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Study Objectives: To assess the sleep detection and staging validity of a non-contact, commercially available bedside bio-motion sensing device (S+,  
ResMed) and evaluate the impact of algorithm updates.
Methods: Polysomnography data from 27 healthy adult participants was compared epoch-by-epoch to synchronized data that were recorded and staged by 
actigraphy and S+. An update to the S+ algorithm (common in the rapidly evolving commercial sleep tracker industry) permitted comparison of the original 
(S+V1) and updated (S+V2) versions.
Results: Sleep detection accuracy by S+V1 (93.3%), S+V2 (93.8%), and actigraphy (96.0%) was high; wake detection accuracy by each (69.6%, 73.1%, 
and 47.9%, respectively) was low. Higher overall S+ specificity, compared to actigraphy, was driven by higher accuracy in detecting wake before sleep onset 
(WBSO), which differed between S+V2 (90.4%) and actigraphy (46.5%). Stage detection accuracy by the S+ did not exceed 67.6% (for stage N2 sleep, by 
S+V2) for any stage. Performance is compared to previously established variance in polysomnography scored by humans: a performance standard which 
commercial devices should ideally strive to reach.
Conclusions: Similar limitations in detecting wake after sleep onset (WASO) were found for the S+ as have been previously reported for actigraphy and other 
commercial sleep tracking devices. S+ WBSO detection was higher than actigraphy, and S+V2 algorithm further improved WASO accuracy. Researchers and 
clinicians should remain aware of the potential for algorithm updates to impact validity.
Commentary: A commentary on this article appears in this issue on page 935.
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INTRODUCTION

The consumer market for non-medical, sleep tracking tech-
nology and devices is highly competitive. Commercial sleep 
tracking technologies such as accelerometry-based wearable 
sensors, mattress-based sensors, mobile device-incorporated 
sensors (audio, vibration, camera), and hundreds of associ-
ated mobile sleep applications have become widely available.1,2 
North America and Europe account for approximately 65% of 
the sleep tracking device market, indicating an upward trend 
with the United States expected to dominate in purchasing thor-
ough 2024.3 However, this rapid market growth outpaces ob-
jective, impartial evaluation of device accuracy, which requires 
comparison against the physiologic gold-standard, polysom-
nography (PSG), and data evaluation using rigorous techniques 
such as epoch-by-epoch comparison for concordance. Although 
commercially available devices are marketed to health-con-
scious consumers and may not strive for clinical-level diagnos-
tic utility, consumers nonetheless draw conclusions about their 
sleep from the feedback these devices provide. The current state 
of this industry is that the available devices overestimate sleep 
quality and quantity, and that they perform inconsistently, with 
poorer sleepers receiving less accurate feedback.1
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PSG is the most consistent and physiologically accurate 
method of sleep identification currently available. It remains 
the best, and arguably only, quality control measure against 
which to test commercial device accuracy, yet it is not the only 
way that sleep is monitored in research and clinical science. 
Actigraphy (ie, scientific-grade accelerometry) is the primary 
alternative to PSG, 4 which developed because the latter can be 
cost-prohibitive, time-consuming, and—because it is usually 
laboratory-based—can disturb sleep compared to what would 
occur during a typical night at home.5,6 Actigraphy is used clin-
ically to evaluate patients’ sleep/wake patterns7,8 even though 
it has substantial limitations. Actigraphy alone is unable to 
distinguish sleep stages. Compared to PSG, actigraphy con-
sistently shows diminished validity when the wearer is awake 
(ie, it has poor “specificity”) because brief awakenings that 
produce little motion, and the physical stillness that precedes 
sleep onset, are often overlooked by motion-dependent algo-
rithms. This inaccuracy results in overestimation of sleep time 
and quality; in contrast, actigraphy shows high accuracy for 
identification of true sleep (ie, it shows high “sensitivity”).8–10

The fidelity of sleep estimation by consumer-marketed 
sleep tracking technology is not currently held to any regula-
tory standard. A dearth of published, systematic validation of 
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commercially available devices against PSG suggests that few 
of these devices have undergone independent assessment.2,11 As 
of a 2017 review, no publicly available smartphone applications 
were in existence that had been successfully validated for sleep 
monitoring, although many are designed to accompany motion-
sensitive devices.12 A comprehensive review of all devices, their 
claims, and scarce empirical evidence about them was reviewed 
by Ko and colleagues in 20152 yet since that time many new 
products and updates have been released. Although validations 
adhering to best-practice standards are few, those that are draw 
the same basic conclusions about commercial device perfor-
mance: available devices are limited in their specificity, par-
ticularly after sleep onset.2,8–11,13–19 Marketing of wearable sleep 
tracking devices has now progressed to claim that these devices 
can identify sleep stages, despite the absence of empirical sup-
port for their ability to accurately detect sleep/wake.20–22

A unique category of sleep monitoring devices, non-con-
tact bedside radiofrequency biomotion sensors (NRBS), use 
remote biosensing technologies, largely circumventing inter-
ference caused by even light instrumentation during sleep.22,23 
These devices may be a step forward in the consumer sleep 
tracking industry, but they too must undergo rigorous evalua-
tion compared to the gold standard.

