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The Neuronal Basis of Long-Term Sensorimotor Learning

Yael Mandelblat-Cerf,1,5 Itai Novick,1,5 Rony Paz,2 Yuval Link,3 Sharon Freeman,1 and Eilon Vaadia1,4,5

1Department of Medical Neurobiology, Institute for Medical Research Israel–Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel,
2Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel, 3Department of Physiology, The Faculty of Medicine and
Research Institute, Technion, Haifa 32000, Israel, and 4The Interdisciplinary Center for Neural Computation and 5The Edmond and Lily Safra Center for
Brain Sciences, Hebrew University, Jerusalem 91904, Israel

The brain has a remarkable ability to learn and adjust behavior. For instance, the brain can adjust muscle activation to cope with changes
in the environment. However, the neuronal mechanisms behind this adaptation are not clear. To address this fundamental question, this
study examines the neuronal basis of long-term sensorimotor learning by recording neuronal activity in the primary motor cortex of
monkeys during a long-term adaptation to a force-field perturbation. For 5 consecutive days, the same perturbation was applied to the
monkey’s hand when reaching to a single target, whereas movements to all other targets were not perturbed. The gradual improvement
in performance over these 5 days was correlated to the evolvement in the population neuronal signal, with two timescales of changes in
single-cell activity. Specifically, one subgroup of cells showed a relatively fast increase in activity, whereas the other showed a gradual,
slower decrease. These adapted patterns of neuronal activity did not involve changes in directional tuning of single cells, suggesting that
adaptation was the result of adjustments of the required motor plan by a population of neurons rather than changes in single-cell
properties. Furthermore, generalization was mostly expressed in the direction of the required compensatory force during adaptation.
Altogether, the neuronal activity and its generalization accord with the adapted motor plan.

Introduction
Sensorimotor behavior involves computation of the relation be-
tween sensorial guidance and actions. One ingenious feature of
the brain is its ability to adapt to changing relations between
instructions, actions, and feedback. Psychophysical studies pro-
vided evidence for the nature of sensorimotor learning by testing
features such as dynamics of acquisition, generalization, and con-
solidation (Krakauer et al., 1999; Donchin et al., 2003; Caithness
et al., 2004). In parallel, physiological studies have demonstrated
that neuronal activity in the motor cortex conveys information
about the characteristics of the required movement, such as the
desired direction (Georgopoulos et al., 1982, 1983) and muscle
forces (Evarts, 1968), which can change through learning (Mitz et
al., 1991; Chen and Wise, 1995; Wise et al., 1996, 1998; Gandolfo
et al., 2000; Paz et al., 2003; Zach et al., 2008).

One of the commonly used learning paradigms in this field is
based on force-field perturbations during reaching movements

(Lackner and Dizio, 1994; Shadmehr and Mussa-Ivaldi, 1994;
Burdet et al., 2001). The findings for both human and nonhuman
primates indicate that subjects learn to predict and compensate
for an upcoming force. Bizzi’s group studied the neuronal basis of
adaptation to a curl force-field (Gandolfo et al., 2000; Li et al.,
2001; Padoa-Schioppa et al., 2002) during center-out reaching
movements to eight directions. They reported that, late in learn-
ing (when trajectories were straight), the preferred directions
(PDs) of the cells shifted with force-field direction. When the
force-field was removed and aftereffects diminished, some
cells, termed “memory cells,” still maintained learning-related
changes, although the average PD shifts of the population
diminished (Li et al., 2001).

Previous studies by our group examined the relation between
a specific learned direction and the PDs of cells using single-target
force-field adaptation (Arce et al., 2010a). The disadvantage of
this design was that it did not allow direct estimation of direc-
tional tuning (and PD) of cells during learning, as was done by
Bizzi’s group.

In our new task design, we track global neuronal and behav-
ioral features during local learning by introducing force-field in
movements to a single target, whereas other targets continue to
be experienced unperturbed. This enables us to monitor the tun-
ing of cells during local adaptation and study the relation between
force-field adaptation and previously reported PD shifts. Fur-
thermore, we study the temporal dynamics of adaptation over
several days to test whether learning emerges by processes with
multiple timescales (Smith et al., 2006; Fusi et al., 2007;
Yamashita and Tani, 2008).

The findings provide evidence for slow and fast timescales of
changes in single cells activity during learning, which seem com-
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parable with the shifts in the PDs of the cells as reported previ-
ously. However, these apparent shifts can better be explained by
the growing discrepancy between target direction and intended
hand-movement direction, which leads to a systematic difference
in estimations of PDs as a function of these two reference frames.
Thus, we suggest that the relation between activity of single cells
in motor cortex and the intended arm movement remains the
same throughout learning, and adaptation is achieved by adjust-
ing the contributions of motor cortical cells to the population
signal that represents the intended movement. Further strength-
ening this reasoning, the generalization pattern of the population
signal reflected the intended movement direction.

Materials and Methods
Animals, recordings, and behavioral task
Two monkeys (one male and one female, Macaca fascicularis, 4 kg,) were
chronically implanted with a microelectrode array (Cyberkinetics Neu-
rotechnology Systems) in the arm region of M1 contralateral to the per-
forming arm, under anesthesia and aseptic conditions. Animal care and
surgical procedures complied with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and with guidelines
defined by the Institutional Committee for Animal Care and Use at the
Hebrew University.

Monkeys used a robotic arm (Phantom Premium 1.5 High Force;
SensAble Devices) to control the movements of a cursor on a video screen
in a two-dimensional plane. Before surgery, monkeys were well trained to
perform a standard eight-target center-out reaching task using this de-
vice (“null conditions”). The phantom moved the cursor from the start-
ing point at the center of the screen to a visual target in a delayed go-signal
paradigm. The trial sequence and recording day flow is shown in Figure
1. Figure 1 A depicts the trial flow from left to right. Each trial began when
the monkey positioned the cursor at the central circle. After a variable
hold period of 0.85–1.35 s, a target appeared at one of the eight possible
positions, which were uniformly distributed in a circle 4 cm from the
center (Fig. 1 A, second column). After an additional 0.85–1.35 s hold
period, the central circle disappeared (go signal, third column), prompt-
ing the monkey to move to the target in �0.8 s (fourth column). This

generous time constraint allowed relatively
natural reaching movements. After another
0.4 s, a liquid reward was delivered.

A learning week consisted of 6 consecutive
days. The same perturbation was applied for
the entire learning week: a single target [the
“learned target” (LT)] and force-field (FF) di-
rection (clockwise or counterclockwise). Days
1– 4 comprised four successive periods (Fig.
1 B): (1) a default (standard) eight-target task
(STD1) (without FF) of 80 trials; (2) a learning
period (LRN) (with force-field) of 240 trials;
(3) a second default eight-target task (STD2) of
80 trials, and (4) a second learning period
(LRN2). Days 5 and 6 involved only three con-
secutive periods: (1) STD1, (2) LRN with at
least 240 trials, and (3) a long STD (“washout”)
of at least 360 trials. No cue was given to the
monkey to mark the transitions between stan-
dard and learning epochs.

Note that the number of default trials in
STD1 and STD2 were introduced with caution;
the default trials can show, on one hand, the
baseline condition at each day and the postle-
arning effects. On the other hand, they can in-
terfere with the learning because they have a
washout effect. We chose the number of trials
in STD1 and STD2 to balance the tradeoff be-
tween these two effects: we kept the number of
default trials small enough to minimize the in-
terference and large enough to measure the be-

havior and neural activity in default condition. STD1 served to examine
the baseline for each day, before additional learning took places. For
example, it made it possible to estimate directional tuning of all cells
without perturbation as well as the overnight retention of learning, and
STD2 provided a rapid assessment of the learning effect without the
perturbation present, with minimal washout. On days 5 and 6, STD2 was
replaced by a long STD epoch to negate the learning effect (washout).

In standard periods, the sequence of target appearances was chosen
randomly and was executed without any perturbation. During learning
periods, targets continued to appear randomly. However, whenever the
selected learned target appeared, movement was executed under the curl
force-field, which perturbed the hand perpendicular to its direction and
proportional to its velocity. Then, on day 6, we assessed the ability to
recall the learned motor skill after it was washed out on day 5. Day 6 also
ended with a washout to start an additional learning week with a clean
slate.

