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Prior Expectation Modulates the Interaction between
Sensory and Prefrontal Regions in the Human Brain
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How do expectations about the identity of a forthcoming visual stimulus influence the neural mechanisms of perceptual decision making
in the human brain? Previous investigations into this issue have mostly involved changing the subjects’ attentional focus or the behavioral
relevance of certain targets but rarely manipulated subjects’ prior expectation about the likely identity of the stimulus. Also, because
perceptual decisions were often paired with specific motor responses, it has been difficult to dissociate neural activity that reflects
perceptual decisions from motor preparatory activity. Here we designed a task in which we induced prior expectations about the direction
of a moving-dot pattern and withheld the stimulus-response mapping until the subjects were prompted to respond. In line with current
models of perceptual decision making, we found that subjects’ performance was influenced by their expectation about upcoming motion
direction. The integration of such information into the decision process was reflected by heightened activity in the dorsolateral prefrontal
cortex. Activity in this area reflected the degree to which subjects adjusted their decisions based on the prior expectation cue. Further-
more, there was increased effective connectivity between sensory regions (motion-sensitive medial temporal area MT+) and dorsolat-
eral prefrontal cortex when subjects had a prior expectation about the upcoming motion direction. Dynamic causal modeling suggested
that stimulus expectation modulated both the feedforward and feedback connectivity between MT+ and prefrontal cortex. These results
provide a mechanism of how prior expectations may affect perceptual decision making, namely by changing neural activity in, and

sensory drive to, prefrontal areas.

Introduction

Perceptual decision making has recently received great attention
by researchers (Heekeren et al., 2008; Ratcliff and McKoon, 2008;
Tosoni et al., 2008; Donner et al., 2009; Ferrera et al., 2009; Egner
et al., 2010; Noppeney et al., 2010). Perceptual decisions are al-
most always informed and heavily biased by our prior expecta-
tions. For example, we identify objects much more rapidly in a
familiar context that sets up priors for object recognition (Bar,
2004; Enns and Lleras, 2008).

Most studies of perceptual decision-making have looked at
the influence of expectations on perceptual inference by selec-
tively biasing participants to process one type of information over
another (Summerfield et al., 2006; Summerfield and Koechlin,
2008; Esterman and Yantis, 2010; Preuschhof et al., 2010). Al-
though this may selectively bias processing for one stimulus type,
the prior probability of occurrence for a stimulus (i.e., its likeli-
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hood) is not manipulated in these studies. Rather, they manipu-
lated the amount of attention devoted to the stimulus (i.e., its
relevance) (Summerfield and Egner, 2009). One recent human
imaging study that manipulated prior information (rather than
relevance) in perceptual decision making (Forstmann et al.,
2010) observed that expectation for leftward or rightward motion
selectively activated a contralateral corticostriatal circuit that was
linked to the associated behavioral response. However, as in most
primate neurophysiological studies (Gold and Shadlen, 2007), in
the study by Forstmann et al. perceptual priors (i.e., “expecting
leftward motion”) covaried with motor priors (i.e., “expecting to
make a leftward response”). Therefore, it is not clear whether
subjects integrated the prior information into the perceptual
decision-making process or whether the cue helped them to pre-
pare the most likely response.

In the current study, we manipulated prior probability of
sensory evidence during a perceptual decision-making task,
while avoiding a fixed stimulus—-response mapping. This al-
lowed us to assess how perceptual prior expectations influence
neural activity in sensory and prefrontal areas and uncover the
mechanisms of decision making independently from motor
preparation (Bennur and Gold, 2011). Behavioral results
showed that stimulus expectation changed subjects’ percep-
tual choice, rendering subjects more biased (shifted criterion)
and slightly less sensitive (decreased d'). Neuroimaging results
indicated that, when subjects had a prior expectation about
the sensory evidence, this resulted in both increased activity in
dorsolateral prefrontal cortex and increased recurrent con-
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Figure 1.  Task design. In each trial, subjects were asked to press keys to indicate whether a
patch of dots was moving in an expanding or contracting direction. A cue in the form of a simple
geometric shape indicated the likely direction of the motion. In half of the trials, the cue was
predictive of the motion direction (75% valid, 25% invalid), whereas in the other half of the
trials, a neutral cue was presented, which gave no information about the likely direction of the
upcoming motion (i.e., a non-predictive cue). To perform optimally when the cue was predic-
tive, subjects needed to combine the information from the cue and stimulus. The response
mapping was only shown after the offset of the stimulus, so that subjects could not prepare for
amotor response before the end of the motion presentation. Each trial lasted between 3.5 and
4.5 5 (chosen from a uniform distribution), and subjects had up to 1sto give an answer after the
offset of the stimulus. ITl, Intertrial interval.

nectivity between this area and motion-sensitive medial tem-
poral sensory area MT +.

Materials and Methods

Subjects. Twenty-three healthy right-handed subjects took part in the
experiment. All participants had normal or corrected-to-normal vision.
Two subjects performed at chance in discriminating the direction of
motion during the experiment and were therefore excluded from addi-
tional analysis. All the analyses were done with the remaining 21 subjects
(15 females; mean = SD age, 21.6 = 2.6 years). A written informed
consent was obtained from all subjects. The research was approved by the
local ethics committee in which the experiment was performed (CMO
region Arnhem-Nijmegen, The Netherlands).

