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The Small GTPase RhoA Is Required to Maintain Spinal Cord
Neuroepithelium Organization and the Neural Stem Cell Pool
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The regulation of adherens junctions (AJs) is critical for multiple events during CNS development, including the formation and maintenance of
the neuroepithelium. We have addressed the role of the small GTPase RhoA in the developing mouse nervous system using tissue-specific
conditional gene ablation. We show that, in the spinal cord neuroepithelium, RhoA is essential to localize N-cadherin and 3-catenin to AJs and
maintain apical- basal polarity of neural progenitor cells. Ablation of RhoA caused the loss of AJs and severe abnormalities in the organization
of cells within the neuroepithelium, including decreased neuroepithelial cell proliferation and premature cell-cycle exit, reduction of the neural
stem cell pool size, and the infiltration of neuroepithelial cells into the lumen of the ventricle. We also show that, in the absence of RhoA, its
effector, mammalian diaphanous-related forminl (mDial), does not localize to apical AJs in which it likely stabilizes intracellular adhesion by
promoting local actin polymerization and microtubule organization. Furthermore, expressing a dominant-negative form of mDial in
neural stem/progenitor cells results in a similar phenotype compared with that of the RhoA conditional knock-out, namely the loss
of AJs and apical polarity. Together, our data show that RhoA signaling is necessary for AJ regulation and for the maintenance of

mammalian neuroepithelium organization preventing precocious cell-cycle exit and differentiation.

Introduction

Neurons and glial cells of the CNS arise from a homogeneous
pool of proliferating, undifferentiated neuroepithelial cells
(NEPs), known as the neuroepithelium. There, bipolar NEPs ex-
tend processes that contact both the luminal (apical) and pial
(basal) surfaces of the neural tube and form the ventricular zone
(VZ).Inthe VZ, the NEPs contain adherens junctions (AJs) at the
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luminal boundary (Aaku-Saraste etal., 1996) whose functions are
critical to maintain cell- cell adhesion and the integrity of the VZ.
NEPs can undergo two different kinds of division: symmetric,
resulting in two identical daughter cells that inherit equal mi-
crodomains within their AJ structure and remain at the VZ; and
asymmetric (or neurogenic) in which one daughter cell remains
in the VZ and the other that ultimately loses its adhesive proteins
and will migrate toward the basal side of the neuroepithelium and
differentiates (Gotz and Huttner, 2005; Kriegstein and Alvarez-
Buylla, 2009). It has been suggested that the unequal distribution
of functionally distinct A] microdomains during NEP asymmet-
ric division influences the partitioning of fate determinants, a
decisive step in neurogenesis (Kosodo et al., 2004; Marthiens and
ffrench-Constant, 2009). Gene-ablation studies in mice revealed
that N-cadherin and its cytoplasmic partners, a-, 3-, and p120-
catenin, play an important role in AJ formation (Lien et al., 2006a).
AJs comprise a cadherin—catenin complex in which the extracellular
domains of the cadherins of neighboring cells interact in a Ca**-
dependent homophilic manner, thereby promoting cell-cell adhe-
sion, and the intracellular domain connects via the catenins to the
actin cytoskeleton (Gumbiner, 2005). Cadherin-mediated cell-cell
adhesion is regulated by different developmental and cellular signals
(Gumbiner, 2005), including those generated by the Rho family of
small GTPases (Samarin and Nusrat, 2009).

Rho GTPases not only regulate signaling pathways linking
extracellular stimuli to the assembly and organization of the
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actin cytoskeleton (Hall, 1998) but also control cellular func-
tions, such as cell-cycle progression, survival and differentia-
tion, cell polarization, and cell adhesion among many others
(Jaffe and Hall, 2005). Rho GTPases have distinct, although
partially overlapping, sets of effectors, and thus it is likely that
they have specific functions in neural stem and progenitor
cells. In CNS development, the roles of Cdc42 (Cappello et al.,
2006; Chen et al., 2007) and Racl (Chen et al., 2006, 2009;
Leone et al., 2010) have been elucidated in forebrain and oli-
godendrocyte development (Thurnherr et al., 2006). Here,
using tissue-specific conditional ablation of RhoA in NEPs, we
report for the first time key roles for RhoA in mammalian CNS
development. We show that NEPs in the spinal cord VZ re-
quire RhoA to maintain AJ integrity at their apical mem-
branes. Expression of a dominant-negative (DN) form of
mammalian diaphanous-related forminl (mDial) in neural
stem/progenitor cells in vivo also leads to a similar loss of AJs
and apical polarity, suggesting that RhoA may act in an
mDial-dependent manner. Ablation of RhoA leads to severe
defects in the organization of the VZ and consequently to
precocious differentiation and a concomitant reduction in the
neural stem cell pool.