Figure 1 A illustrates adaptation to force-field in which the learned
target was 0° and force-field was clockwise. Force-field was applied only
during the learning period and only to this target. Monkeys were trained
for several months with the default eight-target task but were not exposed
to force-field before the recordings.

Behavioral analysis
Performance during learning. Behavioral performance was assessed by the
directional deviation of the hand from the target direction taken at (1)
peak velocity or (2) at movement initiation, 150 ms after movement
onset (see the learning curves in Fig. 2 B).

The force-field pushed the hand perpendicular to its current velocity
in a counterclockwise or clockwise direction. Given the components of
the observed trajectory in the horizontal plane (x and y), the force-field
was generated using the following equation:

�FFx(t)
FFy(t)� � k�cos(�)

sin(�)
�sin(�)
cos(�) � �ẋ�t�

ẏ�t��,

where FFx and FFy are the robot-generated forces at time sample t, k � 8
Ns/mm, � � �90°, and ẋ and ẏ are the components of the hand velocities
in the horizontal plane.

A

B

Figure 1. Experimental design. A, Example of a trial flow (left to right) during the learning epoch. During the first delay period,
the monkey held the robotic arm in the center without moving it. The monkeys maintained their hold at the central circle after
target onset for an additional delay and only moved after the go signal. In the figure, the learned target is at 0° and the force-field
is clockwise. In the rightmost panels, if the lit target was the selected learned target (bottom row), force-field was applied when
movement was initiated, otherwise (top row) the movement was executed under standard conditions. B, Recording day flow: all
days started with standard trials (center-out reaching movements to 8 directions) followed by a learning epoch. In days 1– 4, this
was followed by a second standard period and then ended with a second learning period. Days 5 and 6 consisted of three different
periods only. Learning was followed by a long standard epoch (WASHOUT).
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“Force-vector” computation. In perturbed movements, the observed
hand movement (x and y components) resulted from a vectorial summa-
tion of two forces: the force applied by the hand during this movement
(“force-vector”) and the robot-generated force-field.

The total of these forces can also be directly derived by Newton’s

second law of motion: total force(t) � m�ẍ�t�
ÿ�t��, where ẍ and ÿ are the

hand acceleration components at time t, and m is the approximated mass
of the hand. Following morphometry studies (Cheng and Scott, 2000;
Graham and Scott, 2003), for �4 kg monkeys, the mass was approxi-
mated as 250 g.

Therefore, to extract the force-vector, we assessed the total force and

subtracted the external FF: force-vector(t) � m�ẍ�t�
ÿ�t�� � �FFx(t)

FFy(t)�. The

direction of the force-vector was assessed for the initial 150 ms of the
movement.

Neuronal data analysis
We selected single neurons for analysis that met four inclusion criteria:
(1) well isolated spikes; (2) stable recordings based on firing rates in the
first hold period before target onset, throughout all trials; (3) the result of
a one-way ANOVA showed a significant effect for direction ( p � 0.01);
and (4) a cosine fit [r(d) � a � b * cos(d � d0)] for directional tuning that
exceeded R 2 � 0.65.

The neuronal ensemble consists of all the neurons recorded simulta-
neously during each session.

Firing rate analysis. The firing rate of a cell for each of the eight targets
was computed in three time epochs along the trial: (1) post-target onset,
100 – 600 ms after target onset; (2) a time window of 500 ms before the go
signal, in which the target was already known but the monkey still had its
hand at the central circle; and (3) movement-related activity, 200 ms
before to 300 ms after movement onset.

Preferred direction analysis. Given the eight averaged firing rates for the
eight movement directions for each of the epochs, PDs were computed
by a cosine fit [r(d) � a � b * cos(d � d0)] (Georgopoulos et al., 1982) by
three different reference frames. (1) Angles were taken as those of the
corresponding targets, i.e., 0, 45, 90 . . . (see Fig. 5, red). The PD was
accordingly termed “PDtarget.” (2) For each target direction, the attrib-
uted angle was the averaged initial hand-movement directions (see Fig. 5,
black). The PD was termed in this case “PDhand.” (3) For each target
direction, the attributed angle was the direction of the actively produced
force of the hand itself (“force-vector”), which we assumed reflects the
motor plan direction. The PD was termed in this case “PDplan.”

For nonperturbed movements, we assumed that the hand direction
was the force-vector direction (see Fig. 5, green); therefore, for standard
epochs, PDplan is the same as PDhand. However, for the perturbed move-
ments, the observed hand direction was a vectorial summation of the
force-vector and the external force-field. Therefore, for the learning ep-
och, we extracted the force-vector in movements to the learned target
(see Materials and Methods).

Differences between estimation of the PD of the cell. We defined a change
in PD for a single cell from one epoch to the other as PDf1,epoch1 �
PDf2,epoch2, which is the difference between the PD in epoch1 computed
according to the f1 reference frame and the PD in epoch2 computed
according to f2 reference frame, in which f1, f2 can be hand, target, or
plan. This PD difference was normalized to the force-field direction such
that it was positive if PDf1,epoch1 relative to PDf2,epoch2 was with force-
field direction and negative if in the opposite direction.

PD computations for “repetitive” local learning. In local visuomotor
rotation adaptation previously conducted in our laboratory (Paz et al.,
2003), only the learned target appeared during learning. The perturba-
tion of visuomotor rotation creates a discrepancy between the cursor and
hand direction; to bring the cursor to the learned target and complete the
trial successfully, the hand needs to move in a different direction accord-
ing to the applied angular rotation.

Therefore, to evaluate directional tuning during learning, we assumed
that movement-related neuronal activity to all unlearned targets re-
mained as in standard trials, whereas the neuronal activity to the learned
target changed according to learning-related modulations. This assump-

tion is based on the facts that (1) during learning, movement-related
activity followed the hand direction, (2) a comparison of prelearning to
postlearning trials revealed no changes in this activity to all directions,
and (3) the narrow generalization in behavior reported previously (Paz et
al., 2005).

Therefore, for each of the seven nonlearned target directions, we com-
puted the averaged movement-related firing rate across trials in the stan-
dard epoch and for the learned target, across perturbed trials late in the
learning epoch.

PDtarget was computed by regressing these eight activities against the
angles of the targets.

To compute the tuning curve according to the hand reference frame
(PDhand), the learned target angle was replaced by the angle to which the
hand actually moved under the perturbation (according to the applied
visuomotor rotation).

Note that, in this case, because the actual hand movement was unper-
turbed, PDplan and PDhand are the same.

Error bars indicate SEM. Unless stated otherwise, significance was
assessed by t test. Large asterisks show 1% significance, and small aster-
isks show 5% significance, using the Holm–Bonferroni method to cor-
rect for multiple comparisons.

Results
Long-term local adaptation to force-field was used to elucidate
the neuronal basis of force-field adaptation, which has been
shown previously to elicit changes in directional tuning (Li et al.,
2001). A detailed explanation of the behavioral paradigm is de-
scribed in Materials and Methods and Figure 1. Briefly, the direc-
tional tuning of cells was continuously monitored during
learning by the task design in which movements in eight direc-
tions were experienced in a random order, whereas force-field
was applied only when reaching to one of the targets (“learned
target”). In this paradigm, learning trials did not appear consec-
utively but, on average, once every eight trials, resulting in a
slower learning rate. Unlike all previous experiments, we fol-
lowed adaptation not only in a single session (Li et al., 2001; Arce
et al., 2010a) but across sessions (5 d). Throughout this period,
the same perturbation (force-field direction, clockwise or coun-
terclockwise) was applied to movements toward the same learned
target.

To examine the aftereffect of learning, we applied two short
periods in which the monkey performed standard reaching to
eight targets without perturbation during each day: the first at the
beginning of the day (STD1) and the second in the middle of
learning (STD2). At the end of day 5, we introduced a longer
period of standard eight-target trials to washout the aftereffects.
Thus, the session of day 6 could be used to test relearning after
washout.