Stimuli and task. Subjects were required to indicate the overall direc-
tion of motion of white dots (density, 2.4 dots/degree?; speed, 6°/s) pre-
sented inside a black annulus (outer circle radius, 10°% inner circle radius,
1°). The motion direction was either contracting or expanding. A
separate set of dots was chosen to carry the coherent motion each
trial. Incoherent dots moved randomly with the same speed as coher-
ent dots. Each dot had a lifetime between three and five frames (pro-
jector refresh rate, 60 Hz), after which it was replaced by another dot
at a random location within the annulus. A small fixation square was
presented for the duration of the trial, and subjects were required to
maintain fixation on it. The stimuli were presented on gray back-
ground (Fig. 1) and were generated using Psychophysics Toolbox
(Brainard, 1997) in MATLAB (MathWorks).

Each trial began with the presentation of a cue that was a simple
geometric shape (Fig. 1). Four different shapes were used: square, dia-
mond, triangle pointing up, and triangle pointing down. For half of the
subjects, the first two cues were predictive of the forthcoming stimulus,
whereas the last two were not. For the remaining half of the subjects, this
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relationship was inverted. To further avoid any confounds from low-
level physical characteristics of the cues, each shape from either pair of
shapes was counterbalanced across subjects to indicate either a contract-
ing or expanding stimulus (this was only relevant when the shape was
predictive). The predictive cue indicated the forthcoming stimulus cor-
rectly on 75% of the trials. We refer to the trials in which the subsequent
stimulus was correctly predicted by the cue as “valid.” In the remaining
25% of the time, the predictive cues indicated the wrong direction of
motion. We refer to these trials as “invalid.” The non-predictive cues
were followed by expanding and contracting motion equally often. Thus,
the non-predictive cues are also referred to as “neutral” throughout.
Subjects were fully informed about the above contingencies and were
encouraged to take the cue into account when making their perceptual
decisions.

Subjects gave their response with the index fingers of their left and
right hands. On each trial, they were instructed which hand should be
used for which response. Thus, the answer “expanding” might be
mapped to the right-hand button press on one trial and to a left-hand
button press on another trial. Importantly, the instruction only came
after the offset of the stimulus, thus ensuring that any accumulation of
evidence during stimulus presentation was not conflated with motor
preparation.

The cue was presented for 250 ms, followed by a fixation dot for the
same duration. Then, the motion stimulus appeared for 500 ms, and
finally the trial-specific response mapping appeared. Subjects were not
allowed to respond before the appearance of the response mapping and
had 1 s to respond once it appeared. Reaction times (RTs) were measured
from the onset of the response mapping. During the experiment, no
feedback was provided. The total duration of a single trial was between
3.5 and 4.5 s, with the intervals sampled from a uniform distribution.

Before the fMRI experiment, each subject took part in a 1 h training
session administered on a separate day, in which the subject practiced
882 trials. During the first half of the training session, subjects were given
trial-by-trial feedback, whereas there was no feedback during the second
part of the training to prepare subjects for the experiment in the scanner
environment. Just before the fMRI experiment, subjects practiced for
additional 5 min (64 trials) to remind them of the task requirements.

Based on the data from the behavioral session, three motion coherence
levels were chosen for each subject. The intermediate coherence level was
individually chosen to produce ~75% correct responses in the absence of
a cue (mean * SD coherence, 4.4 = 0.7%). The low motion coherence
was fixed at 50% of the intermediate coherence, whereas the high motion
coherence was 150% of the intermediate coherence. The presentation of
motion coherence was pseudorandomized for each subject such that
each coherence level appeared equally often with each combination of
cue identity and motion direction.

The experiment consisted of two sessions of 336 trials each. Trials were
grouped in 42 blocks of eight trials. Each block consisted of trials with
either predictive or non-predictive cues. The predictive and non-
predictive blocks alternated, with the first block counterbalanced across
subjects to be either predictive or non-predictive. Each block began with
a 1 s presentation of the two geometric shapes that served as cues during
the subsequent eight trials, followed by a 1 s interval of fixation. This was
done to remind subjects of the type of cue during the following block.
Blocks were separated by an additional 4—8 s (sampled from a uniform
distribution), resulting in an average block length of 40 s.

We recorded a localizer for the MT + region in a separate session after
the main experiment. Forty-two blocks of moving dots (block duration
of 16 s) were alternated with 14 blocks of stationary dots (block duration
of 16 s), resulting in ~15 min scan duration.