Materials and Methods

Generation of conditional knock-out mice. Mice homozygous for the
floxed RhoA allele (RhoA'*1%), which will be described in detail else-
where, were crossed with mice heterozygous for RhoA floxed allele and
additionally expressing the Cre recombinase under control of the Brn4
promoter (Zechner et al., 2003) (Brn4-Cre * Rho 1ox/Wt) to obtain Brn4—
Cre ™ Rho''% mice (hereafter called RhoA mutant mice) and Brnd—
Cre ™ Rho '™ mice that showed no overt phenotype (hereafter called
control mice). The conditional lacZ gene from the ROSA26 reporter
mouse strain (Soriano, 1999) was also bred into the mouse lines de-
scribed above allowing the detection of Cre-recombined cells. Genotyp-
ing was done by PCR on genomic DNA. All animal experiments were
approved by the veterinary office of the Canton of Zurich, Switzerland
and Max Planck institutional and German Federal regulations and under
license numbers H-05/01, 0-06/02, G-09/18, and G-09/19.

Immunohistochemistry and terminal deoxynucleotidyl transferase-
mediated biotinylated UTP nick end labeling staining. Embryos of either
sex were obtained from timed-mated animals. The date of plug was de-
fined as embryonic day 0.5 (E0.5). They were fixed in 4% paraformalde-
hyde (PFA). When required, 10 ul/g bromodeoxyuridine (BrdU) (10
mM; Roche) was injected intraperitoneally into pregnant mothers 20 h
before they were killed. For paraffin sections, embryos were dehy-
drated in a serial series of ethanol, paraffinized, and microtome sec-
tioned in 5 wm sections. For frozen sections, embryos were
cryopreserved overnight in 30% sucrose, frozen in O.C.T (Sakura),
and cryosectioned in 20 wm sections.

Hematoxylin—eosin (H&E) staining was done according to standard
protocols.

Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick
end labeling staining. Deparaffinized sections were washed in PBS for 10
min and blocked for 1 h with 10% goat serum, 1% Triton X-100, and
0.1% BSA in PBS. Terminal deoxynucleotidyl transferase-mediated bio-
tinylated UTP nick end labeling (TUNEL) assays were performed ac-
cording to the instructions of the manufacturer (Roche).

Immunohistochemistry (paraffin sections). Deparaffinized sections
were subjected to antigen retrieval in a tissue processor for 20 min at 98°C
in 40 mM Tris-HCland 2 mm EDTA, pH 9. Sections were blocked for 1 h
in 1% BSA in PBS and incubated with primary antibody solution (0.05%
BSA in PBS) overnight at 4°C. Sections were washed in PBS, incubated
for 1 h in secondary antibody solution at room temperature (RT),
washed in PBS, counterstained with 4’,6-diamidino-2-phenylindole
(DAPI), and mounted in Immu-Mount (Thermo Fisher Scientific). For
exposing the BrdU antigen, sections were additionally incubated in 2 m
HCI for 20 min at RT after antigen retrieval.
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Figure 1. Recombination of the conditional RhoA allele in NEPs of the spinal cord. 4, Requ-
latory sequences of the Brn4 promoter drive the expression of the Cre recombinase in NEPs.
During Brn4 —Cre-mediated recombination the genomic region between the LoxP sites is ex-
cised; in case of the conditional RhoA allele, exon 3 is excised leading to the inactivation of the
RhoA gene. Recombination of the lacZ reporter gene leads to the expression of 3-galactosidase
in recombined neuroepithelial cells. B, Immunohistochemistry on forelimb spinal cord cross-
sections of E10.5 embryos demonstrates efficient loss of RhoA protein in the spinal cord but not
in other tissues. Scale bar, 100 wm.

Immunohistochemistry (frozen sections). Sections were air dried,
washed in PBS, blocked for 1 h in 2% BSA and 0.2% Triton X-100 in PBS,
incubated overnight at 4°C with primary antibody diluted in 0.05% BSA
in PBS, washed in PBS, incubated for 1 h in secondary antibody solution,
washed in PBS, and mounted in Immu-Mount. Immunohistochemistry
for mDial and for the in utero electroporation experiments was per-
formed on frozen sections.

For all immunostainings, a minimum of two sections in the case of
TUNEL staining and a minimum of three sections in all other cases,
obtained from at least three embryos per stage and per genotype from
different litters were analyzed. All images were acquired using Carl Zeiss
fluorescence microscopes (Axioplan 2; with objectives 20X/0.5, 40X/
0.75, and 100X/1.3) equipped with Carl Zeiss AxioCam CCD cameras
(AxioCam HR or AxioCamMRm). The acquisition software was Axio-
Vision 4.6 (Carl Zeiss). The images were further processed (levels ad-
justed) using Photoshop CS3 (Adobe Systems).

