
Behavioral/Systems/Cognitive

Feature-Specific Attentional Priority Signals in Human
Cortex

Taosheng Liu,1,2,3 Luke Hospadaruk,1 David C. Zhu,1,3,4 and Justin L. Gardner5

1Department of Psychology, 2Neuroscience Program, 3Cognitive Science Program, and 4Department of Radiology, Michigan State University, East Lansing,
Michigan 48824, and 5RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan

Human can flexibly attend to a variety of stimulus dimensions, including spatial location and various features such as color and direction
of motion. Although the locus of spatial attention has been hypothesized to be represented by priority maps encoded in several dorsal
frontal and parietal areas, it is unknown how the brain represents attended features. Here we examined the distribution and organization
of neural signals related to deployment of feature-based attention. Subjects viewed a compound stimulus containing two superimposed
motion directions (or colors) and were instructed to perform an attention-demanding task on one of the directions (or colors). We found
elevated and sustained functional magnetic resonance imaging response for the attention task compared with a neutral condition,
without reliable differences in overall response amplitude between attending to different features. However, using multivoxel pattern
analysis, we were able to decode the attended feature in both early visual areas (primary visual cortex to human motion complex hMT�)
and frontal and parietal areas (e.g., intraparietal sulcus areas IPS1–IPS4 and frontal eye fields) that are commonly associated with spatial
attention. Furthermore, analysis of the classifier weight maps showed that attending to motion and color evoked different patterns of
activity, suggesting that different neuronal subpopulations in these regions are recruited for attending to different feature dimensions.
Thus, our finding suggests that, rather than a purely spatial representation of priority, frontal and parietal cortical areas also contain
multiplexed signals related to the priority of different nonspatial features.

Introduction
The behavioral importance of locations has been hypothesized to
be represented in topographical maps that can guide the alloca-
tion of spatial attention (Koch and Ullman, 1985; Wolfe, 1994;
Itti and Koch, 2001). In this view, stimulus attributes such as
color or motion can identify particular objects as being unique in
a visual scene and cause the corresponding location in these maps
to have increased activity that represents their “bottom-up” sa-
lience. Top-down influences related to the particular goals of the
observer may also modulate activity in these maps, for example,
by increasing the response at a task-relevant location while sup-
pressing activity at other locations. These “priority maps” can be
thought of as representing an abstract quantity reflecting the be-
havioral importance of locations, but, are hypothesized not to
contain any information about the stimulus properties them-
selves. Instead, these properties must be recovered from repre-
sentations in early visual areas.

The idea of a priority map has received considerable experi-
mental support that implicates topographically mapped areas in
the parietal and frontal cortex as possible neural substrates. In
particular, single-unit physiology experiments with awake-

behaving monkeys have found evidence that the frontal eye fields
(FEFs) and the lateral intraparietal area (LIP) contain represen-
tations compatible with priority maps (Thompson and Bichot,
2005; Bisley and Goldberg, 2010). Concordantly, functional im-
aging studies in humans have found that corresponding frontal
and parietal areas contain topographic representations related
to saccade planning and attention (Silver and Kastner, 2009),
suggesting that these areas in humans may also contain prior-
ity maps.

If signals in these frontal and parietal areas do indeed repre-
sent priority maps, what might they signal when a particular
visual feature is prioritized rather than a particular location? Spa-
tially superimposed displays in which two stimuli are shown in
the same location but differ by a stimulus feature are particularly
useful for demonstrating feature-based selection. Psychophysical
studies have demonstrated that attending to one feature in such
displays conferred improved sensitivity to that feature (Lankheet
and Verstraten, 1995; Sàenz et al., 2003; Liu et al., 2007). Purely
spatial priority maps as conceptualized in theoretical work (Koch
and Ullman, 1985; Wolfe, 1994; Itti and Koch, 2001) would be
expected to have heightened activity at the same location regard-
less of which feature is attended and would not contain informa-
tion that could distinguish between the attended features.
Alternatively, parietal and frontal areas may retain more detailed
information about prioritized locations including basic stimulus
attributes and thus could be used to prioritize stimuli not just in
space but also along different feature dimensions.

To investigate how priority signals for features are repre-
sented, we conducted two experiments in which subjects at-
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tended to either direction of motion or color in a spatially
superimposed stimulus while their brain activity was measured
with functional magnetic resonance imaging (fMRI). Using mul-
tivariate pattern analysis, we were able to reliably decode which
particular feature subjects were cued to prioritize (i.e., which
color or which direction of motion). These results suggest that
frontal and parietal areas contain representations that can be
used to allocate feature-based attention.

Materials and Methods
Subjects
Six right-handed subjects (one female; mean age, 24 years) participated
in the experiments; all had normal or corrected-to-normal vision. Two of
the subjects were authors, and the rest were graduate and undergraduate
students at Michigan State University, all of whom gave written informed
consent and were compensated for their participation. The experimental
procedures were approved by the Institutional Review Board at Michigan
State University and adhered to safety guidelines for MRI research.

Visual stimuli and display
Visual stimuli consisted of moving dot patterns (dot size, 0.1°; density,
3.5 dots/deg 2) in an annulus (eccentricity from 1° to 12°), presented on a
dark background (0.01 cd/m 2). Stimuli were generated using MGL

(http://justingardner.net/mgl), a set of custom
OpenGL libraries running in Matlab (Math-
Works). Images were projected on a rear-
projection screen located in the scanner bore by a
Toshiba TDP-TW100U projector outfitted with
a custom zoom lens (Navitar). The screen res-
olution was set to 1024 � 768, and the display
was updated at 60 Hz. Subjects viewed the
screen via an angled mirror attached to the
head coil at a viewing distance of 60 cm.

Attention experiment: task and procedure
Attention to motion direction experiment. The
stimuli were composed of two overlapping dot
fields (white dots, 48 cd/m 2) that rotated
around the center of the annulus (Fig. 1 A).
One dot field rotated in a clockwise (CW) di-
rection, whereas the other rotated in a counter-
clockwise (CCW) direction at a baseline
angular speed of 60°/s. A fixation cross (0.75°)
was displayed in the center of the screen
throughout the experiment.

Subjects were cued to either attend the CW
direction, attend the CCW direction, or attend
neither (null) direction. At the beginning of
each trial, an arrow cue (3, 4, 7) was pre-
sented for 0.3 s, which instructed subjects to
attend to the CW-rotating dot field, the CCW-
rotating dot field, or neither. Trials were 20 s
long, and the order was pseudorandomized
such that the first trial in a run was always a null
trial and each trial type was preceded and fol-
lowed equally often by other trial types. Each
scanning run contained six trials of each type,
for a total of 18 trials (360 s/run). Each subject
completed 10 of these runs in the scanner, for a
total of 60 CW and 60 CCW trials.