Behavioral analyses. We computed the signal detection theoretic
(SDT) measures d’ and ¢ (Macmillan and Creelman, 2005). The variable
d' is a measure of a subject’s stimulus discrimination sensitivity, whereas
¢ is a measure of a subject’s bias. These measures were calculated on the
basis of hit and false-alarm rates. By only considering the trials in which
subjects were cued that the stimulus was likely to be expanding, we com-
puted d’ . ,ana aNd Coypang- Similarly, by only considering the trials in
which the cue indicating that the stimulus was likely to be contracting, we
computed d’_, irace A0 Coonirace- BECaUse we were not interested in gen-
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eral performance differences between contracting and expanding mo-
tion, we then averaged across these motion types to obtain d’,, . gictives
which reflects the discriminability of the motion stimuli in the context of
apredictive cue. Conversely, Cox,and a1 Ceopyrace are the biases for answer-
ing “expand” when an expanding or contracting cue was presented, re-
spectively. Thus, we expected cypanq to be negative (corresponding to
answering “expand” >50% of the time), and c_, ;.. to be positive (cor-
responding to answering “expand” <50% of the time). Criterion shift
was defined as ¢ oniract ~ Cexpana> 1-€-» the difference of how much the cues
were able to move subjects’ criterion for picking one response option
over the other. The bigger this shift was, the more the subject adjusted
their behavior based on the predictive cue.

fMRI acquisition. Images were acquired on a 3 tesla Trio MRI system
(Siemens). Functional images were acquired using a 32-channel coil,
with a single-shot gradient echo-planar imaging sequence (repetition
time, 1950 ms; echo time, 30 ms; 31 ascending slices; voxel size, 3 X 3 X
3 mm; flip angle, 80°; field of view, 192 mm). A high-resolution anatom-
ical image was acquired using a T1-weighted MPRAGE sequence (repe-
tition time, 2300 ms; echo time, 3.03 ms; voxel size, 1 X 1 X 1 mm).

fMRI data analysis. Analysis was performed using SPM5 (Wellcome
Department of Imaging Neuroscience, London, UK). The first six vol-
umes of each scan were discarded to allow for scanner equilibration.
Preprocessing consisted of realignment through rigid-body registration
to correct for head motion, slice timing correction to the onset of the first
slice, coregistration of the functional and anatomical images, segmenta-
tion of the anatomical image, normalization to Montreal Neurological
Institute (MNI) space using the gray matter image obtained from the
segmentation, interpolation of functional images to 2 X 2 X 2 mm, and
smoothing with a Gaussian kernel with a full-width at half-maximum of
8 mm. A high-pass filter (cutoff, 128 s) was applied to remove low-
frequency signals, such as scanner drift.

Regressors for the first-level analysis were obtained by convolving the
unit impulse time series for each condition with the canonical hemody-
namic response function. We modeled the three different cue—stimulus
types (valid, invalid, neutral) separately for all trials in which subjects
responded correctly. Trials with incorrect or no responses were modeled
as a regressor of no interest. The onsets of the trials were defined at the
onset of the cue presentation, and the duration was set to 1 s, the period
from the onset of the cue to the offset of the motion stimulus. We in-
cluded 12 nuisance regressors related to head motion: three regressors
related to translation and three regressors related to rotation of the head,
as well as their derivatives (Lund et al., 2005).

Unless stated otherwise, the reported activations are at p < 0.05 cor-
rected at the cluster level for multiple comparisons using an auxiliary
(uncorrected) voxel threshold of p < 0.001. This auxiliary threshold
defines the extent of activated clusters that formed the basis of our sta-
tistical inference (Friston et al., 1996).

Psychophysiological interaction analysis. We performed psychophysio-
logical interaction (PPI) analyses to test whether connectivity between
MT+ and regions in the parietal and prefrontal cortex depended on the
identity of the cues. PPI represents a measure of context-dependent con-
nectivity, explaining regionally specific responses in one brain area in
terms of the interaction between responses in another brain region and a
cognitive or sensory process (Friston etal., 1997). We defined the left and
right MT+ for each subject using the data from the localizer by applying
the contrast “moving dots > stationary dots.” We also defined the dor-
solateral prefrontal cortex (DLPFC) and the intraparietal sulcus (IPS)
based on the contrast “valid + invalid (i.e., predictive) > neutral (i.e.,
non-predictive)” in the main experiment. For each subject, BOLD re-
sponse time series values were extracted from these regions. The analysis
was constructed to test for differences in the regression slope of MT+
activity on IPS and DLPFC, depending on whether subjects were engaged
in tasks with either predictive or non-predictive cues.

To construct the PPI regressors, we multiplied the time courses ex-
tracted from left and right MT+ (“physiological factor”) with the time
course of the experimental manipulation (predictive trials — non-
predictive trials, “psychological factor”) (Gitelman et al., 2003). This PPI
regressor, alongside the task regressors and the time course of the seed
region, were included in the statistical model for each subject. Separate
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models were created for left and right MT+. To visualize the regression
slopes separately for predictive and non-predictive trials, we multiplied
the time course of neural activity in MT+ with task regressors relating to
predictive and non-predictive trials, respectively. However, it should be
noted that the difference in slope values between conditions, rather than
their absolute values, are of interest. The reason is that the slope for
predictive trials is implicitly biased by the non-predictive trials and vice
versa.