Our primary goal was to assess the validity of S+ (ResMed, 
San Diego, California), a non-contact NRBS device, compared 
to PSG. We also compared the S+ to actigraphy, in relation 
to PSG. During the study period, an updated algorithm was 
released by ResMed, with the potential to impact device per-
formance. Thus, a secondary goal became evaluating whether, 
and how, the algorithm update changed device performance.

METHODS

Protocol
Participants were recruited using electronic, campus-wide ad-
vertisements. The study was approved by the West Virginia 
University Office of Research Integrity and Compliance (IRB). 
Following screening for inclusion criteria, informed consent 
was administered in person and signed by all participants. Par-
ticipants arrived ~1 hour before their usual bedtime and spent 
one night in the sleep research laboratory, during which they 
underwent simultaneous monitoring by PSG, actigraphy, and 
S+. Participants were awakened and each study concluded 
at 6:00 am (unless a different wake time was participant-re-
quested). Participants were compensated for their time and 
travel with a $150 gift card.

Participant Sample
Inclusion criteria were age (18 years or older) and being a 
healthy sleeper. Sleep health was estimated using the Epworth 
Sleepiness Scale (cutoff score = 13),24 and previous diagnosis 
with or current symptom(s) of a sleep disorder. Participants 
each had a body mass index (BMI) under 40 kg/m2 (assessed 
by height and weight measured in the sleep laboratory). 
Women who were pregnant or within 6 weeks postpartum 
were also excluded. One participant was excluded from analy-
ses, and referred for clinical evaluation, on the basis of having 

an apnea-hypopnea > 5 events/h. No participant exceeded 5 
periodic limb movement sequences per hour.

Polysomnography
Overnight PSG was recorded and analyzed using the REM-
brandt system (Embla N7000; REMbrandt manager software 
[version 9.1]; Natus Medical Incorporated, Pleasanton, Califor-
nia). A standard 6-channel EEG montage was used, following 
the international 10–20 system for EEG placement (F3, F4, C3, 
C4, O1, and O2 with contralateral mastoid reference and a sep-
arate universal reference electrode).25,26 Masseter and tibialis 
anterior electromyography, bilateral electrooculography, pulse 
oximetry, and electrocardiography were recorded; air flow and 
respiratory effort were measured using an oronasal thermistor 
and chest and abdominal respiratory inductance plethysmogra-
phy; a reverberation sensor placed over the trachea was used to 
detect snoring. Continuous audio-video was recorded.

Full PSG with audio-video was scored for stage, arousals 
and events (respiratory-related and leg movement-related) by 
a Registered Polysomnographic Technologist (RPSGT) (M.S.), 
who was blind to actigraphy and S+ outcomes, according to 
American Academy of Sleep Medicine (AASM) standards.26 
All recorded epochs were included in calculations of sleep, 
sleep stages, and periods of wake, including equipment adjust-
ment and restroom use time, except when data were consid-
ered unscorable by PSG (eg, poor signal quality, occurring for 
26.2% of recorded data for 1 participant and for less than 2% 
of recorded data for 5 additional participants). Total sleep time 
(TST) and the percentage of each sleep stage relative to TST  
were calculated. Additional metrics were: wake after sleep 
onset (WASO), which included epochs scored as wake after 
initial sleep onset was scored, through either the first epoch 
of the final awakening or the end of the recording, whichever 
occurred first; and wake before sleep onset (WBSO), which 
included epochs scored as wake from the light’s out (ie, the 
beginning of the recording) to the first epoch of sleep. We fur-
ther calculated a metric representative of sleep quality that is 
independent of sleep onset latency and wake time at the end 
of the recording interval by dividing TST by the sleep period 
time, which we defined as the time from AASM-defined sleep 
onset through the participant’s final awakening.