On one-fourth of the CW and CCW trials
(referred to as “task trials” below), subjects had
to perform a speed-detection task that probed
whether they were able to successfully direct
attention to the cued direction. During task tri-
als, both dot fields underwent brief speed in-
crements (duration, 0.3 s) at random intervals
(uniform distributed from 1.5 to 6.5 s). The
timing of the speed-up events was randomized
independently for the two dot fields. Subjects

were instructed to press a button whenever they detected a speed-up in
the cued dot field. The magnitude of the speed-up was controlled via a
one-up, two-down staircase procedure to maintain performance at an
intermediate level. Subjects had to respond within a 1.5 s interval after
each speed-up target for the response to count as a hit, which caused a
decrease in the magnitude of the speed increment; a miss or false alarm
caused an increase in this value. At the end of a task trial, the fixation cross
changed color briefly (0.2 s) to give performance feedback. Green indi-
cated all targets were correctly detected, yellow indicated partial target
detection, and red indicated none of the targets was detected. Subjects
were instructed to always attend to the cued dot field and ignore the other
dot field for the CW and CCW trials, regardless of the presence of the
speed increment task. We did not include the detection task on all trials
so that we could analyze perceptual effects in the absence of motor re-
sponses. However, we note that motor response per se cannot contribute
to our ability to classify attentional states because the response was con-
stant (the same single-button response for both attentional conditions).
Subjects were not cued in advance about whether a trial contained the
speed-detection task.

Attention to color experiment. The design of this experiment (Fig. 1 B)
followed a similar format to the attention to direction experiment, except
subjects were cued to direct attention to the color of the stimuli. Colored
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Figure 1. Schematic of the task and behavioral results. A, A trial in the motion experiment. B, A trial in the color experiment. The
timing of events was identical for both experiments as indicated by the time line in the middle. ITI, Intertrial interval. C, Behavioral
data in the motion experiment. A signal detection d� value was calculated assuming subjects responded to either the cued dot
fields or the uncued dot fields. Error bars denote �1 SEM across subjects (n � 6). D, Behavioral data in the color experiment, in the
same format as in C.
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dots were shown in an annulus; half of the dots were red and half were
green. All dots moved in a “random walk” manner, i.e., the location of
each dot was displaced in a random direction at each screen update
(speed, 4°/s). The red and green colors were set at isoluminance via
heterochromatic flicker photometry. During this procedure, a red/green
checkerboard pattern was counterphase flickered at 8.3 Hz in the same
annulus, and subjects adjusted the luminance of the green color to min-
imize flicker (the red color was fixed). Each subject set the isoluminance
point in the scanner for six times at the beginning of the scanning session.
The average of the six settings was used as the luminance of the green
color in the attention experiment.

Subjects were cued to attend to red, to green, or neither as indicated by
“R,” “G,” or “N,” respectively, shown at the center of gaze at the begin-
ning of each 20 s block. On one-fourth of the attending to red and green
trials, small luminance increments were introduced to both dot fields at
random intervals, and subjects detected the luminance increment in the
cued color via a button press. The luminance increments were controlled
by separate one-up, two-down staircase procedures for the red and
green color. The fixation cross changed luminance at the end of the
trial to give performance feedback: white, all targets detected; light
gray, partial target detection; dark gray, no targets detected. Subjects
completed 10 runs in the scanner for a total of 60 red and green trials
each. Subjects were not cued in advance about whether a trial con-
tained the luminance detection task.

Imaging data for the first null trial were subsequently discarded to
avoid transient effects associated with the initiation of scanning. The
motion and color experiments were run in separate sessions on different
days. Before the scanning session, subjects practiced the attention task for
at least 0.5 h in the psychophysics laboratory until they were comfortable
with the task.

Motion– color experiment. To evaluate the relationship between atten-
tion to motion and color, we ran a third session in which the motion and
color experiments were conducted in a single session. Four of the six
subjects participated in this experiment. The runs were identical to the
original experiments. Subjects completed five motion runs and five color
runs in an interleaved sequence.

Eye tracking. To evaluate the stability of fixation, we monitored eye
position outside the scanner while subjects performed the same tasks.
Four of six subjects participated in the eye tracking session, with each
subject performing two runs of the motion and color experiments. The
position of the right eye was recorded with an Eyelink II system (SR
Research) at 250 Hz. Eye position data were analyzed offline using cus-
tom Matlab code.

Functional localizer scan
In each scanning session, we also ran a “localizer” scan to identify voxels
responding to the visual stimulus. Subjects were instructed to passively
view the stimulus while maintaining fixation on a cross in the center of
the screen. Moving dots stimuli alternated with blank fixation periods in
20 s blocks; a total of eight on– off cycles were presented in a scanning
run. In addition, a 10 s fixation period was presented at the beginning of
the run, the imaging data for which were subsequently discarded. The
stimulus consisted of a single dot field with spatial characteristics match-
ing that of the corresponding attention experiment. In the motion exper-
iment, white dots moved in one of eight directions (0°-360° in 45°
increments), changing direction every 1 s. In the color experiment, white
dots underwent random walk motion. In the motion– color experiment,
white dots moved in one of eight directions with random jitter (a com-
bination of the linear motion and random walk).

Retinotopic mapping
For each subject, we mapped early visual cortex as well as several parietal
areas that contain topographic maps in a separate scanning session. We
used rotating wedge and expanding/contracting rings to map the polar
angle and radial component, respectively (Sereno et al., 1995; DeYoe et
al., 1996; Engel et al., 1997). Borders between visual areas were defined as
phase reversals in a polar angle map of the visual field. Phase maps were
visualized on computationally flattened representations of the cortical
surface, which were generated from the high-resolution anatomical im-

age using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) and custom
Matlab code. Multiple runs of the wedge and ring stimuli were collected
and averaged to increase signal-to-noise ratio. We incorporated an atten-
tional tracking task in the mapping procedure, in which subjects tracked
the moving stimulus with covert attention and detected a luminance
decrement in the stimulus via button press. The amount of luminance
decrement was controlled by an adaptive staircase procedure. We found
that this attentional tracking task helped us identify topographic areas in
the parietal areas (intraparietal sulcus areas IPS1–IPS4), consistent with
recent reports (Silver et al., 2005; Swisher et al., 2007; Konen and Kastner,
2008). In a separate run, we also presented moving versus stationary dots
in alternating blocks and localized the human motion-sensitive area,
human motion complex hMT�, as an area near the junction of the
occipital and temporal cortex that responded more to moving than sta-
tionary dots (Watson et al., 1993). Thus, for each subject, we indentified
the following areas: V1, V2d, V2v, V3d, V3v, V3A/B, V4, V7, hMT�,
lateral occipital cortex LO1, LO2, and four full-field maps in the IPS
(IPS1–IPS4). We did not observe a consistent boundary between V3A
and V3B; hence, we defined an area that contained both and labeled it
V3A/B. We adopted the definition of V4 as a hemifield representation
anterior to V3v (Wandell et al., 2007). LO1 and LO2 are two areas in the
lateral occipital cortex that contain a hemifield representation (Larsson
and Heeger, 2006).

Magnetic resonance imaging protocol
Imaging was performed on a GE Healthcare 3 T Signa HDx MRI scanner,
equipped with an eight-channel head coil, in the Department of Radiol-
ogy at Michigan State University. For each subject, high-resolution
anatomical images were acquired using a T1-weighted magnetization-
prepared rapid-acquisition gradient echo sequence (field of view, 256 �
256 mm; 180 sagittal slices; 1 mm isotropic voxels). Functional images
were acquired using a T2*-weighted echo planar imaging sequence (rep-
etition time, 2.5 s; echo time, 30 ms; flip angle, 80°; matrix size, 64 � 64;
in-plane resolution, 3.3 � 3.3 mm; slice thickness, 3 mm, interleaved, no
gap). Thirty-six axial slices covering the whole brain were acquired every
2.5 s. In each scanning session, we also acquired a two-dimensional T1-
weighted anatomical image that had the same slice prescription as the
functional scans but with higher in-plane resolution (0.82 � 0.82 � 3
mm). This image was used to align the functional data to the high-
resolution anatomical images for each subject.

fMRI data analysis
Functional data were analyzed using custom code in Matlab. Data for each
run were first motion corrected (Nestares and Heeger, 2000), linearly de-
trended and high-pass filtered at 0.01 Hz to remove low-frequency drift, and
then converted to percentage signal change by dividing the time course of
each voxel by its mean signal over a run. Data from the 10 attention runs were
then concatenated for subsequent analysis.