Average parameter estimates for each region of interest were calcu-
lated for each subject separately. These estimates were then subjected to a
paired-samples ¢ test to test the prediction that connectivity between
MT+ and left DLPFC and/or IPS is different for predictive compared
with non-predictive blocks.

Dynamic causal modeling analysis. Dynamic causal modeling (DCM)
aims to model directed (causal) influences between regions (Friston et
al., 2003). In the PPI analysis, we observed stronger connectivity between
MT+ and the left DLPFC. DCM allows us to adjudicate between stronger
feedforward, feedback, or recurrent interactions between MT+ and
DLPFC. This analysis was performed using SPM8 (Wellcome Depart-
ment of Imaging Neuroscience). To perform the DCM analysis, we esti-
mated a first-level analysis with the following regressors: stimulus
(modeling the main effect of stimulus, i.e., stimulus > baseline) and
expectation (modeling the main effect of expectation, i.e., predictive
trials > non-predictive trials). To extract the time courses for each of the
regions of interest, we thresholded the subject-specific statistical F maps
for the effects of no interest from the first-level model described above at
p < 0.01 and masked the resulting activations with the subject-specific
MT+ regions obtained from the localizer or with the left DLPFC region
obtained from the group analysis above.

The main goal of the DCM analysis was to investigate whether the
modulation of the connection between MT+ and left DLPFC by expec-
tation was primarily feedforward, feedback, or recurrent. Thus, we spec-
ified three different models that differed in whether expectation
influenced feedforward, feedback, or both connections between MT+
and DLPFC. All models included intrinsic bilateral connections from left
and right MT + to left DLPFC (see Fig. 6 A). Furthermore, we considered
three different possibilities for how the stimulus itself influenced activity
in and connectivity between the nodes of the network. We constructed
models in which the stimulus only modulated MT +, models in which the
stimulus modulated both MT+ and DLPFC, and models in which the
stimulus modulated MT +, DLPFC, and the connectivity between MT+
and DLPFC. Together, this resulted in nine models (feedforward, feed-
back, and recurrent models, each with three possible implementations of
how stimulus affected activity). We fitted each of these nine models for
each subject separately. Then, using a hierarchical Bayesian approach
(Stephan et al., 2009), we compared the feedforward, feedback, and re-
current families of models by computing the exceedance probability of
each class of models. The exceedance probability in this analysis reflects
the likelihood that a class of models explains the data better than the
other class of models in the comparison. We also used Bayesian model
comparison to compare all individual models across subjects at the sec-
ond level.

Results

Behavioral results

The identity of the cues (valid, invalid, or neutral) significantly
influenced the proportion of correct responses (F, 4o, = 12.63,
p <0.001). In particular, the proportion of correct responses was
higher when the cue was valid rather than neutral (t,, = 3.09,
p = 0.006, average difference of 5%) and lower when the cue was
invalid rather than neutral (¢,, = —3.30, p = 0.004, average
difference of 14%). Cue identity also significantly influenced RT's
(F(2,40) = 12.57, p < 0.001), although the pattern was more com-
plex (Fig. 2A). The level of motion coherence influenced both the
proportion of correct responses (F, 40, = 95.94, p < 0.001) and
RTs (F, 49y = 10.24, p < 0.001), with higher motion coherence
leading to faster and more accurate responses. There was also an
interaction between motion coherence and cue identity for
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Figure 2.  Behavioral results. A, Accuracy and reaction times are plotted as a function of

motion coherence (low, medium, high) and cue type (valid, neutral, invalid). Overall, higher
motion coherence led to higher accuracy and lower reaction times. Similarly, invalid cues de-
creased performance, whereas valid cues improved it. Error bars show the SEM. B, The SDT
measures d” and ¢ were computed independently for predictive (i.e., valid and invalid) and
non-predictive (i.e., neutral) cues to gauge subjects’ ability to do the task with/without the
expectation provided by the cues. Surprisingly, d’ was lower for predictive than for neutral cues.
Subjects were unbiased (c ~0) when doing the task with neutral cues but shifted their criterion
toward the expected percept when predictive cues were presented. Error bars show the SEM.

both accuracy (F, g9y = 3.93, p = 0.013) and RT (F(44) =
5.23, p = 0.005).

We investigated the effect of the predictive cues on discrimi-
nation sensitivity, as measured with the signal detection measure
d’ (Macmillan and Creelman, 2005). The idea behind this analy-
sis was to estimate subjects’ capacity to perform the motion dis-
crimination task, either with or without an expectation about
upcoming motion direction. We computed d’,,gicrive Using all
the valid and invalid trials and d’ ., using all the neutral trials.
The key point to note about the procedure is that, to compute
d' predictives We separated the predictive (valid and invalid) trials
into two categories: one in which the cue indicated that the forth-
coming stimulus was likely to be expanding (d’ .,,n4) and one in
which the cue indicated a likely contracting stimulus (d’ . ,act)-
Then, d',,cdicive Was simply the average of d’ .y .na and d’ o nirace
(for details, see Materials and Methods). Similarly, we computed
the signal detection measure of bias ¢ for predictive (¢, edictive =
Ceontract — Cexpand) aNd neutral (¢, eyyrqr) trials.