S+
The S+ is a non-contact sleep monitoring device that uses ultra-
low power radiofrequency waves to monitor the user’s move-
ments while they are in bed. The average power emitted by the 
device is 1 mW (about 100 times lower than a standard mobile 
phone). The S+ uses a patented, range-gated sensing technol-
ogy that ensures the range of operation is 1.5 meters, so that it 
monitors only the individual in closest proximity to the sensor. 
The sensor is capable of detecting sub-millimeter chest wall 
movements, which permits monitoring independent of sleep-
ing position. The sensor’s signal is designed to be unaffected 
by bedding or bed clothes. The system includes proprietary 
algorithms which are capable of estimating individual move-
ment events’ magnitude and duration as well as each breathing 
movement’s amplitude and duration. The algorithm combines 
high resolution estimations of these parameters into 30-second 
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epoch features which are then used to map the bio-motion sig-
nals to different sleep stages. Bed presence is detected through 
an increase in the received signal power. User wakefulness (W) 
is associated with higher levels and longer duration of detected 
movement, and a higher degree of respiration rate variability. 
Rapid eye movement (REM) sleep is associated with the high-
est variability of detected respiratory parameters, while light 
sleep (intended to correspond to stage N1 and N2 sleep) and 
deep sleep (corresponding to stage N3 sleep) trend to increas-
ing stability of the detected metrics. The system differs from 
previous non-contact technologies22,23 insofar as its features 
were redesigned and the system was retrained to leverage in-
sights obtained from new data acquired from both overnight 
PSG (ie, not part of the current study)27 and home recordings. 
The S+ also leverages the strengths of a newer sensor release 
with higher signal to noise ratio. The S+ was initially launched 
in November 2014 (S+V1); in September 2015, an algorithm 
update designed to improve respiration and movement detec-
tion, by decreasing the system’s sensitivity to spurious move-
ments of short durations, which were found to have a very 
loose relationship with wakefulness, was released (S+V2).

The S+ works in conjunction with a mobile phone device, 
with which it is paired via Bluetooth; S+ streams data acquired 
by the sensor to a mobile phone app, where it is processed in 
real time. Summary information about sleep is transmitted to 
the cloud, where an advice engine combines trends in sleep 
parameters to provide the user with sleep-related recommen-
dations. Both nightly and summary data are accessible to users 
through the mobile phone app or a dedicated website.

The S+ was placed in a standardized position on a bedside 
table, pointed toward the participant’s chest. The S+ was con-
nected to an iPod Touch (5th generation, iOS 8.1; Apple Inc. 
Cupertino, California) using the custom app (S+ by ResMed; 
2015 ResMed Sensor Technologies Ltd), which stored and 
auto-scored the raw biomotion data. If S+ correctly identified a 
period when a participant was out of the bed, it was considered 
accurate in its scoring of wakefulness, as absence detection is 
an algorithm feature.

Actigraphy
Actiwatch 64 (AW-64; Mini Mitter, Inc., Bend, Oregon) was 
used with sleep analysis software (Actiware version 5.71.0, 
Philips Respironics, Murrysville, Pennsylvania). The device 
was worn on the non-dominant wrist. Data were recorded 
and auto-scored in 30-second epochs using “medium” wake 
threshold (the most commonly used threshold in other work 
utilizing this device)28 and all other parameters were set to de-
fault for sleep/wake scoring using zero-crossing mode.

Device Synchronization
To allow epoch-by-epoch comparison between PSG and S+, 
and between PSG and actigraphy, the two computers and iPod 
Touch used for data collection among three methods were syn-
chronized to within 1 second and then initiation of each record-
ing was preprogrammed to begin simultaneously (removing 
the need for, and variation from, manual initiations). Each re-
cording was analyzed using the simultaneous 30-second ep-
ochs from each device.

To compare PSG and S+ to actigraphy, which does not iden-
tify sleep stages, epochs scored as any sleep stage (N1, N2, N3, 
or R for PSG; light, deep and REM for S+) were converted to 
“sleep.” For comparisons between PSG and S+, PSG epochs 
scored as stage N1 and N2 sleep were combined for compari-
sons to light sleep as measured by the S+. A summary of cor-
responding measures for each recording method/device is in 
Figure S1 in the supplemental material.

Statistical Analyses
Agreement was calculated between each of the two S+ algo-
rithm versions (S+V1 and S+V2) and PSG, and between ac-
tigraphy and PSG. Comparisons were then made between 
performance by S+ and actigraphy using repeated-measures 
ANOVA with post hoc pairwise comparisons. Performance 
for sleep stage identification was evaluated between S+V1 and 
S+V2 using repeated-measures t tests (n = 22). Data met nor-
mal distribution assumptions (skew and kurtosis < 3.2 times 
the standard error); no scores were 3 standard deviations be-
yond average. Greenhouse-Geisser correction was applied 
in cases without sphericity. Device agreement, sensitivity 
(stage-specific where appropriate), and specificity were evalu-
ated. By convention, “sensitivity” is the percentage of sleep 
epochs (per PSG) that were accurately identified by S+ or ac-
tigraphy; “specificity” is the percentage of wake epochs (per 
PSG) that were accurately identified by S+ or actigraphy. We 
also calculated stage-specific sensitivity. Data are presented as 
mean ± standard deviation.