The following antibodies were used for this study: monoclonal anti-
bodies against B-actin (Sigma-Aldrich), BrdU (BD Biosciences), Islet-1
(Developmental Studies Hybridoma Bank), Ki67 (Dako), mDial (BD
Biosciences), N-cadherin (BD Biosciences), Nestin (BD Biosciences),
neuronal-specific nuclear protein (NeuN) (Millipore), RhoA (Santa
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Cruz Biotechnology), ROCK1 (BD Biosci-
ence); polyclonal antibodies against B-Catenin
(Sigma-Aldrich), Doublecortin (Santa Cruz
Biotechnology), Laminin (Sigma-Aldrich),
neurofilament (Millipore), Olig2 (Millipore),
Par3 (Ian Macara, University of Virginia,
Charlottesville, VA), PKC{ (Santa Cruz Bio-
technology), and Sox2 (Santa Cruz Biotechnol-
ogy). Secondary antibodies coupled with Alexa
Fluor-488 (Invitrogen) or coupled with cyanine 3
(Jackson ImmunoResearch) were used.

In situ hybridization. Nonradioactive in situ
hybridization with digoxigenin-labeled ribo-
probes was performed on cryosections (20 pum)
as described previously (Paratore etal., 1999). Ni-
troblue-tetrazolium-chloride/5-bromo-4-chlor-
indolyl-phosphate (Roche Diagnostics) were
used as chromogens to visualize hybridization
signals. Antisense riboprobes were labeled with
digoxigenin according to the instructions of the
manufacturer (Roche Diagnostics).

Neurosphere cell culture. Fibroblast growth
factor (FGF)/epidermal growth factor (EGF)-
dependent neurosphere cell cultures were gen-
erated from E13.5 mouse embryos. The neural
tube was dissociated for 20 min in 200 ul of
PPD solution (2.5 U/ml papain, 100 U/ml
DNase 1, and 1 U/ml dispase) at 37°C, and re-
action was stopped by adding 1 ml of ovomu-
coid mix (1 mg/ml trypsin inhibitor, 0.5 mg/ml
BSA, and 80 U/ml DNase 1). Cells were me-
chanically triturated and cultured in suspen-
sion in neurosphere medium (DMEM/F-12
supplemented with B27, 20 ng/ml basic FGF, and
10 ng/ml EGF). Cells obtained from one embryo
were grown in a well of a six-well plate at 37°C,
5% CO, in 4 ml of medium, and another 4 ml of
medium was added 3—4 d after isolation. After 7d
in culture, neurospheres were passaged.

For analyzing stem cell self-renewal, 1000
cells were seeded per well in a 24-well plate in
0.5 ml of conditioned medium. After 3—-4 d in
culture, 0.5 ml of conditioned medium was
added. After 7 d in culture, spheres were fixed
by adding PFA to a final concentration of 2%,
washed in PBS, and stained with 5-bromo-4-
chloro-3-indolyl-B-p-galactopyranoside (X-Gal).
The number of grown neurospheres was quan-
tified using a stereomicroscope. Additionally,
spheres were further passaged from these low-
density cultures. At least four embryos per ge-
notype obtained from two different litters were
taken into culture and analyzed.

Immunofluorescence and X-Gal staining on
neurosphere cell cultures. Neurosphere cell cul-
tures were fixed for 5 min in 2% PFA and
washed in PBS, and X-Gal staining was done
according to standard protocols.

For immunofluorescence, neurospheres
were blocked for 1 h in 1% BSA in PBS after
fixation and incubated with primary antibody
solution (0.05% BSA in PBS) overnight at 4°C.
Spheres were washed in PBS, incubated for 1 h
in secondary antibody solution at RT, washed
in PBS and counterstained with DAPI, and
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Figure2. RhoAisrequired for the organization of the ventricular zone. A-J, Spinal cord cross-sections stained with hematoxylin
and eosin; magnifications of the lumen and the central spinal cord region (A’-J"). Early in development (4, B), the ventricular
structure is normal in mutant spinal cords and the lumen is formed correctly. At E11.5, mutant spinal cords show dysplasias.
Compared with controls (C, '), the normal epithelial organization is lost and the ventricular structure is disorganized with
formation of rosette-like structures and invasive mesenchymal-like cells present in the spinal cord lumen (D, D"). At E12.5, the
epithelial organization of the VZ is progressively lost in mutant spinal cords (F, F’) compared with controls (E, E’). At E13.5, cells
from the VZ dispersed throughout the mutant spinal cords and the lumen almost disappeared (H, H' compared with G, G”).
Subsequently, at E14.5, the VZ and the lumen of RhoA mutant spinal cords completely disappeared (J, J' compared with I, I).
Arrowheads point to rosette-like structures present in mutant spinal cords. Scale bars: A-J, 100 um; A’=J’, 20 m.