Figure 2 B shows that, not surprisingly, d’ increased with mo-
tion coherence (F(, 4oy = 88.63, p < 0.001). More interestingly,
the cues also influenced d" (F; 55, = 8.66, p = 0.008) such that
predictive (valid and invalid) cues decreased d'. This suggests
that, although subjects benefited from the predictive cue to im-
prove overall accuracy, the underlying stimulus processing sen-
sitivity (independent of the aid provided by the cue) became
worse after the presentation of a predictive cue. The decrease in d’
for predictive cues became bigger with increasing motion coherence,
with the medium and high motion coherence showing a significant
d' difference (medium coherence: d’ difference = 0.36, t,, = 2.69,
p = 0.014; high coherence: d’ difference = 0.47, t,,, = 2.59, p =
0.018), unlike the lowest motion coherence, which did not show a
significant d" decrease (d’ difference = 0.13, p = 0.23).

Finally, the predictive cues significantly shifted the criterion
(c: F(100) = 11.89, p = 0.003), demonstrating that subjects did
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incorporate the information of the cues. Conversely, motion co-
herence had no effect on ¢ (F, 4, = 1.21, p = 0.31).

Neural activity

We first identified regions in which activity during the perceptual
decision was modulated by expectation. More specifically, we
investigated whether there was larger activity during trials with
predictive cues (valid and invalid) compared with trials with non-
predictive cues (neutral). This comparison revealed larger activ-
ity for predictive trials bilaterally in the IPS and DLPFC. The
anterior part of the left IPS region extended into the gyral surface
posterior to the postcentral sulcus, whereas its most posterior
part reached just anterior and dorsal of the transverse occipital
sulcus. The right IPS activation was smaller and did not extend as
laterally and anteriorly as the activation in left IPS. In view of their
anatomical locations, these activations are most properly referred
to as “anterior IPS” (Shulman et al., 1999). The anatomical loca-
tion of DLPFC falls close to cytoarchitectonically defined Brod-
mann area 46 (Rajkowska and Goldman-Rakic, 1995). These
regions are shown in Figure 3A, and details are provided in Table
1. We next tested for differences in these regions as a function of
cue type (valid vs invalid), as well as belief updating (as indexed
by criterion shift induced by the predictive cue).

Figure 3B shows the percentage signal change associated with
the three cue types (invalid, valid, neutral), for each of the four
regions. Interestingly, there was larger activity during invalidly
cued trials than validly cued trials in the left (t,, = 2.49, p =
0.01) and right DLPEC (t,5, = 2.54, p = 0.01). This activity
difference was not present in either left or right IPS ( p > 0.8). In
Figure 3C, we have plotted the time courses for each trial type in
each of the regions of interest.

Next, we tested whether interindividual differences in the up-
dating of one’s belief on the basis of the predictive cue during
the perceptual decision was related to activity levels in the
expectation-related regions of interests (IPS, DLPFC), as well in
the sensory region MT+. Specifically, we investigated whether
between-subject variations in brain activity differences between
predictive and non-predictive trials were correlated with the ex-
tent to which subjects incorporated the predictive cues (criterion
shift). Criterion shift was formalized by each individual subject’s
propensity to adjust his or her decision criterion based on the
predictive cues (i.e., Ccontract — Cexpanas S€€ Materials and Meth-
ods). We computed correlation coefficients between these mea-
sures for bilateral DLPFC, IPS, and MT+ (Fig. 4). Because three
subjects used the cue particularly extensively and could poten-
tially drive some of the correlations, we used a nonparametric
correlation test (Spearman’s rank correlation), which is unaf-
fected by outliers. There was a positive correlation between crite-
rion shift and brain activity in left DLPFC (Spearman’s p = 0.50,
p = 0.01) and left IPS (Spearman’s p = 0.61, p = 0.002). In other
words, subjects who used the cues more extensively also showed
higher activity in parietal and prefrontal regions in the left hemi-
sphere. Conversely, criterion shift showed a negative correlation
with right MT+ (Spearman’s p = —0.38, p = 0.04).

Effective connectivity

The previous analysis suggests that expectation modulated neural
activity in dorsolateral prefrontal cortex as a function of the bias
introduced by expectation. We next tested whether the interac-
tion between sensory (MT+) and dorsolateral prefrontal cortex
was also affected by expectation. In particular, we investigated
whether activity changes in MT+ was associated with larger ac-
tivity changes in IPS and DLPFC during trials in which subjects
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connections between MT+ and DLPFC
(see Materials and Methods). This pro-
duced a total of nine models.