Functional localizer. A Fourier-based analysis was performed on data
from the localizer scan. For each voxel, we computed the correlation
(coherence) between the best-fitting sinusoid at the stimulus alternation
frequency and the measured time series (Heeger et al., 1999). The coher-
ence indicates how well the activity of a voxel is modulated by the exper-
imental paradigm and hence serves as an index of how active a voxel
responded to the visual stimulation. We used coherence as the sorting
criterion in our classification analysis (see below).

Univariate analysis (deconvolution). We fitted the time series of each
voxel with a general linear model with two sets of regressors, correspond-
ing to the two attentional conditions (i.e., CW and CCW in the motion
experiment, red and green in the color experiment). Each regressor was
composed of 15 columns of time-shifted 1, modeling the fMRI response
in a 37.5 s window after the onset of a trial. The design matrix thus
formed was pseudoinversed and multiplied by the time series to obtain
an estimate of the hemodynamic response evoked by each of the two
conditions. This deconvolution approach assumes linearity in temporal
summation (Boynton et al., 1996; Dale, 1999) but not a particular shape
of the hemodynamic response. To obtain a measure of response ampli-
tude for an area, the deconvolved responses were averaged across the
voxels in that area.
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In addition to the visual and parietal areas defined by retinotopic
mapping, we defined several other areas based on data from the attention
experiment. We looked for voxels that showed significantly modulated
response in the attention epochs relative to the null epochs, regardless of
sign of the response (i.e., increases or decreases) or the relative amplitude
of response in the two attention conditions (i.e., CW vs CCW, red vs
green). This was done by using the goodness-of-fit measure, r 2, of the
deconvolution model, which was the amount of variance explained by
the model (Gardner et al., 2005). The statistical significance of the r 2

value was evaluated via a permutation test (Nichols and Holmes, 2002).
Event times were randomized and r 2 values were recalculated for the
deconvolution model. Ten such randomizations were performed; the
resulting distributions of r 2 values for all voxels were then combined to
form a single distribution of r 2, which we took as the distribution of r 2

values expected by chance. Note that each of the 10 distributions was
computed for all voxels; thus, combining 10 of them produced a suffi-
ciently large sample to estimate the null distribution. The p value of each
voxel was then calculated as the percentile of voxels in the null distribu-
tion that exceeded the r 2 value of that voxel. Using a cutoff p value of
0.005, we defined four additional areas that were active during the atten-
tion epochs in both experiment: anterior intraparietal sulcus (aIPS), FEF,
ventral precentral sulcus (vPCS), and medial superior frontal gyrus
(mSFG) (see Fig. 2).

Multivariate analysis (multivoxel pattern classification). For each voxel
in an area, we obtained single-trial fMRI response by averaging the re-
sponse in a 2.5–22.5 s time window after trial onset for each single trial
(time points 2–9). This time window covered the duration of the trial
with a shifted onset to compensate for the hemodynamic delay. This
produced 60 responses (instances) for each attentional class (i.e., CW or
CCW for the motion experiment and red or green for the color experi-
ment) for each voxel. Each instance can be treated as a point in
n-dimensional space, where n is the number of voxels. We used a binary
linear discriminant analysis in which each novel instance was projected
on to a weight vector, converting the n-dimensional instance to a scalar,
which was then compared with a bias point to predict to which class the
instance belonged:

c � �
i�1

n

wiri � b

The instance was predicted to belong to the first class (i.e., CW or green)
when c was negative and the other class (CCW or red) when c was posi-
tive. ri and wi were response of the ith voxel (defined above) and classifier
weight, respectively, and b was the bias point. The classifier weights (w� )
were assigned using the following equation: w� �(m� 1�m� 2)(� � �I )�1,
where m� 1 and m� 2 were the means of the two classes of instance used to
build the classifier, � was their combined covariance, I was the identity
matrix, and � was a regularization parameter. The regularization param-
eter was set to the SD of the data across all instances and voxels and was
used because � was underdetermined as a result of the larger number of
voxels than instances used to build the classifier. b was set to the midpoint
of the two distributions of projected instances.

To evaluate accuracy of the classifier performance, we performed a
leave-one-out cross-validation procedure. A training dataset was first
constructed by removing one instance, which was then used to train a
classifier. The left-out instance was provided to the classifier as input and
its output was recorded. This procedure was repeated for each instance of
the data. The classifier accuracy was calculated as the number of correct
classification over the total number of leave-one-out runs. To evaluate
the stability of the classifier performance, we systematically varied the
number of voxels (dimensions) used to construct the classifier, from 1 to
150 voxels (see Fig. 4). Voxels were sorted in descending order according
to their coherence value in the functional localizer scan. The top n voxels
were used in constructing a classifier of a particular size. Coherence value
in the localizer scan gave us an independent measure of how active a
voxel was and hence ensuring that our training and testing data were
completely independent.

Whole-brain multivariate analysis (“searchlight”). In addition to the
above region-based multivoxel pattern classification (MVPC) analysis,

we also conducted the same analysis in the whole brain (Kriegeskorte et
al., 2006). We restricted our search to the cortical surface instead of the
whole volume. For each voxel in the gray matter (center voxel), we de-
fined a small neighborhood containing all gray matter voxels within a 25
mm radius based on the distance on the cortical surface. This radius
produced neighborhoods containing �100 voxels on average. MVPC
analysis was then performed on each of such neighborhoods as above,
and the resulting classification accuracy was assigned to the center voxel.
Thus, for each subject, we generated a classification accuracy map of the
whole brain; these maps were then averaged and thresholded for visual-
ization (see below, Surface-based registration and visualization of group
data).

Weight map analysis. A correlation analysis was conducted to assess the
similarity/dissimilarity of the voxel weights in the motion– color experi-
ment, in which the attention to motion and attention to color runs were
interleaved within a session. We concatenated separately all the motion
runs and all the color runs and constructed a classifier for each experi-
ment using all the instances (i.e., treating all data as training data). We
calculated the correlation coefficient between the absolute weight values
of corresponding voxels to assess their similarity. We then performed two
permutation analyses to evaluate the statistical significance of this cross-
experiment correlation.

In the first analysis, we wanted to determine whether the cross-
experiment correlation was significantly different from the within-
experiment correlation. We calculated the correlation values within the
motion-only and color-only sessions, by splitting the data in half and
training a classifier on each half of the data. The correlation between the
absolute classifier weights on each of the two halves of the resampled data
was then calculated. We repeated this procedure 1000 times, each time
randomly selecting 30 of 60 instances to form one half (and the rest
forming the other half), to compute a distribution of correlation values.
Note that the generated correlations were based on the same amount of
data as that in the cross-experiment correlations (30 instances of each
attention condition). This resampling was performed for each area in
each subject and generated a distribution of correlations between two
halves of the data within motion and color experiment. The mean of the
distribution was taken as the expected correlation within the motion and
color classifiers.