mounted in Immu-Mount (Thermo Fisher Scientific). Confocal images Rho GTPase activity assay on neurosphere cell culture lysates. A glutathi-

were acquired using a Leica SP1-2 laser scanning microscope (with 63X~ one S-transferase—p21-activated kinase—crib domain construct was pro-
0.6—1.32 objective). The acquisition software was LCS (Leica), and  Vided by]. Collard (The Netherlands Cancer Institute, Amsterdam, The

z-projections were processed in NIH Image].

Netherlands). Cdc42 and Racl activity were measured as described pre-
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Figure3. RhoAisrequired for proliferation, survival, and localization of mitotic cells. A—C, Proliferation was assessed in

control and mutant spinal cords by expression of Ki67 (4) and mitotic marker phospho-histone-H3 (B). Cell death was
examined by TUNEL in control and mutant spinal cords (C). D, The proliferation ratio was determined by the quotient of
Ki67-positive cells per total cells of the spinal cord. At E10.5, before apparent morphological defects, the proliferation ratio
was significantly decreased from 69.29 = 0.66% in the control to 54.28 = 0.62% in the mutant (n = 3, p = 0.0001) and
at E11.5 from 35.35 == 0.7% in the control to 30.96 == 0.49% in the mutant (n = 3, p = 0.0069), respectively. At E12.5,
the proliferation ratio in the control (17.39 = 0.23%) was not significantly altered compared with the mutant (16.57 =
0.13%). E, The relative number of mitotic cells in the spinal cord was examined by quantification of phosphor-histone-H3-
positive cells to total spinal cord cells. The percentage of mitotic cells was unchanged between control (E10.5, 4.04 =
0.2%; E11.5,1.27 = 0.01%; E12.5, 0.44 = 0.03%) and mutant (E10.5, 4 == 0.05%; E11.5, 1.48 = 0.15%; E12.5,0.61 =
0.03%) spinal cords. F, Whereas the relative number of mitotic cells was unchanged, more cells that are not dividing at the
ventricular surface can be observed in the mutant spinal cords (arrows in B). The ratio of non-ventricular dividing cells to
all mitotic cells was quantified and is significantly increased in the mutant (E10.5, 30.56 == 2.05%; E11.5, 44.16 = 0.58%;
E12.5,91.35 = 0.46%) compared with control (E10.5, 11.67 = 1.81%; E11.5, 4.68 = 1.17%; E12.5, 11.63 = 1.74%)
spinal cords at all stages analyzed (E10.5,n = 3,p = 0.0014; E11.5,n = 3,p = 0.0001; E12.5,n = 3,p = 0.0001). G, The
ratio of TUNEL-positive cells to total cells present in control and mutant spinal cords was quantified. At E10.5, no significant
difference can be observed between control (4.6 = 1.43%) and mutant (5.6 = 1.21%). At E11.5, a significant increase in
the ratio of TUNEL-positive cells from 5.07 == 0.33% in the control to 8.56 == 0.97% in the mutant was found (n = 3, p
0.0273) and at E12.5 from 1.86 = 0.13% in the control to 3.75 % 0.53% in the mutant (n = 3, p = 0.0259). H, The
decreased proliferation and increased cell death leads to a significant lower number of cells present in mutant spinal cords
from E11.5 onward. The total cell number was determined by quantifying DAPI-positive nuclei, and the numbers of cells at
E10.5 in the control spinal cord were set to 100% (control: E10.5, 100 == 2.59%; E11.5, 264.37 = 3.4%; E12.5, 365.77 =
7.35%; mutant: £10.5, 101.02 = 6.51%; E11.5, 208.80 == 7.52%; E12.5, 285.64 = 6.01%). Scale bars, 100 wm.
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viously (Sander et al., 1998; Benninger et al.,
2007). In brief, neurospheres from bulk cell
culture were collected by centrifugation, lysed
in FISH buffer [10% glycerol, 50 mm Tris-HCI,
pH 7.4, 100 mm NaCl, 1% NP-40, 2 mm MgClL,,
and protease inhibitor cocktail (Sigma-
Aldrich)], and centrifuged for 5 min at
21,000 X g at 4°C. Aliquots of exactly 10% of
the volume were taken from the supernatant to
determine the total protein amounts. The re-
maining supernatant was incubated with the
bait proteins bound to glutathione-coupled
Sepharose beads (GE Healthcare) at 4°C for 30
min. The beads and proteins bound to the fu-
sion protein were washed three times in an ex-
cess of FISH buffer, eluted in Laemli’s sample
buffer, and analyzed for bound Cdc42 and Racl
molecules by standard Western blotting. The fol-
lowing antibodies were used: monoclonal anti-
bodies against Racl (Millipore) and
glyceraldehyde-3-phosphate  dehydrogenase
(HyTest), and polyclonal antibody against
Cdc42 (Abcam). Secondary antibodies were
obtained from Promega and Southern Bio-
technology. Bands were quantified using
Quantity One software (Bio-Rad). Lysates
were generated from three independent cul-
tures per genotype.