Using a hierarchical Bayesian approach
(Stephan et al., 2009), we compared the
feedforward, feedback, and recurrent fami-
lies of models by computing the exceedance
probability of each class of models. The ex-
ceedance probability in this analysis reflects
the likelihood that a class of models explains
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Table 1. Localization of activation difference for the contrast predictive (valid +
invalid) > nonpredictive (neutral)

Anatomical region ~ tvalue  Clustersize  Corrected pvalue  Coordinates (x, y, 2)
Left DLPFC 449 257 0.001 —50,22,36

Right DLPFC 427 162 0.01 40, 20,30

Left IPS 5.68 1016 <<0.001 —40, —44,50
Right IPS 490 149 0.014 32, —56,44

Coordinates correspond to the standard MNI brain. All results are cluster-level corrected for multiple comparisons.

had a prior expectation about the forthcoming stimulus than
during trials in which subjects did not have a prior expectation
about the stimulus. Indeed, we observed that, when subjects had
an expectation, there was a stronger effective connectivity be-
tween MT+ and left DLPFC (left MT+: £(,, = 2.19, p = 0.02;
right MT+: £, = 2.79, p = 0.006) than when subjects had no
expectation about the upcoming motion direction (Fig. 5). These
effects were observed in neither the right DLPFC ( p > 0.07) nor
the left or right IPS (p > 0.14).

The effective connectivity uncovered by the above analysis
could be the result of connectivity that is primarily feedforward,
primarily feedback, or recurrent (both feedforward and feed-
back). Therefore, we performed DCM analysis to differentiate
between these possibilities. We constructed families of models in
which expectation modulated the feedforward, the feedback, or
both the feedforward and feedback connections between MT+
and DLPFC (Fig. 6 A). Each family consisted of individual models
in which the stimulus was allowed to modulate (1) only MT+,
(2) MT+ and DLPFC, and (3) MT+, DLPFC, and the recurrent

-0.
20
0.
-0.
20
0.
/ \ 0.
20
Neural activation differences induced by expectation. A, Larger activation was found bilaterally in both IPS and
bilateral DLPFC for trials in which subjects had an expectation than for trials in which subjects had no expectation (shownin yellow).
Bilateral MT+ (shown in purple) was functionally localized using an independent localizer for each subject. B, Percentage signal
changeis plotted for each of the three cue types (invalid, valid, and neutral) for left DLPFC, IPS, and MT + (left column) and its right
hemisphere counterpart (right column). DLPFC showed larger activity for invalidly cued trials compared with validly cued trials

(both p values <<0.02). No such difference was found for IPS (both p values >0.8). There were no differences in MT+ for the
differently cued trials (all p values >0.2). C, Time courses for each of the six regions of interest are plotted for each trial type. Error

ceedance probability of 2%. Thus, it appears
0 10 20

average posterior probabilities across
subjects. The feedforward, feedback, and
recurrent models in which the stimulus
only influenced MT+ were generally pre-
ferred, with average posterior probabili-
ties of 12, 10, and 44%, respectively. The
models in which the stimulus directly
influenced activity in both MT+ and
DLPFC had average posterior probabili-
ties of 5, 2, and 2% for the feedforward,
feedback, and recurrent models, respec-
tively. Last, models in which the stimulus modulated MT+,
DLPFC, and the connectivity between MT+ and DLPFC had
average posterior probabilities of 9, 5, and 10% for the feedfor-
ward, feedback, and recurrent models, respectively.

Finally, we looked at the strength of the connections between
regions in the winning model (the recurrent model in which
stimulus only modulates MT+) (Fig. 6C). We were interested
how expectation modulated the connections between bilateral
MT and left DLPFC. Expectation significantly increased the
strength of the forward connection from left MT to left DLPFC
(d = 0.098, t,,, = 3.43, p = 0.003) and from right MT to left
DLPEC (d = 0.075, t,5 = 3.07, p = 0.006). Conversely, the
feedback connections were negatively modulated by expectation,
although the effect was not significant (p > 0.10).

Discussion

The likelihood of a perceptual event has a marked effect on our
ability to perceive it (Bar, 2004). Here we examined how percep-
tual decisions about motion are influenced by inducing a prior
expectation regarding the likelihood of motion direction. Behav-
ioral results suggest that the prior cue changed subjects’ expecta-
tion about upcoming motion direction, such that decisions were
more accurate when subjects were provided with a valid cue (Fig.
2). Moreover, DLPFC cortex showed higher activity when sub-
jects had a prior expectation about motion direction (Fig. 3) and
amodulation of activity as a function of whether the expectation
was violated or not. Furthermore, between-subject activity differ-
ences in the left DLPFC reflected individual differences in how
much the expectation cue biased subjects’ decisions (Fig. 4). Ad-
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Figure4. Brain-behavior correlation of expectation-induced bias. We observed a significant
positive across-subjects correlation between the behavioral criterion shift induced by the pre-
diction cue and the neural activity increase for predictive trials in left DLPFC (Spearman’s p =
0.50,p = 0.01) and left IPS (Spearman’s p = 0.61, p = .002). Only trends were found in right
DLPFCand right IPS. Conversely, this correlation was negative in left and right MT+, with the
effect being significantinright MT+ (Spearman’s p = —0.38, p = 0.04). The activity increase
was computed from the contrast predictive (valid and invalid) > non-predictive (neutral) trials.
Criterion shift is a measure of the degree to which subjects adjusted their decision bias (for
details, see Materials and Methods). We used Spearman’s rank correlation, a nonparametric test
that is insensitive to extreme values in the variables. All significant correlations remain signifi-
cant if Pearson’s product-moment correlation was used.
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Figure 5.  Effective connectivity between bilateral MT+ and DLPFC. We used a PPl analysis
to look at the effective connectivity between left DLPFC and left (left panel) and right (right
panel) MT+. Left DLPFC was chosen because it was sensitive to the presence and validity of the
cue (Fig. 3) and correlated with the extent to which subjects shifted their criterion based on the
predictive cues (Fig. 4). We tested whether the connectivity between MT+ and left DLPFC
depended on the cue identity [computed from the contrast predictive (valid + invalid) >
non-predictive (neutral)]. Connectivity between MT+ and left DLPFC was higher when sub-
jects had a prior expectation about upcoming motion direction, as revealed by the difference in
the slope of regression between fMRI activity. The regression lines reflect averages across sub-
jects. The shaded regions correspond to one SEM.