To display concordance between PSG and each device, we 
used a modified Bland-Altman plotting technique,9 where PSG 
is considered the gold standard for comparison, rather than 
plotting the test devices against an average of the test device 
and PSG.29 This approach highlights absolute differences be-
tween measures, at each magnitude, rather than whether they 
trend similarly.

Participant Characteristics
Thirty participants were recruited and data from 27 who were 
not excluded due to abnormal PSG (n = 1), total S+ data loss 
(n = 1), or key metric (WBSO; n = 1) loss were included in 
validity evaluation for actigraphy and S+V1 (Figure S2 in the 
supplemental material). These 3 excluded participants did not 
differ significantly from the 27 included (χ2 and independent 
samples t test analyses). Among the 27 participants available 
for inclusion in analyses, 40.7% were female; their mean age 
was 29.1 ± 11.7 years; mean years of education was 15.6 ± 2.5; 
median annual household income was $65,000 ± $71,606; one 
participant was Asian, and all others were white; 14.8% of the 
sample was married. Mean and median BMI were 26.8 ± 5.9 
and 25.9 kg/m2, respectively, corresponding to mildly over-
weight.30 Eight participants were sent follow-up letters inform-
ing them of incidental findings during PSG (rare respiratory 
events, limb movements, hypnic jerks, and teeth grinding).

Technical malfunction in raw data transmission to back-end 
servers (which was required for analysis with updated algo-
rithm) resulted in the exclusion of 5 additional participants 
from S+V2 algorithm analyses (Figure S2 in the supple-
mental material). These 5 participants did not differ on any 
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characteristics from the 22 who were included (χ2 and indepen-
dent samples t test analyses adjusted for unequal variances). 
Further, S+V1 agreement for these 5 participants did not differ 
from the 22 participants included in ANOVA and repeated-
measures t tests. For actigraphy and S+V1, descriptive statis-
tics are reported based on all participants available (n = 27).

RESULTS

Data from S+V1, S+V2, and actigraphy were compared epoch-
by-epoch for agreement with scored PSG. The range of time in 
each sleep stage, the percentage of time in each sleep stage, and 
minutes of WBSO and WASO according to PSG are available 
in Table 1. Agreement accuracy for overall sleep and wake, 
and for WBSO and WASO, is available in Table 2. Agreement 
accuracy for sleep stages is available in Table 3. A separate 
evaluation of combined light sleep, deep sleep, REM sleep, and 
wake (“four-stage”) accuracy was also performed; in this case, 

S+V1 had overall sensitivity of 60.6% ± 9.2% and S+V2 a sen-
sitivity of 61.8% ± 7.0%. Bland-Altman concordance for the S+ 
device for overall sleep and wake is illustrated in Figure 1A 
and Figure 2A, and concordance for sleep stages is illustrated 
in Figure 3.

Figure 4 shows sensitivity and specificity values for S+ 
and actigraphy, as well as a previously-published31 reference 
threshold for typical PSG inter-scorer reliability (ISR; ie, the 
consistency in epoch-by-epoch scoring among credentialed 
PSG scorers). Bland-Altman concordance for overall sleep and 
wake identified by actigraphy is illustrated in Figure 1B and 
Figure 2B. A summary of Bland-Altman concordance values 
across the three devices is in Table 4.

Magnitude of Device Discrepancies
Participants’ TST according to PSG was 338 ± 58 minutes, or 
just over 5.5 hours. Average wake time was 1 hour 40 minutes 
± 1 hour 11 minutes). Devices overestimated TST by at least 
20 minutes for 9 (33%, S+V1), 6 (27%, S+V2), and 16 (59%, 

Table 1—Sleep time and percentage from polysomnography.
Sleep Measure n Range (hours) Hours %TST %SP
TST 27 4.0–7.0 5.6 (1.0) – 85.1 (13.3)
Light sleep 27 1.7–4.2 3.3 (0.7) 58.8 (10.9) 49.2 (8.0)
Stage N1 sleep 27 0.2–1.8 0.8 (0.5) 14.9 (10.0) 11.7 (6.9)
Stage N2 sleep 27 1.4–3.7 2.5 (0.7) 44.0 (7.7) 37.5 (9.1)
Stage N3 sleep 27 0.4–2.5 1.5 (0.5) 26.9 (9.7) 23.3 (10.0)
Stage R sleep 27 0.0–2.1 0.8 (0.5) 14.3 (7.5) 12.7 (7.2)
WBSO 27 0.0–1.9 0.6 (0.5) – –
WASO 27 0.1–3.1 0.9 (0.9) – 13.7 (12.3)

Number of hours and percentage of sleep time (out of TST, or relative to the SP) on the recording night.  Values are presented as mean (standard deviation) 
unless otherwise indicated. SP = sleep period, TST = total sleep time, WASO = wake after sleep onset, WBSO = wake before sleep onset.