In utero electroporation. The DN mbDial
(mDial F2AN1) was cloned into the pPCAGGS
mammalian expression vector (Niwa et al.,
1991) according to standard techniques. The
construct was shown to be functional in 3T3
fibroblast transfections (supplemental Fig. 7A,
available at www.jneurosci.org as supplemen-
tal material). Green fluorescent protein (GFP)
was cloned into the pPCAGGS expression vector
and used in control and in cotransfection ex-
periments. In utero electroporation was per-
formed at E12.5 as described previously (De
Pietri Tonelli et al., 2006). Briefly, C57BL/6]
mice (defined as 0.5 d of gestation in the morn-
ing of vaginal plug) were anesthetized with iso-
flurane (Baxter), and their uteri were exposed.
Endotoxin-free plasmid stocks were resus-
pended in sterile PBS at 1-3 ug/pl, and fast
green contrast dye added to the DNA (10%
final concentration) to better visualize the in-
jection site. By using a glass capillary, 1-2 ul of
DNA were injected into the ventricle of the em-
bryonic telencephalon, and six pulses with a
pulse length of 50 ms and in an interval of 950
ms of 40 V were delivered through platinum
electrodes (1 mm diameter) and an electropo-
rator (Electro Square Pavator; BTX Harvard
Apparatus). The uterus was then relocated into
the peritoneal cavity, and the abdomen was su-
tured. Embryos were isolated 24 h after trans-
fection. Embryos were isolated and fixed in 4%
paraformaldehyde at 4°C overnight, cryopro-
tected in a 30% sucrose solution, embedded in
tissue O.C.T. (TissueTek), and stored at —80°C.
Pictures were obtained using a Carl Zeiss
LSM510 confocal microscope, and z-projections
were processed using the Carl Zeiss LSM imag-
ing software.

Statistical analysis. The data show the
mean *= SEM. Statistical significance was de-
termined using a two-tailed Student’s f test.
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Significance was set at *p < 0.05, **p < 0.01, and ***p < 0.001. # indi-
cates the number of independent experiments performed.

Results

Conditional ablation of RhoA in the spinal cord

We conditionally ablated RhoA by expressing Cre recombinase
under the control of the Brn4 regulatory sequences (Fig. 1 A). In
this experimental setting, Cre is already expressed and active in
NEPs of the developing spinal cord at E10 (Zechner et al., 2003).
We included the conditional ROSA26 reporter allele (Soriano,
1999) into the breeding strategy to be able to identify and lineage
trace recombined cells in both control and mutant mice (Fig.
1A).Recombination of the conditional RhoA alleles led to the loss
of RhoA in the spinal cord of mutant mice from E10.5 (Fig. 1B).
RhoA-deficient mice died at late embryonic stages, and we never
observed live-born mutants.

RhoA is required for the integrity of the ventricular region
The loss of RhoA caused severe defects in the organization of the
developing spinal cord (Fig. 2). H&E staining of transverse sec-
tions of embryos between E10.5 and E14.5 at the level of the
developing spinal cord revealed that RhoA mutants had severe
morphological defects from E11.5 onward. In contrast to the
spinal cords of control embryos (Fig. 2A,C,E,G,LLA",C',E',G',I'),
mutant spinal cords lacked a well-organized VZ (Fig. 2B,D,F,
H,J,B',D',F',H',J') and showed dysplasias, probably resulting
from neuroepithelial cells that had invaded the lumen of the neu-
ral tube (Fig. 2D,D’). Rosette-like structures, similar to those
found in primitive neuroepithelial tumors, were present in the
VZ of mutant spinal cords indicative of alterations in NEP adhe-
sion (Fig. 2D',F',H',]’, arrowheads). At E14.5, the VZ and the
neural tube lumen were completely missing (Fig. 2],]).