Behavioral findings
Figure 2A demonstrates the progress of behavior in one learning
week of 6 d. It shows movements toward the learned target, with
center location (white circle), target location (gray), and a clock-
wise force-field (left to right). Note that (1) movements under
force-field became straighter (red) from day to day as monkeys
learned to partly compensate for the force-field. As in most stud-
ies, the movements never became completely straight. (2) Move-
ments in STD1 (dark blue) and STD2 (cyan) became more
curved from day to day, indicating the adaptation aftereffects: the
hand pushed against the force-field direction. These aftereffects
increased from day to day. (3) The averaged trajectory late in
washout of day 5 was considerably straighter (depicted by a yel-
low line). (4) Trajectories during STD1 on day 6 were almost
straight (as predicted from the washout). Nevertheless, the read-
aptation to force-field on day 6 was not like learning a new task,
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and progress was extremely fast (as shown and discussed below in
Fig. 2B, day 6), suggesting recall of existing representation of the
learned perturbation.

To quantify the phenomena demonstrated above, we analyzed
all the learning sessions (7 weeks) and computed the average
directional deviations of trajectories to the learned target, taken at
movement initiation (Fig. 2B, left trace) and at peak velocity (Fig.
2B, right trace) during the learning. Deviations were normalized
to force-field direction such that positive/negative errors were
with/counter to force-field direction, respectively. Previous stud-
ies of local adaptation to force-field in our laboratory (Arce et al.,
2010a), in which the learned target appeared repetitively, showed
that adaptation was completed very fast in a single session, reach-
ing plateau of �15° in a few dozen trials. In our study, 5 d and
	300 trials to the learned target were necessary to reach a similar
behavioral plateau.

As in previous studies (Karni et al., 1998; Krakauer et al., 2000),
learning was composed of a fast stage, characterized by substantial
improvements, followed by a slower stage with much smaller im-
provements. In this study we found that the fast stage lasted for the
two first days (called here “early in learning”) and the slow stage
followed on days 4 and 5 (called here “late in learning”). Day 3 was
not included to avoid the gray zone between the stages.

A clear evidence for day-to-day progress of learning was pro-
vided by the overnight aftereffect of learning in standard trials
that began each day. Observing the STD1 trials (Fig. 2C) showed

that hand movements to the learned target were straight only in
the first day (before learning started) and gradually, from day to
day, became more curved in a direction counter to the force-field
that had been experienced in the previous day.

As mentioned above and demonstrated in Figure 2 B, the
performance under force-field reached a plateau at day 5. At
the end of this day, we introduced a long epoch of standard
trials of at least 360 trials. During this washout epoch, afteref-
fects became substantially smaller but still significantly differ-
ent from zero (t test, p � 0.01), with an average deviation of
�9°. On the following day (day 6), the aftereffect during STD1
was even smaller (curvature of 3°; t test, p 	 0.05), indicating
that during the night the washout continued. However, as
learning started (the same perturbation), deviations of trajec-
tories were again �10° with force-field direction, similar to
performance on day 5. Therefore, although aftereffects were
small in STD1, showing little retention, the learned task was
successfully recalled almost immediately. Washout of addi-
tional 360 trials at the end of this day was even more complete,
with minimal aftereffects not significantly different from 0 (t
test, p 	 0.1).

Examination of movement velocities revealed that move-
ments were significantly slower in learning relative to standard
trials; however, they were stable across days (supplemental Fig.
1A,B, available at www.jneurosci.org as supplemental material).
One could argue that the relatively permissive parameters that

A

B C

Figure 2. Movement kinematics to the learned target during standard and perturbed trials reflects gradual learning. A, Example of trajectories to the learned target in all epochs (top row) and
their averages (bottom row) during the 6 learning days (left to right). Movements under force-field are in red. Movements without force-field are in dark blue for STD1, cyan for STD2, and yellow for
late in washout. B, Gradual behavioral improvement during learning and its retention. The figure shows angular deviations at movement initiation (left) and at maximum velocity (right) with a
five-trial moving average as a function of trial number to the learned target along the learning week (5 d and hundreds of trials). Data include 7 weeks (5 weeks from monkey R and 2 weeks from
monkey O). C, Averaged initial angular deviations across all movements to the learned target during STD1 epoch. Significant overnight aftereffects are evident on days 4 and 5. Washout on day 5 (2
black lines) resulted in small overnight aftereffects on day 6. In all traces, error bars and shaded areas denote SEM. Asterisks denote 1% confidence.
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allowed monkeys to successfully reach the learned target with
slower movements and somewhat curved trajectories allowed the
subjects to avoid adaptation to force-field using the strategy of
reduced speed to reduce the force. However, the data clearly in-
dicate that this was not the case. The relatively stable velocity
during learning trials produced a similar force-field. Under this
stable force-field, the curvatures were reduced (Fig. 2B) and the
aftereffects gradually increased (Fig. 2C).

Neuronal findings
We analyzed neuronal activity during three different time ep-
ochs: (1) post-target onset, (2) before the go signal, and (3)
movement-related activity.

The dataset includes directionally tuned cells that met the
inclusion criteria as described in Materials and Methods. Of the
total sample, 304 cells were directionally tuned during post-target
onset (8 from monkey O, 296 from monkey R), 542 before the go
signal (43 from monkey O, 499 from monkey R), and 830 during
the movement-related activity (214 from monkey O, 616 from
monkey R). All analyses were done for each period using only the
tuned cells. Note that we did not attempt to record the same
neurons on different days. Therefore, comparisons over days
were done by averaging daily the changes in cell activity over the
population.

Firing rate modulations
Cells were classified according to the angular distance between
their PDs and the learned target, signed by the force-field direc-
tion (“nPD”). Specifically, zero nPDs were assigned to cells with
PDs located at the learned target, positive values, to cells with PDs
“pushing” in the direction of the force-field, and negative values
pushing against the force-field. Cells with nPDs in the range of
45° to 135° were defined as “co-FF,” and cells with nPDs in the
range of �135° to �45° were defined as “counter-FF.”

To study the distribution of the changes in firing rates of the
population of cells in the movement period and its relation to the
learning process, the cells were divided into eight subgroups ac-
cording to their nPD, in bins of 45° (�180° to �135°, �135° to
�90°, . . . , 135° to 180°). Daily changes in firing rates were eval-
uated separately for movements to each of the targets in the early
(Fig. 3, black) and late (Fig. 3, gray) stages of learning. The figure
shows the changes in firing rates as a function of nPD, in which
nonlearned targets were aligned around the learned target. The
plot clearly shows that neuronal activity to each of the nonlearned
targets did not change significantly during either the early or the
late days of learning. Consistent with our previous results (Arce et
al., 2010a), the changes in activity to the learned target depended
on the nPD. On top of that, we found that it also depended on the
learning stage: early in learning (black), co-FF cells did not show

Figure 3. Changes in movement-related firing rates are only evident in movements to the learned target (LT), dependent on the preferred directions of the cells and on the learning stage. The
figure shows the averaged percentage of daily changes of firing rates between standard and learning epochs, as a function of the nPDs of cells in bins in a range of 45°. Analysis was done separately
for movements to each of the eight targets around the learned target. Data are divided into early (black) and late (gray) days of learning. Note that cells with nPDs around �90° from the LT
(counter-FF cells) increased their activity mostly early in learning, whereas cells with nPDs around �90° from the LT (co-FF cells) showed some decrease late in learning. Insets provide examples of
firing rates (blank bars, standard trials; full bars, learning trials), for two single cells: a cell with PD counter to force-field direction early in learning showed increased activity (left), and a cell with PD
with force-field direction late in learning showed decreased activity (right). In all traces, asterisks denote 1% confidence, and error bars denote SEM. n � 346 in early days and n � 264 in late days.
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significant changes, whereas counter-FF cells increased their fir-
ing rate during learning significantly (t test, p � 0.01). Late in
learning (gray), the changes from STD1 to LRN of counter-FF
cells were smaller than in the early days ( p � 0.01), and the co-FF
cells showed some significant ( p � 0.01 for 45° � nPD � 90°)
decreases in activity. Examples of trial-by-trial activity to the
learned target of two cells are shown in the insets. On the left, a
counter-FF cell (nPD � �98°), recorded at an early stage of learning
(day 1), shows increased activity during learning ( p � 0.01). On the
right, a co-FF cell (nPD � 89°) from day 4 (late stage) shows de-
creased activity during learning ( p � 0.05). Each bar represents the
firing rate in a single trial to the learned target; blank bars denote
standard trials, and filled bars denote learning trials.