In the second analysis, we wanted to determine whether the cross-
experiment correlation was significantly different from chance. For this
analysis, we randomly reassigned the event labels (CW, CCW, red, and
green) to data from the motion-color session and then constructed two
classifiers, one for the (nominal) motion experiment and one for the
(nominal) color experiment, both of which now contained a random
sample of all event types. We then computed the correlation between the
absolute weights from the two classifiers and repeated the procedure
1000 times for each area in each subject. The mean of the distribution was
taken as the expected chance level correlation between the absolute clas-
sifier weights.

Thus, for each subject, we obtained three correlations: observed cross-
experiment correlation, expected within-experiment correlation, and ex-
pected chance correlation. We then applied Fisher’s z-transform to the
correlation values to convert them into normally distributed z-values.
Finally, we compared the z-values for cross-experiment correlation with
those of the within-experiment and chance correlations via one-tailed t
tests to assess whether they were statistically different. We used one-tailed
test because of a priori expectations regarding the direction of the differ-
ence between the correlation values, based on how they were generated.
That is, the cross-experiment correlation should be larger than chance
correlation but smaller than within-experiment correlation.

Surface-based registration and visualization of group data. All analyses
were performed on individual subject data, and all quantitative results
reported were based on averages across individual subject results. How-
ever, to visualize the task-related brain areas, we also performed group
averaging of the individual maps (see Figs. 2, 8). Each subject’s two
hemispherical surfaces were first imported into Caret and affine trans-
formed into the 711–2B space of the Washington University at St. Louis.
The surface was then inflated to a sphere and six landmarks were drawn,
which were used for spherical registration to the landmarks in the
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population-average, landmark- and surface-based (PALS) atlas of hu-
man cerebral cortex (Van Essen, 2005). We then transformed individual
maps to the PALS atlas space and performed group averaging, before
visualizing the results on the PALS atlas surface. To correct for multiple
comparisons, we thresholded the maps based on individual voxel level p
value in combination with a cluster constraint.

For the r 2 map (see Fig. 2), we derived a voxel-level p value based on
aggregating the null distributions generated from the permutation test
for each individual subject. Specifically, we randomly drew 10,000 r 2

values from the 10 randomization distributions for each subject and
combined them. This combined distribution served as the null distribu-
tion for the averaged r 2 value across subjects. The p value of each indi-
vidual voxel was thus the percentile of voxels that has a higher r 2 value in
the null distribution. For the whole-brain classification accuracy map
(see Fig. 8), we derived a voxel-level p value by performing a t test across
subjects against chance accuracy (0.5). For both types of maps, we then
performed 10,000 Monte Carlo simulations with AFNI’s AlphaSim pro-
gram to determine the appropriate cluster size given a particular voxel-
level p value to control for the whole-brain false-positive rate.

To provide localization information about the task-defined areas
(aIPS, FEF, vPCS, and mSFG), we averaged individually defined areas in
the Caret atlas space and visualized them on the atlas surface (see Fig.
2C). We also calculated the Talairach coordinates of the averaged areas.
We defined eight standard reference points in each subject’s brain: ante-
rior commissure, posterior commissure, the most anterior and posterior
points, the most superior and inferior points, and the most left and right
points. Individual brain was then transformed to the Talairach space
(Talairach and Tournoux, 1988) via an affine transformation that mini-
mized the squared error between the mapping of the eight reference
points defined in the subject’s brain with the coordinates of those points
in the Talairach atlas brain.

Results
Behavior
Subjects were cued to selectively attend to one of two overlapping
dot field stimuli that differed from each other by a single feature
(Fig. 1): either direction of motion (CW or CCW) or color (red or
green). To test whether subjects were able to successfully attend
to the correct dot field, on one-fourth of the trials, brief incre-
ments in the speed (motion experiment) or luminance (color
experiment) of the stimuli were presented at independent and
random times on each of the two stimuli. The subject was in-
structed to press a button when they detected these changes only
on the cued stimulus. The magnitude of the increment was con-
trolled via an adaptive staircase procedure to ensure an interme-
diate and constant level of task difficulty across all conditions.
The color and motion experiments were run in separate runs
within which the cued direction of motion or color was random-
ized in interleaved trials with a null condition (subjects were cued
not to attend to either stimulus).

Analysis of the subject’s behavioral performance on the
change detection task confirmed that subjects were able to selec-
tively attend to the cued stimulus. From the subject’s responses,
we computed the signal detection theory measure of sensitivity
(d� value) to the stimulus changes (Fig. 1C,D), separately for each
cued feature. Performance was excellent for the cued stimulus,
and the subjects were equally sensitive to changes when either
color or motion was cued ( p � 0.55, two-way repeated-measures
ANOVA). Furthermore, no difference in performance was ob-
served between the two feature values, i.e., performance was
equally good for red versus green and CW versus CCW ( p �
0.22). Thus, any difference in fMRI responses reported below
were not attributable to differences in task difficulty across con-
ditions. We confirmed that the subjects were selectively attending
only to the cued feature by also computing d� for the uncued
feature (which underwent stimulus changes independently). We

found negative d� values significantly different from the d� for the
cued stimulus ( p 	 0.0005 for both motion and color experi-
ments, two-way repeated-measures ANOVA). The d� for the un-
cued stimulus was negative because the majority of the correct
responses to the cued target events were counted as false alarms to
the uncued stimulus as the targets were relatively infrequent and
the response window was short (1.5 s). Finally, eye tracking re-
sults showed that subjects maintained stable fixation during the
attention epochs; thus, overt eye movements did not contribute
to attentional effects.

Cortical areas modulated by feature-based attention
To define which cortical areas were modulated by feature-based
attention, we performed an individual subject-based deconvolu-
tion analysis. We computed a deconvolved response for each of
the two attention conditions and then obtained an r 2 value,
which was the amount of variance in the time course explained by
these average responses (see Materials and Methods). A high r 2

value indicated that activity in that voxel was modulated by the
experimental paradigm. To visualize these data across subjects,
we performed a spherical surface-based registration of each sub-
ject’s brain to the PALS atlas space as implemented in Caret (Van
Essen, 2005). We then transformed individual maps to the atlas
space and averaged them together (Fig. 2). Note that we defined
areas for each subject based on their retinotopy scans (see Mate-
rials and Methods) and individual r 2 maps and used the group-
averaged atlas data for visualization purposes only.

In the motion experiment, attending to directions modulated
brain areas in occipital, parietal, and frontal cortex (Fig. 2A). The
occipital activity occupied the retinotopically defined visual areas
(V1, V2, V3, V3A/B, V4, V7, hMT�, LO1, and LO2). The parietal
activity ran along the IPS and extended to the posterior bank of
the postcentral sulcus. The majority of this parietal activity coin-
cided with the retinotopically defined IPS areas (IPS1–IPS4). Just
anterior to the retinotopically defined IPS areas, we identified
another area that might correspond to IPS5 and beyond (Konen
and Kastner, 2008), but because we could not retinotopically map
this area, we tentatively called it aIPS. In the frontal cortex, activ-
ity was found along the PCS and in the dorsomedial frontal cor-
tex. We split the precentral sulcus activity into two areas: a dorsal
portion that was located near the vicinity of the caudal part of the
superior frontal sulcus and precentral sulcus, the putative hu-
man FEF (Paus, 1996), and a ventral portion (vPCS). These
two regions appeared contiguous on the group-averaged r 2

map, but they formed primarily distinct clusters in individual
subject maps. The dorsomedial frontal activation was located
primarily in the posterior and medial aspect of the superior
frontal gyrus. Its location is consistent with human pre-
supplementary and supplementary motor area (Picard and
Strick, 2001). The Talairach coordinates of these task-defined
areas are listed in Table 1.