RhoA is required for cell proliferation and survival in the
ventricular region

Next, we analyzed the percentage of proliferating, Ki67-positive
cells in the spinal cord between E10.5 and E12.5 (Fig. 3A). The
percentage of VZ cells that were mitotically active and expressed
Ki67 was significantly reduced in both E10.5 and E11.5 mutant
spinal cords compared with controls (Fig. 3D). This likely con-
tributed to the significantly reduced total number of cells present
in the mutant spinal cords at E11.5 and E12.5 (Fig. 3H). Although
the proportion of mitotic VZ cells in the spinal cord, marked by
phospho-histone-H3, was not significantly different in the mutants
compared with controls (Fig. 3 B, E), the percentage of mitotic cells
dividing at locations away from the luminal surface was significantly
higher in mutants compared with controls (Fig. 3B, F).

We also quantified the numbers of apoptotic, TUNEL-
positive cells in mutant and control spinal cords (Fig. 3C,G). Our
data show that, at E11.5 and E12.5, there was a significant in-
crease in the percentage of cells undergoing apoptosis in mutants
compared with controls (Fig. 3G). We conclude that lower pro-
liferation and increased cell death likely contribute to the reduc-
tion in total cell numbers observed in the spinal cords of RhoA
mutant embryos (Fig. 3H).

Loss of RhoA leads to early cell-cycle exit and precocious
neuronal differentiation

The reduction in the proportion of cells in the mutant spinal cord
that proliferate at E10.5 and E11.5 could be caused by their pre-
mature exit from the cell cycle. To investigate this, we performed
S-phase labeling of cells by injecting BrdU into time-mated fe-
males and analyzing the spinal cords of control and mutant em-
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Figure 4.  RhoA is required to keep NEPs in the cell cycle. BrdU was given 20 h before
analysis. Arrowheads indicate that cells that have incorporated BrdU (BrdU *) but were
not proliferative anymore (Ki67 ~). The fraction of cells being BrdU * Ki67 ~ to all cells
being BrdU * was determined. At E10.5, cell-cycle exit is increased from 28.35 = 1.34%
in the control to 43.89 % 0.35% (n = 3, p = 0.0004) and at E11.5 from 32.88 = 0.48 to
39.56 = 0.85% (n = 3, p = 0.0023). Scale bar, 60 pm.

bryos 20 h later. We considered that the BrdU-labeled cells that
did not express the proliferation marker Ki67 had divided during
the BrdU pulse and exited the cell cycle by the time of the analysis.
Our results show that the percentage of cells in the spinal cord
exiting the cell cycle was significantly higher in mutants com-
pared with controls at E10.5 and E11.5 (Fig. 4). Next, we deter-
mined whether the increase in the percentage of cells exiting the
cell cycle corresponded to an increase in the number of cells
expressing early differentiation markers. The percentage of cells
expressing the neuronal differentiation marker NeuN was in-
creased in the mutant spinal cord at E10.5 and E11.5 compared
with controls (Fig. 5A,C). Similarly, the percentage of cells ex-
pressing the stem and undifferentiated progenitor cell marker
Sox2 was decreased in mutants relative to controls (Fig. 44,D).
In addition, the expression of the early neuronal marker Dou-
blecortin was increased in the spinal cords of mutants compared
with controls at the same developmental stages (Fig. 4B). We
conclude that RhoA is required for maintaining undifferentiated
neural progenitors in the cell cycle, contributing indirectly to
prevent their differentiation earlier than normal. However, mu-
tant neural stem/progenitor cells are still able to differentiate into
distinct neuronal and glial subpopulations as in situ hybridiza-
tion experiments showed markers Mashl, NeuroD, Mathl,
Islet-1, and Olig2 to be expressed in the spinal cord of mutant
animals (supplemental Figs. 1, 2, available at www.jneurosci.org
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organization, indicating that cell-cell
adhesion was already affected (Fig. 7B—

RhoA mutant B

E10.5

E11.5

B",F-F",J-]"). These findings were more
prominent at E11.5 at which epithelial in-
tegrity was dramatically disrupted and large
numbers of ventricular cells had started to
invade the lumen of the neural tube in
areas in where N-cadherin, 3-catenin, and
actin were not properly localized (Fig.
7D-D',H-H',L-L"). In these disrupted
regions, NEP polarity, as indicated by the
loss of apical Par3 localization, was also
disrupted (supplemental Fig. 3C, avail-
able at www.jneurosci.org as supplemen-
tal material). Such areas had lost epithelial
organization and showed formation of
rosette-like structures, and the ventral
part of the spinal cord lumen was absent
(Fig. 2F,F"). This was likely a conse-

quence of the loss of AJs because, at E10.5,

¢ 1007 B Control D' 100, 8 Control Par3 was still localized apically in the VZ

oMutant O0Mutant of the spinal cord of mutants and was not

S0 . 80 - different from that in controls (supple-

x e mental Fig. 3C, available at www.
£ 60 c 604 jneurosci.org as supplemental material).

