves of penalized logistic regression models using combinations of features and 

feature representation. Each curve was generated using 10-fold cross-validation with micro-

averaging across the four severity classes. Feature representations (binary or counts) are 

paired by color.
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Fig. 8. 
Confusion matrix using random forest with OMOP + NLP binary features. Perfect 

predictions lie along the diagonal(blue) with increasing errors in class assignment shown in 

light blue, pink, and red.
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Table 1.

Definition of opioid overdose phenotypes

Severity Name Criterion/example cases Total (n=298)

0 False positive •Side effects (constipation, N/V) 70

•No medical intervention

•Inaccurate coding

1 Mild

•Overnight monitoring

65
•Nasal oxygen

•Activated charcoal

•Altered mental status

2 Moderate •Naloxone administration w/marked response 117

3 Severe

•Acute respiratory failure

46•Intubation

•Death
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Table 2.

Performance metrics of random forest model using OMOP + NLP datasets with binary features.

severity AUC (std. dev.) PPV (precision) Sensitivity (recall) Accuracy MAE

false positive 0.83 (0.08) 0.527 0.557 0.779 0.729

mild 0.841 (0.059) 0.56 0.431 0.802 0.569

moderate 0.9 (0.064) 0.727 0.821 0.809 0.291

severe 0.982 (0.017) 0.881 0.804 0.953 0.239

all 0.893 (0.031) 0.674 0.653 0.836 0.446
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Table 3.

Feature importance of the best performing logistic regression model (OMOP + NLP binary). Features are 

ranked by coefficient magnitude and color coded based on the originating feature set (yellow = NLP, salmon = 

OMOP).

false positive mild moderate severe

coeff description coeff description coeff description coeff description

−1.257 Accidental poisoning by 
heroin

−2.234 Narcan 2.407 Narcan 2.183 Endotracheal tube

−1.169 Narcan 0.896 Drowsiness −1.602 Endotracheal tube 1.334 Acute respiratory failure

−1.05
Altered mental status

0.837 Poisoning by aromatic 
analgesic

−0.825 Continuous invasive 
mechanical 
ventilation…

1.31 Continuous invasive 
mechanical ventilation
…

0.78 Emergency
department visit for the 
evaluation and 
management of a 
patient…

0.779

Dementia

0.669

Chronic pain syndrome

1.275

Ventilator equipment - 
respiratory

−0.76

drug overdose

−0.76

Intubation

0.603

Accidental poisoning 
by heroin

0.948 Insertion of 
nontunneled centrally 
inserted central venous 
catheter; age 5 years or 
older

−0.684 Drowsiness 0.527 confusion −0.53 Ventilator - respiratory 
equipment

0.882 Cardiac arrest

−0.574

LFTs

−0.524

Chronic pain

−0.49
Poisoning by opiate 
AND/OR
related narcotic

−0.766 Office or other 
outpatient visit for the 
evaluation and 
management of an 
established patient…

0.541 Thromboplastin time, 
partial; plasma or whole 
blood

0.507
Urine drug screen

−0.437
suicide

0.594 Radiologic examination, 
chest; single view, 
frontal

0.536
Essential hypertension

0.465 Suicidal deliberate poisoning 0.432
Chronic pain

0.438 Intubation, 
endotracheal, 
emergency procedure

−0.486
Acute respiratory failure

0.439 Alanine aminotransferas e 
serum/plasma

−0.383
Age < 25

0.318 Insertion of
Endotracheal Airway 
into Trachea…
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Table 4.

Relative feature importance of the highest performing random forest model (OMOP + NLP binary). OMOP 

and NLP features are colored in salmon and yellow respectively.

relative importance description

0.054 Narcan

0.038 Endotracheal tube

0.025 Acute respiratory failure

0.023 Ventilator - respiratory equipment

0.021 Continuous invasive mechanical ventilation for less than 96 consecutive hours

0.016 Accidental poisoning by heroin

0.015 Radiologic examination, chest; single view, frontal

0.014 Intubation

0.013 Critical care, evaluation and management of the critically ill or critically injured patient; first 30–74 minutes

0.012 Respiratory failure
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