In the color experiment, a similar set of areas were modulated
by attending to colors as were modulated by attending to motion
directions (Fig. 2B). This similarity was also observed in individ-
ual subject’s data, as the same subject participated in both exper-
iments. Because of this similarity, we defined the same set of areas
based on individual r 2 maps (aIPS, FEF, vPCS, and mSFG) for
both experiments. This was done by adopting a relatively low
voxelwise threshold and defining areas based on overlapped ac-
tivity in both r 2 maps. We were able to define all areas in all
subjects, except mSFG in one subject. Hence, the mSFG results
were based on five subjects. Activity patterns for both experi-
ments were primarily symmetric for the two hemispheres; no
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obvious laterality was observed. Hence, in all analysis below,
we combined data from corresponding areas across the two
hemispheres.

The deconvolution analysis and retinotopic mapping allowed
us to define 17 areas for each hemisphere: 13 from the retinotopic
mapping session [V1, V2 (dorsal and ventral), V3 (dorsal and
ventral), V3A/B, V4, V7, hMT�, LO1, LO2, IPS1, IPS2, IPS3, and
IPS4] and four from the attention task (aIPS, FEF, vPCS, and mSFG).
To assess the reproducibility of these areas with respect to sulcal
landmarks across subjects, we examined their average location
across subjects in the PALS atlas space. Figure 2C shows that these
areas across subjects were found in overlapped regions in the atlas
space. As a check of the quality of our surface registration, we
also displayed the averaged V1 area on the atlas surface and
found that it resided primarily in and around the calcarine
sulcus, as was expected, given that calcarine sulcus was one of
the landmarks used in surface-based registration. Although
there was some variability across subjects in the location in the
atlas space of the individually defined areas, (i.e., the union
across subjects shown in yellow was larger than their intersec-
tion in red), this variability was comparable with topographi-
cally defined areas such as V1.

Average response across feature-based attention conditions
We first examined response amplitude averaged across all voxels
in each defined area to determine whether there were any global
differences in response magnitude between different feature-
based attention conditions. Note that our whole-brain analysis
based on r 2 values only required voxels to be significantly mod-
ulated by the experimental paradigm (see Materials and Meth-
ods). Importantly, it did not select voxels based on increases
versus decreases in activity between attention and null epochs,
nor on differences in amplitude between the two attention con-
ditions (e.g., CW vs CCW). Therefore, it is informative to ex-
amine the time course data in the task-defined areas, in
addition to the retinotopically defined areas. For this and sub-
sequent analysis, we have combined the four retinotopically
defined IPS regions into IPS12, which contained IPS1 and
IPS2, and IPS34, which contained IPS3 and IPS4. We also
combined LO1 and LO2 into one area, LO. This was done to
improve signal-to-noise in the time course analysis and clas-
sifier performance in the multivariate analysis because the
individual IPS and LO areas tended to be smaller and con-
tained fewer voxels than other areas (see below, Multivoxel
pattern classification: region based).

Average fMRI response amplitude showed a sustained in-
crease above baseline for both attentional conditions. Time
courses from a subset of brain areas are shown in Figure 3; data
from all areas are similar. Given that the null epochs served as the
baseline in our deconvolution analysis, the sustained elevated
fMRI response shown in Figure 3 represents a higher response for
the attention epochs relative to the null epochs. This increase was
entirely attributable to attention, because the sensory stimuli
were held constant throughout the experiment.

Figure 2. Group r 2 map and averaged task-defined brain areas. A, Group-averaged (n � 6) r 2 map in the motion experiment, shown on an inflated Caret atlas surface. The approximate locations
of the four task-defined areas (aIPS, FEF, vPCS, and mSFG) are shown by the arrowheads. Color bar indicates the scale of the r 2 value. B, Group-averaged (n � 6) r 2 map in the color experiment. Maps
are thresholded at a voxelwise r 2 value of 0.047, corresponding to an estimated p value of 0.001 and a cluster size of five voxels. This corresponded to a whole-brain corrected false-positive rate of
0.005 according to AlphaSim (see Materials and Methods). C, Group-averaged task-defined areas, as well as V1, on the atlas surface (left hemisphere). Yellow indicates the union of each subject’s
area, and red indicates the intersection of each subject’s area.

Table 1. Talairach coordinates of task-defined areas

Area name Left hemisphere Right hemisphere

aIPS �30, �29, 38 28, �37, 36
FEF �20, �8, 45 21, �5, 44
vPCS �36, �4, 39 41, 6, 32
mSFG �6, 2, 52 3, 8, 50

The mean stereotaxic coordinates of the group-averaged area (see Figure 2C) are reported here.
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Overall, there was little difference in
response amplitude between attending to
CW versus CCW (Fig. 3A, compare gray
and black traces) and attending to red ver-
sus green (Fig. 3B). For each subject, we
averaged the response amplitude in a time
period 2.5–22.5 s after trial onset (the
same time period used in the multivariate
analysis, see below) and compared the two
attention conditions across subjects. With
only a few exceptions, response amplitude
was not reliably different between the two
attention conditions. In the motion ex-
periment, attending to CCW yielded a
larger response in FEF ( p 	 0.05, paired t
test), whereas in the color experiment, at-
tending to green yielded a larger response
in V3 and V3A/B ( p 	 0.05 for both ar-
eas). Thus, attending to different features
may lead to small differences in overall
response amplitudes in certain brain areas,
but in general, mean response amplitude
within an area did not carry feature-specific
information.

Multivoxel pattern classification:
region based
Next we examined whether the pattern of
the fMRI response across voxels in an area
could distinguish which feature was at-
tended, although the average response
amplitude did not. We used a multivariate
pattern classifier and cross-validation to assess whether attending
to different features produced reliably different patterns of re-
sponse. For each area, we sorted the voxels by how active they
were in an independent localizer scan and constructed classifiers
of different sizes by varying the number of voxels used (see Ma-
terials and Methods). We then computed classification accuracy
as a function of classifier size (Fig. 4A–D). In general, classifier
performance increased rapidly at small voxel numbers but much
more gradually afterward, for both retinotopically defined occip-
ital areas (Fig. 4A,B, motion and color experiments, respectively)
as well as parietal and frontal areas (Fig. 4C,D).

Using 140 voxels as an arbitrary asymptotic classifier size, we
plotted classification accuracy for each visual area and found that
above-chance accuracy was achieved in both early occipital visual
areas as well as parietal and frontal areas for both motion (Fig.
4E) and color (Fig. 4F) experiments (the exact choice of the
cutoff classifier size is not critical). We used t tests to evaluate
whether the mean accuracy was significantly greater than chance
(0.5). The classifiers reliably decoded the attended motion direc-
tion in all areas (Fig. 4E) and the attended color in all areas except
in LO and mSFG (Fig. 4F). Classifiers based on individual IPS
areas (IPS1–IPS4) gave the same result as the combined ones,
except that IPS2 did not reliably classify the attended color. Fig-
ure 4G shows the average size of all areas; all except mSFG was
larger than 140 voxels, the criterion size in the accuracy result.
The mSFG accuracy was based on all the voxels (�110 on aver-
age). The relatively smaller size of the mSFG area and the fact we
could not identify it in one subject could potentially account for
its less reliable accuracy in the color experiment.