Next, we focus on the two subgroups of cells with nPDs in the
co-FF and counter-FF ranges, which are the ones that showed
learning-related effects.

We first assessed the cumulative changes of activity of these
cells day by day. Because the cells recorded each day were not
necessarily the same cells, we computed the cumulative change by
averaging the population activity separately for each learning trial
on each day and comparing these activities with the averaged
activity across all cells and all trials to the learned target in the first
epoch of standard trials before learning started (the activity on
the first day of the week, STD1, day 1). This day-by-day analysis
was performed separately for each of the weeks (7 weeks) and
then averaged across weeks. Figure 4A shows for each numbered
day (days 1–5, x-axis) the average across all learning trials for all
weeks ( y-axis). It shows that counter-FF cells (circles) increased
their activity in early stages and became significant (50% increase
on day 1, p � 0.01) even on the first day of the week. Thus, the fast
increased firing rate in movements to the learned target of cells
with nPDs in the counter-FF range shown in Figure 3 and the
example of the single unit (left) represent the tendency of this
group of cells to show relatively rapid increases in activity, which
was maintained throughout the week. As shown in Figure 3,
co-FF cells showed a tendency to decrease their firing rates in

movement to the learned target only late
in learning. Figure 4A extracts the cumu-
lative effect of this tendency and presents
it day by day (squares). The slow evolve-
ment of decreased activity in these cells is
clear. This was a much slower process
than the one seen in counter-FF cells,
which became significant much later in
learning.

Second, we performed an analysis to
support the notion that the observed
learning-related changes were not a
chance phenomenon. To do so, we tested
whether increases and decreases of firing
rates occurred more specifically and con-
sistently in movements to the learned tar-
get. We studied the firing rates of cells
during movements to the learned target
compared with activity during move-
ments to nonlearned targets and evalu-
ated their cumulative distributions.
Figure 4B shows the cumulative percent-
ages of cells as a function of firing rate for
each of the seven nonlearned targets and
for the learned target. The figure shows
the distributions for co-FF cells (right
plot, thick red line) and counter-FF cells

(left thick red line) separately. The other curves (thinner lines)
show, for each of the nonlearned targets, the cumulative distri-
bution for the firing rates of cells with PDs between �135° and
�45° away from that target (left) and cells with PDs between 45°
and 135° away from that target (right).

The top plot shows that the percentage of cells firing above a
given rate was always larger in the counter-FF subgroup during
movements to the learned target (thick red line) compared with
the percentage of cells above the same firing rate value in move-
ments to any of the nonlearned targets (thin lines). The co-FF
cells (bottom plot) show the opposite relation, having a lower
percentage of cells accumulated for a given firing rate value.

To conclude, the analyses show opposing modulations in ac-
tivity of counter-FF and co-FF cells and their different time dy-
namics; during learning, the activity of counter-FF cells increased
significantly early in learning, resulting in activity above chance
(higher than firing rates to unlearned targets, p � 0.01), whereas
the activity of co-FF gradually decreased along the week and
eventually was below chance ( p � 0.05).

Are there learning-related changes in preferred directions?
We investigated how the changes in firing rates were reflected in
the tuning properties of the cells. We assume that, in reaching
tasks, subjects apply a motor plan reflecting the intention to move
the arm in a desired trajectory toward the target. When the force-
field perturbed the movement by pushing the hand, it introduces
a difference between the direction of the target (Fig. 5A, left pan-
els, early in learning, red dashed line) and the observed hand
trajectory (black arrow). At this stage, the motor plan (early in
learning, green arrow) is no longer appropriate. Then, when sub-
ject adapts, the observed hand direction again points in the target
direction (Fig. 5A, left panels, late in learning, black arrow),
which can only be achieved by changing the motor plan to com-
pensate for the force-field (Fig. 5A, left panels, late in learning,
green arrow). As shown in Figures 3 and 4, the activity of
counter-FF cells increased and the activity of co-FF cells gradually

A B

Figure 4. Dynamics of evolving learning-related activity during perturbations depend on the PD of the cell. A, Percentage of
change in the averaged firing rates across cells with PDs in the range �135° � nPD � �45° (counter-FF, top) and the range
45° � nPD � 135° (co-FF, bottom) compared with the averaged firing rate of cells with PDs in the same range during prelearning
standard trials of day 1. The plot shows that counter-FF cells significantly increase their activity in day 1 and maintain the elevated
activity throughout learning, whereas co-FF cells show a significant decrease but only on day 3. Asterisks denote 1% confidence,
and error bars denote SEM. B, The cumulative distributions of firing rates to the learned target (LT) late in learning (thick red line)
for counter-FF (left) and co-FF (right) cells. For each of the nonlearned targets (different colors, excluding the thick red line), the
plots show the cumulative distribution of the firing rates of the population of cells with nPDs located in a counter-FF (left) or co-FF
(right) direction relative to each target. Note that all curves lie above (left) or below (right) the red curve, which marks the
respective cumulative distributions of the counter- and co-FF activities in movements to the learned target. n � 264.
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decreased during adaptation. In the following analysis, we as-
sume that these changes reflect the new motor plan and that the
goal at all stages remained to move the hand to the target.

Figure 5B shows a simulated demonstration of the expected
changes in tuning by the increases and decreases of firing rates of
counter-FF and co-FF cells, respectively.

The top plot shows tuning of a counter-FF cell (PD � �90°,
learned target � 0°) before adaptation (black circles are firing
rates and black line is the cosine fit of these data). Assuming that
the cell codes for the target location, the increased firing rate of
the counter-FF cell during movements to the learned target is
assigned to the learned target direction (red square). As shown,
this introduces a shift of the tuning curve with force-field direc-
tion (PD shifted from �90° to �81°). We term the PD when
computed in this reference frame PDtarget. Alternatively, the cell
activity may reflect the adapted motor plan; the increased firing
rate reflects in this case the intention to push in direction against
the force-field, in a new motor plan direction (green dotted line).
Therefore, the resulted tuning remained as the original one
(black line). How can we test experimentally the direction of the
new motor plan? Under force-field, the hand direction is always a
vectorial sum of the force-vector (motor plan) and the external
force applied on the hand. Therefore, from the observed hand-

movement direction, we assessed the force-vector that the hand
applied (see Materials and Methods) and termed the PD when
computed in this reference frame as PDplan. The intended move-
ment direction can also be estimated by measuring the initial
observed hand direction in movements to the learned target im-
mediately after removal of the force-field perturbation (Fig. 5A,
right panels). When we calculated the tuning according to the
initial hand direction, the preferred direction was termed PDhand.
Note that, during standard trials, PDhand and PDplan are the same
because the hand is not perturbed and moves in the direction of
the motor plan.

Similar to the effect of the increased activity of a counter-FF
cell, the decreased firing rate of co-FF cell (Fig. 5B, bottom plot)
introduced a difference in PD estimations with force-field direc-
tion, from 90° to 99°.

An example of a calculation of PDtarget and PDplan for the
activity of a single cell (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material) late in learning shows a
difference of 8° between these PD estimations.

For each cell, we computed directional tuning curves in each
of the reference frames and determined its PDtarget, PDhand, and
PDplan. This was calculated separately for epochs STD1, LRN, and
STD2.

We calculated the averaged differences between PD estima-
tions in various epochs and the PD in the STD1 epoch on the
same recording day. Specifically, for each epoch, we compared
PDtarget, PDhand, or PDplan to the PDplan of STD1, to analyze the
learning-related changes in neuronal activity under the different
reference frames. We examined the PD differences as a function
of the nPD of the cell, grouped in bins of 45°.