Table 2—Repeated-measure ANOVA comparing sleep/wake detection across actigraphy, S+V1, and S+V2 (n = 22).

Outcome Measure Accuracy (%)
Mean (SD) F P η2 P b

Overall sleep/wake
Actigraphy 85.1 (8.9) vs. S+V1: .007

S+V1 87.5 (8.3) vs. S+V2: n.s.
S+V2 87.6 (8.2) 7.72 .001 0.27 vs. Act: .005

Sleep (sensitivity)
Actigraphy 96.6 (2.6) vs. S+V1: .049

S+V1 94.8 (4.2) vs. S+V2: .026
S+V2 93.8 (3.7) 7.49 a .006 0.26 vs. Act: .003

WBSO (specificity)
Actigraphy 46.6 (26.6) vs. S+V1: < .001

S+V1 87.7 (16.9) vs. S+V2: .326
S+V2 90.4 (15.2) 45.00 a  < .001 0.68 vs. Act: < .001

WASO (specificity)
Actigraphy 42.9 (18.1) vs. S+V1: .237

S+V1 48.3 (22.5) vs. S+V2: .041
S+V2 53.2 (21.6) 3.92 a .044 0.16 vs. Act: .017

Overall wake 
(specificity)

Actigraphy 47.6 (19.7) vs. S+V1: < .001
S+V1 69.5 (19.1) vs. S+V2: .076
S+V2 73.1 (20.0) 46.06 a  < .001 0.69 vs. Act: < .001

Differences in sleep and wake epoch-by-epoch accuracy (%, relative to polysomnography) between each device or device algorithm. a Greenhouse-Geisser 
correction for Sphericity violation (P < .05). b Post hoc pairwise comparisons, least significant difference. Act = actigraphy, ANOVA = analysis of variance, 
S+V1 = algorithm version 1, S+V2 = algorithm version 2, SD = standard deviation, WASO = wake after sleep onset, WBSO = wake before sleep onset.
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actigraphy) participants. Instances of TST underestimation 
by at least 20 minutes were fewer, but occurred for 5 (19%, 
S+V1), 5 (27%, S+V2), and 2 (7%, actigraphy) participants 
(Figure 1A and Figure 1B). The influence of sleep quality 
on device estimates of sleep is illustrated in the supplemental 
material (Figure S3). In all cases of sleep quality below 90% 
(n = 13 for S+V1 and actigraphy; n = 10 for S+V2), actigra-
phy overestimated sleep time. Below 90% sleep quality, S+V1 
overestimated sleep time for 8 (62%) and underestimated for 5 
(38%) of participants, while S+V2 overestimated and underes-
timated sleep time equally.

In all cases where wakefulness exceeded 2.5 hours, S+ un-
derestimated wake (5 participants for S+V1 and 2 participants 
for S+V2). When wake time was under 2.5 hours, total wake 
time estimation by both S+V1 and S+V2 was more equivocal. 
Actigraphy rarely overestimated wake (4 participants, in two 
cases by fewer than 5 minutes) and, as wake time increased, 
actigraphy’s wake underestimation worsened (Figure 2A and 
Figure 2B).

S+V1 overestimated light sleep by at least 20 minutes for 10 
participants (37%) and underestimated light sleep by at least 
20 minutes for 9 participants (33%); S+V2 overestimated light 
sleep for 6 (27%) and underestimated for 3 (14%). When light 
sleep was in excess of 4 hours, the S+ consistently underesti-
mated light sleep time (Figure 3A).

For deep sleep, S+V1 overestimated by at least 20 minutes 
for 8 participants (30%) and underestimated by at least 20 min-
utes for 9 participants (33%). S+V2 overestimated by at least 20 
minutes for 4 participants (18%) and underestimated by at least 

20 minutes for 8 participants (36%). Below 1.5 hours deep sleep 
the S+ tended to overestimate, and above 1.5 hours deep sleep 
the S+ tended to underestimate, deep sleep time (Figure 3B).

Both S+V1 and S+V2 overestimated REM sleep, each by at 
least 20 minutes for 8 participants (30% and 36%, respectively), 
while REM sleep underestimation by S+V1 occurred for 2 par-
ticipants (7%) and underestimation by S+V2 occurred for 4 
participants (18%). When REM sleep exceeded 1 hour, S+V2 
underestimation followed an increasing trend (Figure 3C)