Y o . . To gain a more detail insight into the

3 40 1 5 40 — affect of RhoA deficiency on localization

z @ of AJ components, we generated neuro-

204 ﬂ 204 spheres from E13.5 mutant and control

embryo spinal cords. N-cadherin was also

not properly localized to cell-cell adhe-

2 E105 E115 0 E10.5 E11.5 sions of cells located at the periphery of

Figure5.

mutantat E11.5 (n = 3, p = 0.0031). Scale bars, 100 pm.

as supplemental material). Furthermore, we analyzed the expres-
sion of the Notch target Hes5 by in situ hybridization, the bone
morphogenic protein (BMP) target MSX1, Wnt-1, and sonic
hedgehog (Shh) and found that their expression domains were
not altered in the spinal cords of RhoA mutant embryos (Fig. 6).

RhoA is required for the maintenance of N-cadherin-based
cell-cell adhesions

Alterations in the cell-cell adhesion properties of the ventricular
region are known to affect neuroepithelial integrity (Lien et al.,
2006a). Because RhoA signaling is necessary for cadherin-
dependent cell-cell contact formation and maintenance in flies
and in different mammalian cell types (Sahai and Marshall, 2002;
Laplante et al., 2004; Homem and Peifer, 2008) we investigated
whether the loss of RhoA affected cell-cell adhesion in the spinal
cord neuroepithelium of mutants. We analyzed the distribu-
tion of the A] components N-cadherin, 3-catenin, and actin at
the apical side of NEPs lining the lumen of the neural tube by
immunofluorescence (Fig. 7). At E10.5, N-cadherin and the api-
cal cellular localizations of B-catenin and actin were reduced in
the RhoA mutants and many cells had lost their normal epithelial

RhoA is required to maintain neural stem/progenitor cells. A, Inmunohistochemistry for the stem/progenitor marker
Sox2 and neuronal marker NeuN. B, Inmunohistochemistry for Doublecortin (DCX) showed a qualitative increase of early neurons
in RhoA mutant spinal cords. C, D, Quantification of staining showed in B. The percentage of NeuN-positive cells is increased in the
mutants (C), and consequently the percentage of Sox2-positive cells is decreased (D). The percentage of NeuN-positive cells
increases from 27.81 = 0.39% in the control to 39.74 = 0.75%at E10.5 (n = 3, p = 0.0001) and from 63.11 == 0.84t069.87 ==
0.65% at E11.5 (n = 3, p = 0.0035). Meanwhile, the Sox2-positive fraction decreases from 72.19 = 0.39% in the control to
60.26 == 0.75% in the mutant at E10.5 (n = 3, p = 0.0001) and from 36.92 = 0.85% in the control to 30.14 = 0.65% in the

neurospheres derived from mutant mice
compared with control neurospheres
(supplemental Fig. 3A, available at
www.jneurosci.org as supplemental ma-
terial). Likely as a consequence, the size
and shape of individual neurospheres
from RhoA mutants were markedly dif-
ferent from controls (supplemental
Figs. 3A, 4A, available at www.
jneurosci.org as supplemental mate-
rial), and the capacity of mutant neurosphere cultures to self-
renew was drastically reduced (supplemental Fig. 4 B, available
at www.jneurosci.org as supplemental material).

We conclude that RhoA is critical for the maintenance of
N-cadherin-mediated cell-cell adhesions and, consequently, for
the preservation of the integrity of the VZ. Most likely the loss of
VZintegrity in the spinal cord of mutants led to the destruction of
the stem cell niche and, as a result, to the decline in the numbers
of cells expressing the stem and undifferentiated progenitor cell
marker Sox2 (Fig. 5A,D).

In contrast to the apical, the basal morphology of NEPs in the
mutant spinal cord appeared to be preserved. Laminin immuno-
staining of the pial surface of both control and mutant spinal cords
was continuous and uniform, and nestin immunostaining revealed
radial fibers of the neural progenitors contacting the pial surface in
RhoA mutants comparable with control embryos (supplementary
Fig. 5, available at www.jneurosci.org as supplemental material).