Figure 6A shows the differences between PD plan in STD1 and
PDs late in learning. The differences for PDtarget are shown in red,
for PDhand in black, and for PDplan in green. Similarly, Figure 6B
shows the difference between STD1 and STD2. The PD differ-
ences in Figure 6A demonstrates a double-peak pattern, which
indicates that both co-FF and counter-FF cells showed consistent
apparent shifts in PDs. This pattern was not observed early in
learning (supplemental Fig. 3A, available at www.jneurosci.org as
supplemental material) when only cells in the counter-FF range were
shifted in the force-field direction. This reinforces the finding that
co-FF firing decreased late in learning, and the counter-FF
cells continued to show increased activity (as depicted in Fig.
4). These apparent PD shifts can be explained by the combined
effect of firing rate modulations in co-FF and counter-FF cells
as detailed in Figure 5B.

However, the PDplan during learning (Fig. 6A, green line) was
not different from STD1, suggesting that the relation between
firing rates and force-vectors (directional tuning) do not change.
Assuming the force-vector reflects the adapted motor plan (as
illustrated in Fig. 5A, left panels), the observed changes in firing
rates reflect the change in the motor plan (Kalaska et al., 1989).
Note that the similarity between PDplan in STD1 and learning
suggests that a comparison between PDtarget and PDplan, both
computed for the learning epoch, should result in the same
double-peak pattern of PD shifts as shown in Figure 6A.

In summary, late in learning, when the hand moved almost
straight to the target, PDhand and PDtarget were similar on average
but different from PDplan. This difference reflects the effect of
learning, i.e., modification of the motor plan. Note that some
cells showed changes in the PDplan, but with no consistent rela-
tions to the FF direction, suggesting that they could originate
from inaccuracies in PD estimations attributable to short stan-

A

B

Figure 5. Directional tuning of cells under perturbation depends on the selected refer-
ence frame: schematics. A, Schematic chart directions of the learned target (red), the
observed hand (black), and the force-vector applied by the hand (green) for early and late
stages of learning. The scheme shows, during adaptation to the perturbing force-field
(left), the observed hand direction gradually points to the target, whereas the motor plan
becomes deviated in the opposite direction. When the force-field is removed (right), the
observed hand direction always follows the new motor plan. Therefore, early in learning,
it points to the target, and, later, it points counter to the force-field direction. B, A model
of PD computation. Black curves are the directional tuning of counter-FF (up) and co-FF
(down) cells. A new cosine fit for the counter-FF (or co-FF) cell with increased (or de-
creased) activity for the LT results in red curves, which are shifted with force-field direc-
tion. FR, Firing rate. Dotted green lines denote the direction of a motor plan that can
produce such changes in activity.
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dard periods and/or from ongoing variability in neuronal activity
(Rokni et al., 2007).

Comparing the first and the second standard epochs (STD1 to
STD2, Fig. 6B) showed similar but smaller differences between
PDtarget in STD2 relative to STD1. However, unlike the appar-
ent PD shifts of PDhand during learning (Fig. 6A, black line), in
STD2, PDhand were not significantly different from STD1, as
shown by the black– green line of Figure 6B. The result suggests
that the relation between firing rates and initial observed hand
direction (or motor plan) did not change. Because PDhand and
PDplan are assumed to be the same under standard conditions, the
black– green line is effectively showing the same comparison as
the green line in Figure 6A. Therefore, the difference between the
PDhand (or PDplan) and PDtarget in STD2 further strengthens our
previous results and shows that the modified motor plan remains
after force-field removal.

We noticed that the movements in the standard trials of the
late days were significantly curved throughout the STD1 epoch.
Therefore, we calculated the difference between PDtarget and PD-

plan for the very same cells and the same trials of STD1. Obviously,
any differences between these PDs only reflect the difference of
reference frame. Indeed, early in learning, there was no signifi-
cant difference between the hand direction and the target direc-
tion and therefore no significant differences between the PDs
(supplemental Fig. 3C, available at www.jneurosci.org as supple-
mental material). Late in adaptation, when the trajectories
expressed overnight aftereffects and their initial direction devi-
ated from the target direction, PDtarget deviated from PDplan. Cal-

culating the differences between PDs for
all cells, the same double-peak pattern of
apparent PD shifts in the co-FF and
counter-FF ranges emerged (Fig. 6C).

To strengthen the conclusion that the
apparent PD shifts were related to devia-
tions of the motor plan rather than to
changes in tuning properties of the cells,
we performed three additional control
analyses. First, trials to the learned target
during STD1 in late days were divided
into two groups by the size of the over-
night aftereffects on movements to this
target: one with initial directional devia-
tions larger than the median and one with
the smaller deviations. Thus, the calcula-
tion of PDs only differed in the activity
and hand direction to the learned target.
Figure 7A shows PDtarget,STD1 � PDplan-

,STD1 for the two groups, with small
(black) and large (gray) overnight afteref-
fects. The figure shows that the larger the
deviations between the target and hand
directions, the larger the difference be-
tween PDtarget and PDplan of the co-FF and
counter-FF cells.

Second, for each perturbed move-
ment, we estimated the direction of the
force applied by the hand (force-vector).
For each cell, we compared its observed
firing rate in each of the perturbed move-
ments to the one expected from the force-
vector direction, according to the tuning
curve of the cell on standard trials (Fig. 7B,
black). Furthermore, we compared the

observed activity with the activity in the first trial to the learned
target, after removal of force-field (in STD2 epoch), in which the
hand clearly showed the learning-related aftereffect (Fig. 7B,
gray). In both comparisons, on average, we did not find signifi-
cant differences, suggesting that the observed behavioral changes
are likely to be sufficient to account for the neuronal effects.

Finally, we examined days in which no force-field learning
took place. On these days, the monkeys performed the highly
familiar default eight-target nonperturbed reaching movements,
and no changes were expected in motor plans and neuronal ac-
tivity. We compared the early trials with late trials for the same
day and did not find any consistent differences between PDs
(data not shown).

The results strongly support the conclusion that, during force-
field adaptation, the subjects learned to push their arm in a new
direction to compensate for the force-field, and the emerging PD
shifts only reflect the difference in reference frames that we use to
compute them. Namely, the PDs remain the same, and the pop-
ulation generates a new motor plan by the increases and decreases
of the counter-FF and co-FF cells.

Washout and relearning
Days 5 and 6 were used to test for washout and recall of the
learned task. The behavioral effects of washout (day 5) and re-
learning (day 6) evolved faster than the learning, which spanned
	200 trials to the learned target. Therefore, we examined the
related activity changes in the previously defined two populations
of cells with fast and slow dynamics.

A B C

Figure 6. Directional tuning of cells under perturbation depends on the selected reference frame: neuronal data. The x-axis in
all plots is the nPD of the cells, in bins of 45°, with learned target at 0. The y-axis in A–C shows differences between PDs late in
learning. The title of each plot shows the compared epochs. A, The PD differences between learning and STD1 are positive, showing
apparent shifts with force-field direction. The plots show that the differences depend on (1) the nPD of the cell and (2) the reference
frame during learning [PDtarget (red), PDhand (black), or PDplan (green)]. B, PDtarget (red), but not PDhand and PDplan (black– green),
show in STD2 apparent shifts relative to STD1 with force-field direction in a similar pattern as in learning (A). C, Comparing PDtarget

and PDplan in STD1 (red) reveals a similar pattern of apparent PD shifts. Note that the comparison was made between the same cells
with the same activity for the same trials and differed only by the reference frame. n � 264. In all traces, error bars denote SEM.
Large and small asterisks denote 1 and 5% confidence, respectively.

A B

Figure 7. Control analyses for the relation between directional tuning, selected reference frames, and adaptation. A, The
relation between apparent shifts and discrepancy between hand and target directions is demonstrated by separating STD1 trials to
the learned target to those with large (gray) and small (black) overnight aftereffects. B, The observed (obs) firing rate during
learning matches the expected (exp) activity from movements in the force-vector direction (black) and the observed activity when
perturbation is removed (gray). n � 264. In all traces, error bars denote SEM.

Mandelblat-Cerf et al. • Changes in Neuronal Activity during Adaptation J. Neurosci., January 5, 2011 • 31(1):300 –313 • 307



Figure 8 depicts in black the PDtarget in standard ( A), learn-
ing ( B), and late in washout ( C) compared with PDplan in
standard. Figure 8C specifically depicts (gray) the effect of
washout by computing the difference between PDtarget late in
washout and PDtarget in learning.