Device and Algorithm Performance Comparisons
Performance of S+V1, S+V2, and actigraphy were compared 
to each other. Percent accuracy accomplished by each device 
is available in Table 2 and Table 3. Both S+V1 and S+V2 had 
significantly higher overall agreement with PSG than did ac-
tigraphy (pairwise actigraphy versus S+V1 P = .007; pairwise 
actigraphy versus S+V2 P = .005); S+V1 and S+V2 did not 
differ significantly (Table 3). Within-groups, S+V1 and S+V2 
four-stage sensitivity did not differ. S+ sensitivity was lower 
than actigraphy for both S+V1 (P = .049) and S+V2 (P = .003); 
S+V1 four-stage sensitivity was higher than S+V2 (P = .026). 
S+V1 and S+V2 did not differ significantly on overall speci-
ficity, and specificity for both was significantly higher than 
actigraphy (both, P < .001). Both S+V1 and S+V2 had signifi-
cantly higher specificity than actigraphy for detecting WBSO 
(P < .001, both), but did not differ significantly from one an-
other. S+V2 had higher specificity for WASO than both S+V1 
(P = .041) and actigraphy (P = .017); S+V1 and actigraphy did 
not differ significantly for WASO specificity. Only deep sleep 

Table 3—Repeated-measure t tests comparing stage detection between S+V1 and S+V2 (n = 22).

Outcome Measure Accuracy (%)
mean (SD) t P d

Light sleep
S+V1 64.0 (10.8)
S+V2 65.1 (8.4) 0.61 .548 0.11

Stage N1 sleep
S+V1 60.8 (13.7)
S+V2 59.4 (14.7) 0.59 .562 0.10

Stage N2 sleep
S+V1 65.3 (12.2)
S+V2 67.6 (10.4) 1.31 .205 0.21

Stage N3 sleep
S+V1 61.1 (16.0)
S+V2 52.2 (15.4) 2.76 .012 0.56

Stage R sleep
S+V1 61.5 (30.9)
S+V2 61.6 (28.7) 0.02 .981 0.00

Differences in sleep stage epoch-by-epoch accuracy (%, relative to polysomnography) between S+ algorithms. S+V1 = algorithm version 1, S+V2 = algorithm 
version 2, SD = standard deviation.

Table 4—Summary of Bland-Altman concordance.
Measure S+V1 S+V2 a Actigraphy
Total sleep 17.7 (61.4) 13.2 (51.4) 43.4 (53.5)
Light (stage N1 + N2) sleep 6.4 (52.2) 12.8 (41.2) –
Deep (stage N3) sleep 1.0 (50.0)  −10.5 (40.3) –
REM (stage R) sleep 10.2 (26.6) 10.7 (28.5) –

Average number of minutes’ disagreement (concordance) between a device or device algorithm and polysomnography. Values are presented as mean 
(standard deviation). a n = 22; other measures n = 27. REM = rapid eye movement, S+V1 = algorithm version 1, S+V2 = algorithm version 2.
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sensitivity significantly differed between devices; deep sleep 
was lower for S+V2 than S+V1 (P = .012; Table 3).

DISCUSSION

The respiratory and motion sensing S+ device was able to iden-
tify sleep and wake with an accuracy of about 87% relative 
to PSG, regardless of algorithm. Its sensitivity to sleep, over 
90%, was higher than its specificity, between 70% and 75%. 
S+ was weakest in the same area as most comparable devices; 
however, in WASO detection (where it correctly identified ep-
ochs scored as wake by a credentialed technologist about 50% 
of the time), the S+V2 algorithm detected WASO significantly 
better than actigraphy. Sleep staging accuracy by the S+ did 
not exceed 68% for any stage.

S+ Performance Summary Relative to PSG
Wake detection agreement with the RPSGT scorer by the S+ was 
lower than two experienced RPSGT scorers might be expected 

to achieve relative to one another (80% wake agreement).31 
However, 70% epoch-by-epoch agreement is an improvement 
over actigraphy, which is on average under 50%. When iden-
tifying wakefulness up to about 1.5 hours, both versions of the 
S+ algorithm were prone to bias similar to or better than the ISR 
error rate. This contrasts with other actigraph-like devices that 
aim to identify sleep and wake without distinguishing stage: 
the Fitbit (prior to release of Alta HR) and Jawbone UP have 
both tested with lower specificity than actigraphy, especially 
concerning WASO detection.9,32 Relative to other non-contact 
biomotion sensors of its type, S+ also performed well overall: 
sensitivity, specificity, and overall sleep/wake agreement were 
similar to the SleepMinder (87% to 95% sensitivity, 42% to 
50% specificity, and 75% to 86% overall agreement with PSG)22 
sensitivity was similar to the SleepDesign HSL-101 (96%) but 
S+ specificity was notably higher (versus 38%).23

ISR disagreement for light sleep nears 14%,31 while the 
S+ disagreed with the scoring technologist about 35% of the 
time. For both S+V1 and S+V2, identifying stage N1 sleep as 
sleep was more challenging than identifying stage N2 sleep 

Figure 1—Total sleep time disagreement between measurements.