Because we used visual cues at fixation to direct subjects’ at-
tention, our classifier could be sensitive to differences in activity

patterns attributable to the sensory response to the cue. This is
unlikely because the cue was very small and only shown briefly at
the beginning of a trial, whereas our classifier used the averaged
response across the whole 20 s trial. If a sensory response to the
cue could account for the classification results, one would expect
classifier performance to be better in the early rather than the
later part of the trial, because a sensory response to the cue should
have dissipated in the later part of the trial. To test this prediction,
we constructed classifiers using either the first half of the fMRI
response, by averaging the first four time points (2.5–12.5 s), or
the second half of the fMRI response, by averaging the last four
time points (12.5–22.5 s). There was no significant difference in
classification accuracy for the first half versus the second half of
the trial (Fig. 5). Indeed, if anything, the second half could classify
the attended feature slightly better than the first half. Thus, we
can rule out the potential confound that a sensory response to the
attention cue accounted for classification accuracy.

Weight map analysis
Next we asked whether the same set of voxels contributed to the
decoding of attended directions and colors. The classification
analysis showed that there were reliable patterns of activity in the
same brain areas for attention to directions and colors. However,
we wanted to determine how similar or different the patterns of
activity were for directions and colors. To evaluate the relation-
ship between these multivoxel patterns, we examined the weights
assigned to each voxel by the classifier analysis. Classifier weights
indicate how informative a particular voxel is for the pair of con-
ditions being classified (e.g., CW vs CCW or red vs green). A
voxel that responded similarly to both conditions would have a
weight value near 0, whereas a voxel that responded very differ-

A

B

Figure 3. Time courses in select brain areas. A, Mean time course (n � 6) of eight areas in the motion experiment. B, Mean time
course (n � 6) of eight areas in the color experiment. The horizontal bar in the bottom left panel indicates the duration of a trial.
fMRI responses are slightly shifted horizontally during plotting for better visualization. Error bars denote �1 SEM across subjects.

4490 • J. Neurosci., March 23, 2011 • 31(12):4484 – 4495 Liu et al. • Feature-Based Attention Priority



ently to the conditions would have a high absolute weight value.
Thus, voxels that contribute to the classification accuracy for
both color and motion experiments would be expected to have a
high absolute weight value in both experiments (and voxels that
do not contribute would have a low absolute weight value in both
experiments).

For this analysis, we repeated the two experiments in a single
session (see Materials and Methods), so that functional data were

acquired with the same slice prescription. This allowed us to
establish a correspondence between individual voxels in the mo-
tion and color experiments with minimum spatial transforma-
tion of the imaging data. Figure 6, A and B, show the absolute
classifier weight values for a single subject’s parietal areas in the
motion and color experiment, respectively.

To evaluate the similarity of these weight maps, we ran a cor-
relation analysis. For each area, we calculated a correlation coef-
ficient between the absolute weights of the voxels in the motion
and color classifier. The correlation value served as an index of
the similarity between the weight maps across the motion and
color experiments. There was a modest correlation, as shown in
Figure 7A (cross-experiment motion vs color, white bars). We
first assessed whether this correlation was significantly above
chance, by performing a permutation analysis in which we ran-
domized the labels of trials (whether they were CW or CCW, or
red or green trials; see Materials and Methods) to generate a
distribution of chance correlations (Fig. 7A, black bars). We took
the means of these distributions to represent the estimated level
of chance correlation. We then compared the cross-experiment
correlation with these chance correlations and found them to be
generally greater than chance ( p values shown as black bars in
Fig. 7B, t test).

Having determined that there was indeed some significant
similarity between the two weight maps, we next asked whether
that similarity was complete or whether there was any significant
difference between the two weight maps. To do this, we used the
within-experiment correlation as a measure of the maximal cor-
relation possible given the noise in the measurements and com-
pared that with the correlation between the color and motion
experiments. We performed a permutation analysis in which we
split the data for the motion- and color-only session in half and
generated a distribution of the within-experiment correlations
(see Materials and Methods) (Fig. 7A, light and dark gray bars).
We compared the cross-experiment correlations to the means of
the distributions generated by the permutation analysis and
found them to be generally smaller than the within-experiment
correlation ( p values shown as light and dark gray bars in Fig. 7B,
t test). These results suggest that the degree to which voxels con-
tributed to classification accuracy in the two experiments was
partially but not completely correlated.

A B

C D

E

F

G

Figure 4. Multivoxel pattern analysis results. A, Mean classifier accuracy (n � 6) as a func-
tion of classifier size for the occipital areas in the motion experiment. B, Same data for the
frontal and parietal areas in the motion experiment. “AVG” indicates the average across areas in
that panel. C, D, Same data for the color experiment. Vertical line at 140 voxels indicates the
final classifier size used for group averaging in E and F. Error bars in A–D indicate�1 SEM across
subjects. E, Mean classifier accuracy (n � 6) at 140 voxels in the motion experiment. Horizontal
line indicates chance performance (50% correct), and error bars indicate �1 SEM across sub-
jects. Asterisks indicate the significance level in a t test of individual accuracies against chance
(*p 	 0.05, **p 	 0.01, ***p 	 0.001). F, Mean classifier accuracy (n � 6) at 140 voxels in the
color experiment. Same format as in E. G, Average size in number of voxels for each area.
Horizontal line denotes 140 voxels, which was adopted as the criterion to calculate group-
averaged classifier performance.

A

B

Figure 5. Comparison of classifier performance based on first versus second half of the fMRI
response in a trial. A, Mean difference (n�6) in classifier performance (first half� second half)
for the motion experiment. Error bars are �1 SEM across subjects. B, Same results for the color
experiment.

Liu et al. • Feature-Based Attention Priority J. Neurosci., March 23, 2011 • 31(12):4484 – 4495 • 4491



Multivoxel pattern classification:
whole-brain searchlight
Given that signals from most areas de-
fined by the univariate analysis can be
used to classify the attended features, we
wanted to confirm that classification ac-
curacy was not attributable to some spa-
tially unspecific signal in our data. We
hence performed whole-brain MVPC
analyses using a searchlight procedure
(see Materials and Methods) to test the
specificity of the classification results. Ex-
amination of the group-averaged map of
classification accuracy showed above-
chance performance in brain areas in oc-
cipital, parietal, and frontal cortex (Fig.
8), similar to the univariate analysis (cf.,
Fig. 2). Importantly, in both individual
and group-averaged results, there were
many cortical areas that did not show sig-
nificant classification accuracy, thus ruling out the possibility
that spatially unspecific signals drove classification accuracy in all
areas of the region-based analysis.

We further confirmed the specificity of the classification anal-
ysis by performing region-based analyses on several regions that
theoretically should not be involved in directing attention to vi-
sual features: motor cortex ipsilateral to the hand that the subjects
used to perform the task (right central sulcus), bilateral early
auditory cortex (Heschl’s gyrus), and a region anterior to the FEF
(bilateral superior frontal sulcus). For reference, the approximate
locations on the atlas surface of these areas are shown in yellow in
Figure 8. These areas all showed classification accuracy that was
statistically indistinguishable from chance performance (t test, all
p 
 0.2), thus again confirming that classification accuracy in the
region-based analysis was not attributable to an unspecific spa-
tially global signal.