Figure 8, A and B (left), first shows the typical double-peak
pattern of apparent PD shifts on day 5, as shown in Figure 6.
Then, at the end of learning on day 5, we applied a long washout
epoch of at least 360 standard trials in all directions (45 to the
learned target). Comparing the activity of co-FF and counter-FF
cells late in washout to their activity during the preceding learn-
ing epoch showed that counter-FF cells decreased their firing
rates ( p � 0.01, data not shown), whereas co-FF cells maintained
their learning-related activity and did not change significantly.
Figure 8C (left, gray) shows that, as a result, PDs of counter-FF
cells “shifted” counter to the force-field direction. Because the
co-FF cells did not change their firing rates during washout, they
kept the same PDs as in the learning period (gray) and still dif-
fered from the PDs in STD1 (black).

Note that, late in washout, the trajectories still showed an
aftereffect. This incomplete washout may have resulted from the
learning-related activity of co-FF cells, which was maintained at
the end of the washout period, whereas the learning effects in
counter-FF cells washed out relatively fast.

Next, we tested relearning of the perturbation on day 6, after
the washout on day 5 and the STD1 epoch of day 6.

Trajectories to the learned target in STD1 epoch of day 6 were
almost straight (Fig. 2A,C), and therefore there were almost no
differences between PDtarget and PDplan in STD1 epoch (Fig. 8A,

right). Relearning was expressed only by an increased activity of
the counter-FF cells. As a result, their PDtarget differed from their
PDplan in standard trials (Fig. 8B, right), similar to the PD differ-
ences observed in the early days of learning (supplemental Fig.
3A, available at www.jneurosci.org as supplemental material).
These differences in PDs were reversed during the successive
washout epoch (Fig. 8C, right, gray), resulting in PDs that were
similar to those in standard (Fig. 8C, right, black). Note that, late
in this washout, the hand moved in the direction of the target (no
significant aftereffects), suggesting that the lack of differences
between PDs in washout and standard are in accordance with the
complete washout.

Altogether, these results hint that the stability of learning is
dependent on the relative fraction of fast and slow neuronal
changes in the learning process. The incomplete washout on day
5 was arguably a reflection of the slow dynamics of co-FF cells that
maintained their learning-related changes until late in washout.
These changes were probably gradually washed out overnight,
because on day 6 the overnight aftereffects were much smaller.
Thus, the fast relearning was mediated mainly by changes of the
“fast” counter-FF cells, whereas the changes of co-FF cells were
most likely too slow to accumulate. Hence, after “fast relearning”
on day 6, the washout could be completed because it resulted
mostly from the rapidly reversed changes of counter-FF cells.

Population-vector analysis
Population-vectors are thought to relate neuronal activity in the
motor cortex to the direction of arm movements (Georgopoulos
et al., 1986). We computed population-vectors in movements to
the learned target with and without force-field as an additional
way to explore possible changes in the motor plan during force-
field adaptation.

For each day and cell, we computed the population-vectors
based on PDplan in STD1 using the optimization linear estimator
(Salinas and Abbott, 1994). Figure 9A presents an example of
population-vectors for trials to the learned target along 2 learning
weeks comprising 5 d. Both had the same learned target (at 0°,
horizontal line) but opposing force-field directions; week 1 was
with a counterclockwise (CCW) field and week 2 with a clockwise
(CW) field. Each dot reflects the direction of a population-vector
for a single trial. Dots appear in the order of trials along days,
where blue/cyan dots are population-vectors of STD1 trials and
red/magenta are population-vectors of LRN trials, for week 1 and
week 2, respectively. The figure shows that, as learning pro-
gressed, population-vectors clearly deviated in different direc-
tions from the learned target in the 2 weeks, each counter to its
force-field direction (compensating the perturbation). Note that
population-vector deviations were apparent not only in LRN tri-
als but also in STD1 trials (blue/cyan), in close concurrence with
the overnight aftereffects (Fig. 2C).

Averaging over the 7 learning weeks (Fig. 9B) shows the grad-
ual divergence of population-vectors from the learned target. Be-
cause population-vectors were computed by the PDplan in the
STD1 epoch, we expected them to point in the initial hand direc-
tion during unperturbed movements. Indeed, for movements in
STD1 and STD2, the population-vectors and initial hand direc-
tion were not significantly different (data not shown, t test, p 	
0.5) throughout the learning week. During learning trials, when
the force-field pushed the hand, population-vector (Fig. 9B, red
line) and initial hand direction (Fig. 9B, black line, taken from
Fig. 2B for illustration purposes only) pointed in different direc-
tions, with a difference that remained at approximately the same
level of 40°, throughout the week (ANOVA, p 	 0.1), whereas the

A

B

C

Figure 8. Apparent PD shifts are reversed during washout and recommence during relearn-
ing; this effect is seen only in counter-FF cells, reflecting only the fast process. The analysis
shows day 5 (left) and day 6 (right). The y-axes show differences in PDs between reference
frames, as a function of the nPD of the cell. The solid black lines show comparisons of the PDplan

in STD1 to PDtarget in STD1 (A), learning (B), and late in washout (C). The differences between
PDtarget late in washout and PDtarget in learning are shown as gray lines. n � 130 on day 5 and
n � 126 on day 6. In all traces, asterisks show 1% confidence, and error bars denote SEM.
Square brackets indicate that significance was calculated on cells from two adjacent bins to-
gether, in a total range of 90°.
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population-vector and force-vector (green line) directions were
the same ( p 	 0.15).

Because the initial hand direction deviated less from the target
direction (straighter movements), population-vectors deviated
more. Namely, under the relatively constant force-field during
learning, there was a tight relation between the changes in motor
plan as reflected by changes of population-vectors and the ob-
served hand movement.

Premovement neuronal activity
In each trial, the monkeys were informed on the direction of the
upcoming movements 850 –1350 ms before the go signal, and the
monkey was required to hold the robotic arm at the central circle
during this time window. Studies have suggested that neuronal
activity in M1 during such delay period reflected attributes of the
intended reaching movement (Wise et al., 1998) and could show
learning-related modulation (Paz et al., 2003; Mandelblat-Cerf et
al., 2009). Bizzi’s group (Padoa-Schioppa et al., 2004; Xiao et al.,

2006) showed during force-field adapta-
tion gradual shifts in PDs in premotor ar-
eas during such a delay period.

We examined the premovement de-
lay period by comparing PDtarget in sev-
eral epochs with PDplan in STD1 (i.e.,
PDtarget,epoch1 � PDplan,STD1, where ep-
och 1 presents STD1, LRN, or STD2)
during late days of learning. We per-
formed the analysis separately for two
premovement segments: one that im-
mediately followed the target onset and
the other a period of 500 ms before go
signal. Although neuronal activity after
target onset did not show significant dif-
ferences in PDs (data not shown), the
activity before the go signal (Fig. 10 A)
showed the double-peak pattern of ap-
parent PD shifts of the co-FF and
counter-FF cells in each of the epochs
(STD1, LRN, STD2) compared with
STD1. The population-vector of this ac-
tivity (Fig. 10 B) diverged from the
learned target in a similar (but smaller
and variable) way as the population-
vectors that were estimated for the
movement-related activity (Fig. 9B).
These apparent PD shifts may reflect a
change of the motor plan. The changes
of population-vectors during the delay
period support the notion that the mo-
tor cortex can plan a movement ahead
of its execution.

PDs analyses in local learning of
kinematics task
A previous experiment in our laboratory
investigated neuronal activity during local
learning of visuomotor rotation (Paz et
al., 2003), which introduces a constant ro-
tation between the hand and cursor direc-
tions without applying any force on the
hand. Therefore, monkeys learned to
move their hand in a new direction to
bring the cursor to the learned target. The

visuomotor rotation task requires a change of the kinematics
parameters, whereas force-field perturbation requires a change of
the dynamics parameters to maintain similar kinematics. In pre-
vious studies by Paz et al. and others (Ghahramani et al., 1996;
Krakauer et al., 2000), only the learned target was repetitively
presented during adaptation, resulting in a fast learning and
performance that reached a plateau within dozens of trials on
a single day.