ditionally, the left DLPFC showed enhanced recurrent connec-
tivity with the motion-sensitive area MT+ (which is likely
representing the sensory evidence in this experiment) when sub-
jects had an expectation about the direction of upcoming motion
(Fig. 5). Below we will interpret and discuss these results within
the context of current models of perceptual decision making.

Rahnev et al. @ Prior Expectation in Perceptual Decisions

Prior expectation increases activity in dorsolateral

prefrontal cortex

The prefrontal and parietal cortices are thought to play an impor-
tant role in perceptual decision making (Gold and Shadlen, 2007;
Heekeren et al., 2008; Kayser et al., 2010a,b; Scheibe et al., 2010).
Specifically, electrophysiological studies suggest that neural ac-
tivity in these regions may reflect the accumulation of evidence
during the decision process (Shadlen and Newsome, 1996; Schall,
2003). When we compared trials in which subjects had a stimulus
expectation with trials in which subjects had no stimulus expec-
tation, we found heightened activity in both IPS and DLPFC. One
interpretation of this finding is that the incorporation of prior
expectation into the decision process changes the computations
in these areas related to evidence accumulation.

However, it could be argued that the expectation cue simply
induced a larger cognitive demand, because subjects needed to
attend to both the cue and the stimulus for these type of trials.
Although this interpretation can explain the fact that bilateral
DLPFC and IPS are more active in the presence of expectation, it
does not seem compatible with our exact pattern of results. In
particular, the activation of DLPFC was additionally modulated
by the validity of the cue: there was larger activity for invalidly
cued than validly cued trials. This is consistent with a role of
DLPEFC in evidence accumulation, because subjects will need to
accumulate more evidence for the correct motion direction when
they have an invalid prior expectation. An alternative explanation
for the activity difference in DLPFC between valid and invalid
expectations could be that additional activity in the DLPFC arose
during the invalidly cued trials because of cognitive conflict (Rid-
derinkhof et al., 2004). However, this alternative explanation
would not predict larger effective connectivity between sensory
area MT+ and DLPFC when subjects had a prior expectation.
This connectivity modulation is more in line with a specific role
of the DLPFC in sending its predictions to sensory area MT+, as
well as integrating the prior expectation and the sensory informa-
tion provided by MT+. Also, the fact that individual differences
in criterion shift were correlated with the activity difference be-
tween predictive (valid and invalid) and non-predictive (neutral)
cues in DLPFC is not in line with cognitive conflict. The activity
in DLPFC is rather in line with previous studies that observed
activity modulations in DLPFC consistent with evidence accu-
mulation (Kim and Shadlen, 1999; Heekeren et al., 2004, 2006;
Ho etal., 2009), and therefore this region may play an important
role in incorporating prior expectation into perceptual decisions.

Perhaps somewhat surprisingly, we did not find an overall
increase in sensory area MT+ as a function of perceptual expec-
tation, and the activity in MT+ only showed a weak negative
correlation with the extent to which each subject used the predic-
tive cues. Top-down modulations on sensory representations are
well known (Gilbert and Sigman, 2007), and indeed previous
studies have shown that expectation about motion direction can
boost activity in direction-selective MT+ cells (Treue and Mar-
tinez Trujillo, 1999). In line with this, a previous neuroimaging
study did find a modulation of MT+ activity when subjects had
an expectation about upcoming motion (Shulman et al., 1999).
One important difference between the study by Shulman et al.
and the current experiment relates to detection versus discrimi-
nation. Shulman et al. asked subjects to detect motion, and sub-
jects were given a cue that indicated the direction in which
coherent motion could occur (up, down, left, or right). In that
task, it is plausible that the activity of relevant MT + neurons may
be upregulated without suppressing other MT + neurons. In our
task, subjects were asked to discriminate between two motion



Rahnev et al. @ Prior Expectation in Perceptual Decisions

A Feedforward Modulation Feedback Modulation Recurrent Modulation

expectation expectation expectation

J. Neurosci., July 20, 2011 - 31(29):10741-10748 « 10747

(Bennur and Gold, 2011), in view of its
response to both prior expectation and
sensory evidence.