Bland-Altman concordance between total sleep time as measured by PSG and the S+ device (A) or actigraphy (B). Solid lines indicate average discrepancy, 
dashed and dotted lines indicate ± 1 standard deviation, and symbols correspond to the number of minutes differing for each participant. On the ordinate, 
a positive difference indicates overestimation and a negative difference underestimation relative to PSG. The range of participant sleep time in minutes, 
according to RPSGT-scored PSG, is on the abscissa. Act = actigraphy, Avg = average, Diff = difference, PSG = polysomnography, S+V1 = algorithm version 
1, S+V2 = algorithm version 2, SD = standard deviation.
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as sleep; this trend is also applicable among human scorers, 
where stage N1 sleep disagreement is much higher than stage 
N2 sleep (differing by about 40%).31 Deep sleep (stage N3 
sleep) bias (Figure 3B) was lowest between 1 and 2 hours of 
deep sleep time. Among technologists, deep sleep is agreed 
upon about 70% of the time; the higher-performing S+V1 al-
gorithm achieved about 60% agreement with our technologist. 
Although similar for both S+V1 and S+V2, epoch-by-epoch 
REM sleep agreement with the RPSGT was about 20% lower 
by the S+ than the roughly 80% expected agreement among 
credentialed scorers.

S+ Performance Summary Relative to Actigraphy
Although S+ had significantly higher overall specificity and 
significantly lower overall sensitivity than actigraphy, its over-
all sleep/wake agreement with PSG was higher. Both algo-
rithms also had higher WBSO epoch-by-epoch agreement than 
actigraphy, with performance differences between 40% and 
50%. Further, from a clinical perspective, the approximately 
10% performance difference observed in favor of S+V2 relative 

to actigraphy is robust enough to potentially impact therapeu-
tic decision-making.

Wake detection and sleep overestimation are consistent lim-
itations of movement-based algorithms. As such, limitations of 
this device type tend to be most severe with clinical popula-
tions who struggle with sleep continuity. Referring to Bland-
Altman Figure 1B and Figure 2B, and consistent with extant 
literature, actigraphy consistently overestimated TST and un-
derestimated wake time. Wake underestimation by actigraphy 
in this study was almost universal and appeared to be further 
related to sleep quality (Figure S3); S+ was also likely to un-
derestimate wake time in the context of very large amounts 
(> 3 hours) of wakefulness, but garnered a performance edge 
when participant wake time was less extreme. The most dra-
matic underestimations for both actigraphy and S+ occurred in 
these instances of excessive wakefulness, as might be expected 
given the known limitations of wake detection, with several 
underestimations approaching 2 hours discrepancy with PSG. 
Nonetheless, devices should aim to be reliable even when noc-
turnal sleep is of low quality.

Figure 2—Total wake time disagreement between measurements.

Bland-Altman concordance between total wake time as measured by PSG and the S+ device (A) or actigraphy (B). Solid lines indicate average discrepancy, 
dashed and dotted lines indicate ± 1 standard deviation, and symbols correspond to the number of minutes differing for each participant. On the ordinate, 
a positive difference indicates overestimation and a negative difference underestimation relative to PSG. The range of participant wake time in minutes, 
according to RPSGT-scored PSG, is on the abscissa. Act = actigraphy, Avg = average, Diff = difference, PSG = polysomnography, S+V1 = algorithm version 
1, S+V2 = algorithm version 2, SD = standard deviation.
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Extant literature also suggests that actigraphy suffers bias 
(underestimation) after about 30 minutes of WASO, and our 
data appear to corroborate this observation.10 There were more 
participants with overestimated wake time by S+ algorithms 
than by actigraphy, such that S+ may overestimate when de-
tecting wake time of less than 60 minutes. Between 60 and 
120 minutes of wake, the S+ provided a more accurate overall 
estimate of wake time.

S+V1 and S+V2 Performance Comparison
S+V1 and S+V2 did not differ on overall epoch-by-epoch ac-
curacy, using either dichotomous sleep/wake (for like-com-
parison with actigraphy) or four-stage (light, deep, REM, and 
wake) categorizations. Nor did the algorithm versions differ on 
overall specificity, WBSO specificity, light sleep (combined 
stage N1 and N2 sleep) sensitivity, individual stage N1 or N2 
sleep sensitivity, or REM sleep sensitivity. However, S+V2 

Figure 3—Sleep staging disagreement between measurements.