In local adaptation, one can only record neuronal activity to
the single learned target. Paz et al. showed that movement-related
activity during adaptation was as expected from the firing rates of
cells on standard trials when the hand moved in the new adapted
direction (Paz et al., 2003, their Fig. 5). In addition, it was shown
that the behavioral generalization after such adaptation was lim-
ited. Based on these two findings, we assume that we can estimate
the directional tuning of cells during local visuomotor adaptation
by using firing rates to the seven nonlearned targets from the
standard trials with the activity to the learned target from the

A

B

Figure 9. Adaptation of the population-vectors (PVs). The PVs during movements to the learned target (LT) gradually deviate
in a direction against the force-field, with the force-vector direction. A, Population-vector estimations for single trials to learned
target (dots) during 2 learning weeks that had the same learned target (at 0°) but opposing force-fields. STD1 trials are denoted in
blue (week 1) and cyan (week 2) and learning trials in red (week 1) and magenta (week 2). The opposing force-fields induced
opposing deviations of population-vectors from the learned target, each against its force-field direction. Note that, on days 4 and
5, population-vectors in STD1 are deviated and coincide with the overnight aftereffects that are described in Figure 2C. CW,
Clockwise; CCW, counterclockwise. B, Population-vectors (red) and force-vectors (green) averaged over 7 weeks show a gradual
and similar deviation from the learned target, counter to force-field direction. The average learning curve (copied from Fig.
2 B) is shown (black line) with its y-axis on the right, for comparison of temporal evolvement. Note that, when the
population-vectors and force-vector point to the learned target (early in learning), the hand (black) deviates away from it.
n � 704. Shaded areas denote SEM.
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adaptation period and test whether
movement-related activity shows the
same pattern of double-peak apparent PD
shifts and the dependency on reference
frame (hand direction vs target direction).
The visuomotor rotation task is highly
useful to examine the effect of reference
frame because the adapted motor plan is
clearly observed by the updated hand
direction, which moves in the rotated
angle. Therefore, unlike force-field ad-
aptation, we can directly examine PD-

plan (and PDhand, which is the same)
during learning.

Furthermore, note that, in this short-
term learning task, the prelearning
movements during standard epoch were
straight toward the learned target, and
therefore the PDs computed in different
reference frames (plan, target, and
hand) for these movements were all
practically the same.

Figure 11 shows that the differences
between PDtarget in learning and PDplan in
standard as a function of the cells PD (red
solid lines) are very similar to the double-
peak pattern shown in Figure 6 (red
curves); namely, apparent PD shifts are
evident for cells with PD at a distance of
approximately �90° from the learned
target.

Interestingly, as in force-field adapta-
tion, we found no systematic differences
in PDs when PDplan during visuomotor
rotation learning were compared with
PDplan in standard (Fig. 11, black line).
This result is in line with Paz et al. (2003),
showing that movement-related firing rates during adaptation
followed the hand direction. Thus, all cells can contribute to the
new hand-movement direction, with increased activity in cells
with PD in the new movement direction and decreased activity in
cells in the opposite direction. However, the activity of cells with
PDs around �90° from the learned target direction changed the
most. This is not surprising given the cosine-like directional
tuning. As shown in Figure 5B, for these cells, the target is
located at the range of maximal slope of the cosine; hence, the
sensitivity to changes in the direction of the motor plan is
maximal. Cells with PDs near the learned target or 180° away
showed little change in activity because of the small slope.
These changes were probably smaller than background vari-
ability (Lee et al., 1998; Stein et al., 2005; Rokni et al., 2007;
Faisal et al., 2008) and escaped detection. Therefore, although
all cells could be involved in generation of the new movement,
we only observed the larger modulations in the two PD ranges
around �90° from the learned target.

To conclude, the results strongly suggest that the differences
in PDs that we observe in adaptation to force-field and in visuo-
motor rotation do not reflect PD shifts. Instead, they reflect a
discrepancy between the target location and the motor plan di-
rection. Given this discrepancy, new weights are assigned to the
cells (changes in firing rates) and the population signal is adjusted
accordingly.

Generalization: behavioral and neuronal data
To test generalization, we studied the effect on movements to the
seven nonlearned targets (without force-field) that were executed
throughout the learning epochs in the late days of learning.

The results are depicted in Figure 12 describing the initial
directional deviations of trajectories (“TRJ-aftereffects”) and the
corresponding deviations of the population-vectors from the tar-
get (“PV-deviations” using optimal linear estimator; Salinas and
Abbott, 1994) for unperturbed trials that immediately followed
force-field trials. Because trials appeared in a random sequence
during the learning epoch, each target occasionally followed a
force-field trial. Figure 12 presents the averaged aftereffect (black)
and population-vector deviation (gray) for each target as a func-
tion of its angular distance from the learned target. The figure
shows, as expected, that the strongest aftereffects were observed
in the learned target direction (�37°) and the corresponding
deviations of population-vector (�30°). Interestingly, afteref-
fects on trajectories and deviations of population-vectors were
also observed in other movement directions, reflecting generali-
zation. Generalization was mostly expressed in movements to the
�45° target (target adjacent to the learned target in a direction
counter to the force-field) with aftereffects of �9° (t test, p �
0.01). Similarly, the corresponding population-vectors deviated
from the target direction, with directional errors of approxi-
mately �7°. Significant but considerably smaller effects ( p �
0.01) were evident in movements to �45° target (��3°). Move-

A

B

Figure 10. The neuronal changes are apparent before movement onset. A, The figure depicts PD differences computed for
neuronal activity before the go signal (late learning days). The comparisons of PDplan in STD1 to PDtarget in STD1 (left), LRN (middle),
and STD2 (right) show the double-peak pattern of apparent PD shifts in all three cases. Asterisks denote 1% confidence, and square
brackets indicate that significance was calculated on cells from two adjacent bins together, in a total range of 90°. B, Population-
vectors (PV) estimated for activity before the go signal, averaged over 7 weeks, show a gradual deviation from the LT counter to
force-field direction. n � 486. Shaded areas and error bars denote SEM.
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ments to other targets did not show any systematic effects and on
average did not differ from zero. Note that we did not find sig-
nificant daily changes in firing rates during movement to any of
the nonlearned targets (Fig. 3), although some generalization
effects are evident, probably attributable to a smaller overall effect
relative to changes in movements to the learned target.

In conclusion, as expected from previous studies, generaliza-
tion was narrow (limited to �45°). Interestingly, we found that
the effect of generalization was increased in the direction to which
the hand was pushing to compensate for the perturbing force-
field. Namely, generalization followed the motor plan direction
(counter to force-field direction) rather than the target location
or the observed hand direction (with force-field direction).

Discussion
This paper presents a new approach to study the neuronal basis of
adaptation, using a modified version of the curl force-field that
leads to long-term local adaptation. The design of experiment
allowed for monitoring the local effects and at the same time
measuring the directional tuning of single cells and the popula-
tion signals. We found that adaptation involved processes of
different (fast and slow) timescales that were expressed in mod-
ulations of firing rates. Analysis of these changes revealed that
they do not reflect consistent modifications of PDs of single cells
(Li et al., 2001). Rather, they reveal the change of intention and
motor plan without changing properties of single cells.

Specifically, we found that (1) during local, long-term adap-
tation the activity of the neuronal population was modified and
correlated with improvement in performance from day to day.
(2) Modulations in single-cell activity were primarily expressed
in two subgroups of cells with fast and slow timescales. (3) In both
timescales, the cells showed consistent apparent shifts of their
PDs with force-field direction. However, (4) these calculated “PD
shifts” may be explained by the discrepancy between the motor
plan direction and target location rather than intrinsic changes in
the tuning of the cells. (5) The generalization pattern, with similar
neuronal and behavioral signatures, reflected the effect of the
motor plan direction.