Connectivity between MT+ and

7/ \x o\ DLPFC
Our PPI analysis demonstrated that ex-
@ @ @ @ pectation increased the effective con-
nectivity between MT+ and DLPFC.
B C Furthermore, the DCM analysis suggested

expectation

_— -008/" (008 @ 0.075) \-0.025
60%

0.06 \Q‘sz
40% 0.044 0018

20%
0% \ /v
feedforward feedback  recurrent 0.086 0.081

stimulus

100%

modulation modulation modulation

Figure 6.

to left DLPFC (p = 0.003) and from right MT+ to left DLPFC (p = 0.006).

directions (expanding or contracting), thereby the expectation
cues may have led to simultaneous enhancement and suppres-
sion of two competing neuronal assemblies, precluding an overall
activity increase. This interpretation could be directly tested in
future research.

Perceptual decisions and motor preparation

In many previous studies, perceptual decisions are linked to spe-
cific motor responses throughout the experiment (Tosoni et al.,
2008). This means that the accumulated evidence for the percep-
tual decision itself does not need to be held “online” but can be
directly translated into the preparation of specific motor plans.
This may explain why previous studies have reported results of
perceptual decision-related activity in the motor cortex (Donner
etal., 2009) or in the corticostriatal network, which is thought to
be related to action selection (Forstmann et al., 2010). However,
studies that dissociated the perceptual decision from the response
modality have observed neural activity in parietal (Bennur and
Gold, 2011) and prefrontal (Heekeren et al., 2006; Ferrera et al.,
2009) cortices, regions that may be more related to the perceptual
decision itself rather than motor preparation. In our experiment,
we have carefully minimized the possibility that our results would
be contaminated by motor preparation, by informing subjects of
the response mapping only after the presentation of the stimulus.
Under these circumstances, prior expectation modified the activ-
ity level in the DLPFC and connectivity between MT+ and
DLPFC in a manner that is in line with a role for this region in
evidence accumulation. Although we did not find the same rela-
tionship in the parietal cortex, we did observe a general modula-
tion of the presence versus absence of expectation on neural
activity in the anterior intraparietal sulcus. This is generally com-
patible with a role of this region in the accumulation of evidence

Dynamic causal modeling of connectivity between bilateral MT+ and left DLPFC. 4, Three families of models tested
whether expectation modulated only the feedforward, the feedback, or both connections between MT+ and DLPFC. Inall models,
there were recurrentintrinsic connections between bilateral MT+ and left DLPFC. The contribution of the stimulus varied between
models and is not depicted in this figure (for details, see Materials and Methods). B, Bayesian model comparison was used to
compute the exceedance probability for each of the three families of models. The exceedance probability was largest for the
recurrent family of models, suggesting that expectation modulated both the feedforward and feedback connections between
MT+ and DLPFC. €, All connections and their values are shown for the best-fitting model (the recurrent model in which the
stimulus modulated only MT+). Across subjects, expectation significantly modulated the feedforward connection from left MT+

that this increased connectivity is likely
driven by modulations of both the feed-
forward and the feedback connections.
Increased feedback connectivity from
DLPFC to MT+ could embody a change
of gain setting in sensory regions by ex-
pectation (Shulman et al., 1999) and thus
provide a mechanism of how prior infor-
mation could change decision making,
namely by frontal regions changing the
responsiveness of relevant neurons in
sensory cortex. Complementing this, in-
creased feedforward connectivity could
reflect the result of this gain setting, which
leads to a stronger impact of the expected
sensory evidence on prefrontal cortex. In-
terestingly, this change of feedforward
connectivity is consistent with recent neu-
rophysiological findings (Law and Gold,
2009).

Relationship with other biasing effects on perceptual

decision making

Two ways that have been traditionally used to bias decision mak-
ing is by either altering base rate of certain stimulus categories or
altering reward contingencies associated with certain stimulus
categories. One may speculate that these top-down effects are
hard to distinguish, because they have superficially similar effects
on behavior (making a particular response more likely and its
reaction time faster). Also, reward can change activity in both
sensory (Serences, 2008) and decision-related (Rorie et al., 2010;
Summerfield and Koechlin, 2010) areas. Conceptually, one can
imagine that changing reward can influence behavior without
changing subjects’ belief as to what is actually the stimulus (e.g.,
“I do not really think the stimulus contains expanding motion,
but since it will more likely give me high reward, I am going to
answer as such anyway”). Changing prior expectation, con-
versely, can plausibly change subject’s beliefs and potentially the
content of perception (Sterzer et al., 2008). Therefore, although
both manipulations change behavior, the reward structure may
dictate how behaviorally relevant the stimulus is, whereas the
prior expectation pertains to its likelihood (Summerfield and
Egner, 2009). These differences may explain why changing prior
expectation may change the interaction between sensory and
decision-making processes, whereas changing reward may selec-
tively change the decision stage.

Conclusion

We provide behavioral and neural evidence for how prior expec-
tation biases perceptual decisions. Behaviorally, prior expecta-
tions lead to both more biased and less sensitive perception.
Neuroimaging data show that this bias is implemented by in-
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creasing activity in, as well as sensory drive to, the dorsolateral
prefrontal cortex.
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