Bland-Altman concordance between the S+ device and PSG when recognizing both stage N1 and N2 sleep as light sleep (A), stage N3  sleep as deep sleep 
(B), and REM sleep (C). Solid lines indicate average discrepancy, dashed and dotted lines indicate ± 1 standard deviation, and symbols correspond to the 
number of minutes differing for each participant. On the ordinate, a positive difference indicates overestimation and a negative difference underestimation 
relative to PSG. The range of participant light, deep, or REM sleep time in minutes, according to RPSGT-scored PSG, is on the abscissa. Avg = average, 
Diff = difference, PSG = polysomnography, S+V1 = algorithm version 1, S+V2 = algorithm version 2, SD = standard deviation.
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changes did result in lower overall sleep sensitivity, lower stage 
N3 sleep sensitivity, and higher WASO specificity compared 
to S+V1. This algorithm adjustment therefore appears to have 
correctly targeted a common limitation of movement-based de-
vices: wake detection (or sleep overestimation).

S+V2 WASO specificity was apparently at the expense of 
sleep detection sensitivity. The clinical significance of a sta-
tistical change in sensitivity around 1% is not as compelling 
as the potential for up to 5% improvement in WASO accuracy, 
particularly given that WASO is so consistently evasive of algo-
rithm detection among sleep-estimating devices. Nonetheless, 
a both statistically and clinically sizeable specificity reduction 
(of about 9%) with the implementation of S+V2 highlights the 
importance of sustaining sleep identification accuracy while 
algorithms aim to improve wake detection.

Limitations
In this work, we used a relatively small sample of only healthy 
sleepers, so extrapolation to clinical groups cannot be inferred. 
Our sample’s sleep architecture also deviated from our expec-
tations of normal sleepers, in both stage and TST. REM sleep 
time was lower than typically reported for young healthy adults 
(14.3% versus about 25%), as was stage N2 sleep time (44.0% 
versus about 50%). Stage N1 sleep time was higher than ex-
pected (14.9% versus < 5%), as was stage N3 sleep time (26.9% 
versus about 20%). Low TST in the laboratory (5.6 hours on 
average) may have contributed to skewed architecture distribu-
tions, especially because participants may have had more REM 
sleep time if permitted to sleep beyond scheduled morning 

awakening in the laboratory. Further, low TST may also have 
artificially inflated device accuracy because it decreased the 
opportunity for more naturally occurring awakenings; how-
ever, this alarm clock-based context is also ecologically valid. 
The impact of a novel sleeping environment (ie, the laboratory 
and monitoring equipment) is likely to have also contributed to 
elevated time spent in stage N1 sleep. A first-night effect33 may 
have negatively affected the quality of participant sleep and, 
given that wake and stage N1 sleep are typically low-perform-
ing stages for devices, may have resulted in an underestimation 
of in-home device performance on the whole. Nonetheless, a 
device that is valid and reliable under more sleeping circum-
stances than only the most ideal offers greater translational 
value, clinically.

Future Directions
Future work should evaluate the S+ sleep onset latency ac-
curacy for the purpose of clinical translation, as our analysis 
of WBSO cannot be considered an equivalent representation 
of device accuracy in detecting this measure; the clinically 
significant measure of latency from “lights out” to sleep onset.

CONCLUSIONS

Although the S+ was quantitatively worse than the ISR for 
PSG in all standard metrics, it offers the advantages of auto-
mated staging and wireless, non-contact sleep data collection 
in the standard home environment. Relative to other published 

Figure 4—Epoch-by-epoch agreement with PSG.

Percent agreement either between a sleep monitoring device (S+V1, S+V2, or actigraphy) and a corresponding PSG record (scored by an RPSGT) in this 
study, or between PSG records scored by multiple registered technologists (indicated by dashed gray lines; inter-scorer reliability).31 Error bars indicate 
standard deviation (n = 22 in all device groups). Overall sensitivity and specificity results reflect post hoc pairwise outcomes after significant omnibus 
repeated-measures ANOVA. Stage-specific sensitivity results reflect outcomes of within-subjects t tests. * P < .05, ** P < .01. PSG = polysomnography, 
REM = rapid eye movement sleep, S+V1 = algorithm version 1, S+V2 = algorithm version 2.
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evaluation of commercially available sleep-tracking devices 
that do not incorporate neurocortical data, this bedside de-
vice better identifies WBSO—a major challenge in this in-
dustry. There is still room to improve WASO specificity and 
sleep stage detection of the S+ and other devices. Consumers 
should be wary, however, that their sleep data from S+ and 
other devices may change in the wake of ongoing algorithm 
adaptations—not all of which are improvements in every re-
spect—and data may not reflect an actual change in consumer 
sleep quality or quantity while manufacturers strive to achieve 
their highest-performing algorithm.

ABBRE VI ATIONS

AHI, apnea-hypopnea index
ANOVA, analysis of variance
BMI, body mass index
EEG, electroencephalography
IRB, Institutional Review Board
NRBS, non-contact bedside radiofrequency biomotion 

sensors
PSG, polysomnography
REM, rapid eye movement 
RPSGT, Registered Polysomnographic Technologist
TST, total sleep time
WASO, wake after sleep onset
WBSO, wake before sleep onset
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