Generally, our findings agree and extend predictions of
psychophysical studies in humans and monkeys showing that
gradual adaptation to force-field is expressed by reduction of
trajectory curvature under the perturbation and by increased af-
tereffects (opposite curvature) when perturbation is removed
(Shadmehr and Mussa-Ivaldi, 1994; Li et al., 2001; Arce et al.,
2009). As in previous studies, we also found day-to-day retention
of learning (Shadmehr and Brashers-Krug, 1997) with afteref-
fects that were maintained overnight. These behavioral signa-
tures are commonly considered to reflect modifications of
internal models (Kawato and Wolpert, 1998; Kawato, 1999;
Hwang et al., 2006).

Dynamics of neuronal modulations reflect fast and slow
adaptation processes
The modification of the internal model allows for better predic-
tion of the amplitude and direction of the perturbation. We
looked for neuronal changes that could reflect a change of an
intention of action, i.e., a change in motor plan. It has been sug-
gested that these changes are performed by multiple timescale
processes, which theoretically could be advantageous for flexibil-
ity in synaptic plasticity (Fusi et al., 2007). It was also suggested
that fast and slow processes could account for several phenomena
in short-term motor adaptation (Smith et al., 2006) when the
slow process is more robust. Namely, the slower the process, the
longer the memory; the fast process that is expressed in behavior
early in learning leaves only short-term traces, and the slow pro-
cess that emerges only later in learning leaves longer traces. We
studied long-term rather than trial-by-trial modulations. There-
fore, the “fast” and “slow” dynamics we report are at longer time-
scales. Nevertheless, they may serve similar functions as proposed
by Smith et al. Interestingly, our data also support the notion that
the slow process that evolves much slower than the fast also de-
cays more slowly (Figs. 3, 4).

The fast and slow changes that we see in motor cortex may
depend on activity in various brain structures in addition to the
motor cortex. A major candidate is the cerebellum (Medina et al.,
2000, 2001), in which it was suggested that error rapidly teaches
the cerebellar cortex whereas the cerebellar cortex slowly teaches

Figure 11. PDtarget, and not PDhand, show apparent PD shifts in a kinematic task (visuomotor
rotation). Gray dots indicate the differences for single cells between PDtarget in the learning epoch
compared with the PD in standard epoch. The red line indicates the averaged PD differences across
cells, binned in 90°. For purposes of illustration, the average of subgroup with �PD�	135 is depicted
twice at both ends of the x-axis. Comparing PD in standard with PDhand in learning (black) did not
show any systematic differences. n � 52. Error bars denote SEM.

Figure 12. Generalization of local adaptation to force-field is affected by the motor plan.
Generalization is measured by initial directional deviations of trajectories (TRJ-aftereffects,
black line) and the corresponding population-vectors (PV-deviation, gray line). Note that tra-
jectories aftereffects to the learned target were only measured in STD2 after the first epoch of
learning trials, but all other directions were measured during learning. The figure shows the
trajectories aftereffects and population-vector deviations from each of the targets around the
learned target, taken at late stages of adaptation. Note the elevated effect to target �45°. n �
264. Error bars denote SEM.
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the cerebellar nuclei. Karni et al. (1998) demonstrated (in a func-
tional magnetic resonance imaging study) fast and slow modula-
tions of M1 activity and related the fast stage to the actual
execution of movements and the slower to the formation of a
“unitary motor plan and a rather ‘automatic’ movement.”

The faster process in our study was expressed by an increased
firing rate in a selected population of cells with nPDs counter to
the force-field direction. This increase can account for most of
the required compensation of the force-field, pushing the hand
against its direction. As learning progressed, the slow process
gradually accumulated, as expressed by the decreased firing rate
in cells showing nPDs with the force-field direction (co-FF cells).
The contribution of these cells to the correction of direction was
small, yet the decreased firing rate of these cells apparently acted
together with the counter-FF cells to overcome the perturbation.
Assuming that the brain attempts to minimize some cost func-
tion during adaptation (Todorov and Jordan, 2002; Todorov,
2004), it is likely that these changes, which reduce the total muscle
activation, are cost effective and facilitate optimization of the
motor plan.

Note that, when force-field is applied on several directions
(“global learning” as in the study by Bizzi’s group) counter-FF
cells are also the co-FF cells for targets in the opposite direction.
Thus, it is more accurate to talk about a “counter-FF process” and
“co-FF process” that act together to optimize the movements
under force-field. Therefore, our results predict that, during
global learning, a directionally tuned cell should increase its firing
rate in a “fast process” and decrease its firing rate in a “slow
process” depending on the target location.

Neuronal modulations reflect the adapted motor plan
Our primary findings show that, late in learning, the fast and slow
processes generated a profile of firing rate modulations that de-
pend on the PD of the cell, similar to the cosine-like pattern
observed in our previous study (Arce et al., 2010a). However,
then, we could not measure the directional tuning during learn-
ing, which we did here. Tuning of cells during learning was com-
puted in three reference frames: target location, observed initial
hand-movement direction, and the computed force-vector that
the hand applied. For nonlearned targets, these three frames were
practically identical. However, it changed for the learned target:
when the perturbation was first introduced, the force-vector
pointed to the target, whereas the hand deviated with force-field
direction. Late in learning, the force-vector pointed counter to
force-field direction, and its vectorial summation with the force-
field generated hand movements toward the target (Fig. 5A).
Comparisons of directional tuning and the resulting PDs in the
three reference frames indicated that, during learning, neuronal
activity was always consistent with the force-vector reference
frame (Kalaska et al., 1989) but not with target or hand reference
frames (Fig. 6A,B) in which the PDs seemed to shift with force-
field direction as shown previously (Li et al., 2001; Arce et al.,
2010b). When perturbation was removed, we observed apparent
PD shifts on the population level in the opposite direction, as
found in these previous studies. However, these studies also re-
ported specific memory effects in selected groups of cells. We
could not test this feature because in our task design of long-term
learning (without daily washout), prelearning and postlearning
standard movements were not recorded on the same day.

Our results provide a new explanation for the PD shift phe-
nomena. Because PDs do not change in the force-vector reference
frame, the apparent shifts may express firing rate modulations in
the selected reference frame, whereas PDs do not shift. When the

force-field pushes the hand, subjects modify the motor plan, and
the same cells with same PDs are recruited to perform this new
plan.

This conclusion is supported by the analysis of kinematics
adaptation (visuomotor rotation task) (Fig. 11). In that task,
there was an instructed discrepancy between the hand and target
directions. Thus, the hand moved unperturbed in the planned
direction, whereas the cursor moved to the target. The analysis
showed that learning-related changes were reflected by apparent
PD shifts in the target reference frame but not in the hand/plan
reference frame. These results clearly suggest that kinematics ad-
aptation, like dynamics adaptation, can evolve without PD shifts.

Although PDs did not shift systematically, the population-
vectors showed a day-to-day gradual shift counter to force-field
direction, pointing in the same direction as the estimated force-
vector (the assumed motor plan direction) and tightly related to
improvement in performance. Therefore, the findings further
support the notion that the neuronal tuning always reflects the
motor plan.

Late in learning, the adapted plan was evident before the go
signal (Fig. 10) (in line with Padoa-Schioppa et al., 2002). This
adapted activity in motor cortex may serve as the basis for obser-
vations showing that the brain can predict the perturbation and
compute in advance how to compensate to move straight to the
target. The new computation could be performed by either “re-
aiming” to a new direction (as suggested previously for rotation
by Jarosiewicz et al., 2008) or aiming at the target but computing
another force-vector direction. Our data do not distinguish be-
tween these strategies; although they are conceptually different,
they result in the same directional motor plan that produces the
same profile of increases and decreases of activity in the motor
cortex.

The generalization pattern of learning described in Figure 12
is intriguing. During adaptation, the hand was pushed in the
force-field direction, and the actual hand movements were
curved in this direction. However, generalization showed an in-
creased effect in the direction of the adapted motor plan (counter
to force-field direction) rather than in the perturbed hand direc-
tion. Therefore, we suggest that the adapted motor plan influ-
ences responses to nonlearned targets, inducing generalization in
its direction.

To conclude, we tracked neuronal activity during long- term
sensorimotor adaptation and distinguished between two differ-
ent timescales of changes in single-cell firing rates. These changes
occurred without systematically changing the preferred direc-
tions of the cells but rather reflected the change in the motor plan
direction.
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