Checking the match between the region-based and whole-
brain analyses revealed a general, although not perfect, corre-
spondence between the two analyses. We superimposed the
unions of each individually defined brain areas in the atlas space
(Fig. 8, blue areas) on the whole-brain map. Significant classifi-
cation was found in the whole-brain analysis within most of the
areas from the region-based analysis, with the possible exception
of right parietal regions in the motion experiment. This omission
in the whole-brain analysis was likely attributable to the following
two reasons. First, functionally defined regions do not completely
overlap in the atlas space across subjects (Fig. 2); hence, averaging
in the atlas space is less powerful than averaging the same func-
tionally defined areas across subjects. Second, our region-based
results combined voxels from corresponding areas in the left and
right hemispheres, whereas the searchlight procedure was neces-
sarily based on classification performance in local neighborhoods
restricted within a hemisphere. Nonetheless, the overall results
from the whole-brain analysis were primarily consistent with re-
sults from region-based analysis.

Although it is tempting to generalize the inference to new
areas and compare results from the motion and color experi-
ments in the whole-brain maps, the spatial specificity of the anal-
ysis is limited. Mislocalization of priority signals on the atlas map
may easily occur attributable to the usual imperfections of group-
averaged analyses such as imperfect segmentations, surface reg-
istrations, transformations according to aligning sulcal/gyral
landmarks, and partial voluming attributable to the fact that vox-

els are in general larger than the thickness of the gray matter. Even
more problematically, each voxel represents the classification ac-
curacy for the whole surrounding region along the cortical sur-
face: significant mislocalization may occur if, for example, a voxel
is surrounded by two areas with weak priority signals. Classifica-
tion accuracy then would be highest in the region in between the
“actual” locations containing priority signals. Finally, the small
number of subjects for this random-effects type analysis pre-
cludes any meaningful interpretation and extrapolation from the
current dataset.

Discussion
We examined brain areas that carried a representation of at-
tended feature in a feature-based selection task. Our univariate
analysis showed that, compared with a baseline condition with
identical sensory stimulation, the overall amplitude of neural

Figure 6. Classifier weight maps in a single subject, visualized on a flattened patch of the left posterior parietal cortex. A,
Absolute weights for the motion classifier. B, Absolute weights for the color classifier. The thin white lines are the boundaries of
three parietal areas in this hemisphere (top, aIPS; middle, IPS34; bottom, IPS12). IPS runs in the dorsoventral direction along the
flat map. The inset indicates the location of the patch (in red) on a folded cortical surface.

A

B

Figure 7. Correlation analysis of the weight maps. A, Mean correlations (n � 4) of the
absolute weights between the motion and color classifier (white bars). Light gray bars plot the
mean correlations between the absolute weights based on the split-half analysis of the motion
experiment, whereas the dark gray bars plot the same results for the color experiment. The
black bars plot the mean correlations of the null distributions based on randomly relabeling the
events (see Materials and Methods). Error bars denote �1 SEM across subjects. B, p values in
one-tailed t tests comparing the cross-experiment correlation to the three correlations based on
permutation analyses. The dashed horizontal line indicates the significance level of 0.05.
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response increased during attention to features. However, the
mean response amplitude did not discriminate which feature was
being attended. Using multivoxel pattern analysis, we were able
to decode the attended feature in a number of frontal and parietal
areas, as well as in visual areas. These frontal and parietal areas
likely contain the control signals for maintaining attention to
visual features.

Domain generality and specificity of attentional priority
That we could use signals from many parietal and frontal areas to
decode the attended feature value, for both color and direction of
motion, is consistent with growing evidence that these areas con-
tain generalized control signals for guiding attention. Although
we did not test for spatial attentional signals in our paradigm and
thus did not directly determine whether the same areas control

spatial and feature-based attention, many
previous experiments have implicated the
same areas such as FEF and IPS in the con-
trol of spatial attention (Silver et al., 2005;
Szczepanski et al., 2010). Our results are
thus suggestive of a general mechanism of
attentional priority across spatial and
feature-based attention.

A domain-general organization of at-
tention priority signals is corroborated by
previous studies that have directly com-
pared brain activity between spatial and
feature-based attention tasks (Wojciulik
and Kanwisher, 1999; Giesbrecht et al.,
2003; Egner et al., 2008), as well as be-
tween attention to different feature di-
mensions (Zanto et al., 2010). These
studies have shown that primarily similar
brain areas in the dorsal attention net-
work show increased activity during dif-
ferent types of attention tasks. Finally, the
process of shifting attention [a process
likely to rely on different neural substrates
than maintaining attention as studied
here (Posner et al., 1984)] evokes tran-
sient activity in the medial superior pari-
etal lobule (Serences and Yantis, 2006)
that may also be organized in a domain-
general manner (Greenberg et al., 2010).

Some domain specificity has also been
suggested by subtle activity differences
among different types of attention tasks
(Wojciulik and Kanwisher, 1999; Gies-
brecht et al., 2003; Egner et al., 2008;
Zanto et al., 2010). Indeed, our whole-
brain analyses resulted in some differ-
ences between maps for motion and color,
suggesting some domain specificity out-
side of the topographic and functionally
defined areas we studied in the region-
based analyses. However, the variability
inherent in basing comparisons on ana-
tomical rather than function-based align-
ment for our relatively small number of
subjects would suggest that further confir-
mation of these potential areas of
domain-specific signals are required.

Feature selectivity: response amplitude versus patterns
Previous univariate analyses of task-specific responses may not
be as diagnostic as examining specificity of signals using multi-
variate pattern analysis. For example, in direct comparisons
(Shulman et al., 2002; Liu et al., 2003), attending to motion gen-
erally evoked larger responses than attending to color in the dor-
sal attention network, whereas the reverse contrast revealed very
little activation in whole-brain analyses. Based on these results,
one might conclude that the frontal and parietal areas do not
participate in color-based selection, which leads to the puzzling
question as to what areas control color-based attention. Our re-
sults showed that, despite showing lower amplitude response to
color in previous experiments, these same areas contained color-
specific signals. The larger response associated with attention to
motion can be explained by a general preference for motion in

Figure 8. Verification of spatial specificity of classification results via whole-brain (searchlight) multivoxel pattern classification
and analysis of control regions. Group-averaged classification accuracy for motion (left column) and color (right column) experi-
ments. The map is shown on inflated Caret atlas surfaces, thresholded at an individual voxel level of p 	 0.025 with a minimum
cluster of 18 contiguous voxels (corresponding to a whole-brain false-positive rate of 0.01). Color scale represents the mean
classification accuracy. Superimposed in blue on the surfaces are unions of the group-averaged brain areas defined by retinotopy
and the attention task. The bottom graphs show classification accuracy in three control regions: bilateral Heschl’s gyrus (HG),
bilateral superior frontal sulcus (SFS), and right central sulcus (r_CS). Their locations are marked by yellow patches on the brain
surface; n.s. indicates nonsignificant difference from chance (0.5). Left column, Motion experiment; right column, color
experiment.
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these dorsal areas (Sunaert et al., 1999; Bremmer et al., 2001).
However, such overall preference does not preclude the existence
of color-selective signals in the same areas.

Similarly, previous studies on the effect of attention in visual
cortex have emphasized cortical specialization during attention
to different feature dimensions. For example, attention to color
and motion activated V4 and hMT�, respectively (Corbetta et
al., 1991; Chawla et al., 1999). Here we found that responses from
both these areas carried information about the cued features, for
both color and direction of motion. Thus, although these areas
have an overall magnitude difference in response for attending to
color versus motion, activity patterns in these areas are informa-
tive about feature values in both dimensions. These findings sug-
gest that feature-based attentional modulation in visual cortex
might be more widespread than suggested by studies using only
univariate analyses (Kamitani and Tong, 2005, 2006).

Priority maps for visual features
Accumulating evidence suggests that areas such as the FEF and
various areas in the intraparietal sulcus contain topographically
organized control signals related to the locus of spatial attention.
Perhaps the strongest support for this view comes from studies
that showed subthreshold microstimulation of FEF improves be-
havioral performance for stimuli located in the movement field
of neighboring neurons (Moore and Fallah, 2001), as well as in-
creases firing rate of V4 neurons whose receptive fields overlap
with the FEF movement field (Moore and Armstrong, 2003).
These findings suggest that spatial attention is controlled via
feedback connections from frontal and parietal areas to visual
areas that link neurons with corresponding spatial receptive
fields. Thus, spatial organization, as reflected in topographic
maps in both frontal/parietal areas and visual areas, provides a
common framework to implement top-down control.

The topographical organization of attentional control signals
in frontal and parietal areas is consistent with theoretical propos-
als for priority maps (Koch and Ullman, 1985; Wolfe, 1994; Itti
and Koch, 2001), which have praimrily focused on prioritizing
spatial locations, based on either bottom-up salience or top-
down goals. The notion of a spatial priority map can be traced to
early theories of attention, such as the “master map of locations”
proposed in the feature integration theory (Treisman, 1988).
Theoretical and physiological evidence has supported the idea
that frontal (Thompson and Bichot, 2005) and parietal (Bisley
and Goldberg, 2010) areas contain representations of priority
independent of the particular stimulus features that give rise to
their priority. However, a purely spatial priority map cannot ex-
plain how attention is prioritized during nonspatial selection,
when location information is irrelevant, as in the current exper-
iments with superimposed features.

Previous neuroimaging evidence has not determined whether
putative priority maps contain purely spatial information or
whether they can also contain more general information such as
prioritized features (but see Serences and Boynton, 2007 for pre-
liminary evidence consistent with our result for directions). In-
creased dorsal frontal and parietal activity associated with
attending to feature values and dimensions (Shulman et al., 1999,
2002; Liu et al., 2003) has been reported, but these responses may
have been attributable to spatial rather than featural aspects of the
tasks. Stimuli in these experiments appear in restricted spatial
locations, and thus activity in parietal and frontal areas may be
associated with attending to the stimulus location instead of the
cued feature. Furthermore, a general increase in neural activity is

also consistent with a number of other explanations such as
arousal/effort and response anticipation.

We found that parietal and frontal areas contain nonspatial
information about the priority of specific features, thus requiring
the extension of the notion of these areas as spatial priority maps.
Our data suggest that these areas can control feature-based atten-
tion by actively sending top-down biasing signals for a particular
feature to the visual cortex, analogous to the case for spatial at-
tention. These top-down signals would presumably result in the
feature-specific modulation in the visual cortex (Maunsell and
Treue, 2006) that was reflected in the reliable decoding of at-
tended feature in the visual areas (see also Kamitani and Tong,
2005, 2006). By demonstrating feature specificity, these results
showed that there are priority signals that reflect the distribution
of attention in feature space. However, unlike priority maps for
spatial attention, these signals do not form a topographic organi-
zation of space but are manifested as distinct patterns of activity
representing prioritized features.

The organization of spatial and feature priority signals
If the dorsal frontal and parietal areas contain priority signals for
both features and locations, how might these various signals be
organized? A useful model in which spatial and feature informa-
tion is represented in the same cortical area is the primary visual
cortex. V1 has a topographic map of the visual scene. Superim-
posed on this overall spatial organization are maps that represent
other features: orientation, direction, color, and spatial frequency
(Blasdel and Salama, 1986; Shmuel and Grinvald, 1996; Hübener
et al., 1997). These maps can be thought of as independent rep-
resentations of the same stimulus along different dimensions,
and indeed these separate maps sometimes form an orthogonal
organization (Bartfeld and Grinvald, 1992; Hübener et al., 1997;
Swindale, 2000). Perhaps areas in the dorsal attention network
conform to a similar organization. This possibility is consistent
with our weight map analysis, which showed that distinct groups
of voxels contributed to the decoding of attended colors and
directions. Although the spatial organization of priority signals
may be static for some basic features, there are likely also dynamic
aspects of the organization that can be reconfigured to address
particular task demands. This is suggested by recent studies on
category learning, in which subjects need to discriminate visual
stimuli belonging to arbitrarily defined categories (Seger and
Miller, 2010). Neurons in monkey LIP have been shown to ex-
hibit category-selective responses after training and shift their
selectivity after retraining on new category boundaries with iden-
tical stimuli (Freedman and Assad, 2006). Thus, although repre-
sentations may differ in how fluidly they adjust to task demands,
representing different feature dimensions with overlapped yet
independent maps might be a common organizational theme for
both the early sensory and higher-order association cortex. Such
“multiplexed” maps may therefore represent a general strategy
for efficient organization of task-relevant information necessary
to achieve flexible attentional selection.

References
Bartfeld E, Grinvald A (1992) Relationships between orientation-preference

pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in
primate striate cortex. Proc Natl Acad Sci U S A 89:11905–11909.

Bisley JW, Goldberg ME (2010) Attention, intention, and priority in the
parietal lobe. Annu Rev Neurosci 33:1–21.

Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular orga-
nization in monkey striate cortex. Nature 321:579 –585.

Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems anal-

4494 • J. Neurosci., March 23, 2011 • 31(12):4484 – 4495 Liu et al. • Feature-Based Attention Priority



ysis of functional magnetic resonance imaging in human V1. J Neurosci
16:4207– 4221.

Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles
K, Fink GR (2001) Polymodal motion processing in posterior parietal
and premotor cortex: a human fMRI study strongly implies equivalencies
between humans and monkeys. Neuron 29:287–296.

Chawla D, Rees G, Friston KJ (1999) The physiological basis of attentional
modulation in extrastriate visual areas. Nat Neurosci 2:671– 676.

Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Se-
lective and divided attention during visual discriminations of shape,
color, and speed: functional anatomy by positron emission tomography. J
Neurosci 11:2383–2402.

Dale AM (1999) Optimal experimental design for event-related fMRI. Hum
Brain Mapp 8:109 –114.

DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D,
Neitz J (1996) Mapping striate and extrastriate visual areas in human
cerebral cortex. Proc Natl Acad Sci U S A 93:2382–2386.

Egner T, Monti JM, Trittschuh EH, Wieneke CA, Hirsch J, Mesulam MM
(2008) Neural integration of top-down spatial and feature-based infor-
mation in visual search. J Neurosci 28:6141– 6151.

Engel SA, Glover GH, Wandell BA (1997) Retinotopic organization in hu-
man visual cortex and the spatial precision of functional MRI. Cereb
Cortex 7:181–192.

Freedman DJ, Assad JA (2006) Experience-dependent representation of vi-
sual categories in parietal cortex. Nature 443:85– 88.

Gardner JL, Sun P, Waggoner RA, Ueno K, Tanaka K, Cheng K (2005) Con-
trast adaptation and representation in human early visual cortex. Neuron
47:607– 620.

Giesbrecht B, Woldorff MG, Song AW, Mangun GR (2003) Neural mecha-
nisms of top-down control during spatial and feature attention. Neuro-
image 19:496 –512.

Greenberg AS, Esterman M, Wilson D, Serences JT, Yantis S (2010) Control
of spatial and feature-based attention in frontoparietal cortex. J Neurosci
30:14330 –14339.

Heeger DJ, Boynton GM, Demb JB, Seidemann E, Newsome WT (1999)
Motion opponency in visual cortex. J Neurosci 19:7162–7174.
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