Then we investigated the localization of the RhoA down-
stream effectors mDial and Rho kinase (ROCK) in the VZ of the
spinal cord of E10.5 mutant and control embryos. In epithelial
cells in culture, mDial localizes to adherens junctions in a Rho-
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dependent manner (Carramusa et al,
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2007). mDial-mediated actin polymer-
ization downstream of Rho is critical for
the maintenance of epithelial junctions
(Samarin and Nusrat, 2009), and inactiva-
tion of mDial, but not of the RhoA down-
stream effector ROCK, can disrupt AJs
(Sahai and Marshall, 2002; Carramusa et
al., 2007). In line with this, apical mDial
expression was reduced at the apical sur-
face of mutant VZ compared with controls
(Fig. 8 A). In contrast, ROCK1 (Fig. 8 B) and
ROCK?2 (data not shown) staining in the
same region of the VZ was comparable be-
tween mutant and control embryos.

Next, we analyzed whether expres-
sion of DN mDial in wild-type neural
stem/progenitor cells could phenocopy
the effect of RhoA ablation and lead to
loss of AJs. We expressed DN mDial in C
neural stem/progenitor cell populations
of the VZ of E12.5 mice by in utero elec-
troporation. A GFP expression vector
was coelectroporated for following the
transfected cells. Because of difficulties
on electroporating spinal cord VZ pro-
genitors at E10.5 in utero, we transfected
forebrain VZ progenitors at E12.5 in
utero. Expressing DN mDial resulted in
the loss of apical N-cadherin immuno-
staining and of AJs (Fig. 9B,B’, arrows,
F,F") (supplemental Fig. 6 B, available at
www.jneurosci.org as supplemental ma-
terial) compared with regions transfected
with control GFP vector alone (Fig.
9A,A’,E,E") (supplemental Fig. 6 B, avail-
able at www.jneurosci.org as supplemen-
tal material). Furthermore, the expression
of DN mDial also lead to loss of apical
polarity of VZ neural stem/progenitor
cells as shown by disruption of PKC{ lo-
calization (Fig. 9D,D’) (supplemental
Fig. 6C, transfected region is marked by an
arrow, available at www.jneurosci.org as
supplemental material) compared with GFP-only (control) ex-
pressing cells (Fig. 9C,C") (supplemental Fig. 6C, available at
www.jneurosci.org as supplemental material). Additionally, ex-
pression of DN mDial in neural stem/progenitor cells leads to
the formation of rosette-like structures (supplemental Fig.
6B, C, arrowhead, available at www.jneurosci.org as supple-
mental material) similar to those formed after the ablation of
RhoA (Fig. 2H"). These results suggest that mDial may func-
tion downstream of RhoA in the maintenance of AJs in the
neuroepithelium.

E10.5

E10.5

O

E10.5

-

E

Figure 6.

Discussion

Our results reveal that RhoA plays a critical role in the develop-
ment of the mammalian spinal cord. Targeted ablation of RhoA
from NEPs in the neuroepithelium of the spinal cord resulted in
loss of AJs (Fig. 7) and in related profound structural defects (Fig.
2).In the absence of RhoA, AJ-mediated cell adhesion seems to be
severely compromised and NEPs lose their positional informa-
tion, no longer divide at the apical surface of the neuroepithe-
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Normal Notch, Wnt, MSX1, and Shh expression in RhoA mutants. A-D, Expression of Hes5 (4), Wnt-1(B), MSX1
(€), and Shh (D), examined by in situ hybridization, is not changed at E10.5 and E11.5 in RhoA mutant spinal cords
compared with control spinal cords, indicating normal Notch and dorsoventral signaling in mutant RhoA spinal cords.
Quantification of the expression domains relative to the total area of the spinal cords are not significantly changed (data not
shown). Scale bars, 100 wm.

lium, and thus exit the cell cycle and differentiate precociously. As
a consequence, the neural stem and progenitor cell pool is signif-
icantly reduced in RhoA mutants compared with control em-
bryos. However, the loss of RhoA does not significantly affect the
expression of the Notch and BMP downstream effectors, respec-
tively, Hes5 and MSX1, and the expression of the dorsal and
ventral signaling factors Wnt-1 and Shh (Fig. 6), or NEP differ-
entiation into neural and glial lineages (supplemental Figs. 1, 2,
available at www.jneurosci.org as supplemental material). This is
consistent with the well established hypothesis that the formation
and maintenance of AJs is essential for the structural organization
of different epithelia, including that of the neuroepithelium
(Gumbiner, 2005; Lien et al., 2006a). Some of the evidence for
which comes from the inactivation of genes involved in AJ forma-
tion and maintenance such as N-cadherin (Kadowaki et al., 2007),
aE-catenin (Lien et al., 2006b), B-catenin (Zechner et al., 2003;
Junghans et al., 2005), aPKCA (Imai et al., 2006), Lgl (Klezovitch et
al., 2004), and Numb (Rasin et al., 2007), which all lead to profound
disorganization of the VZ of the neuroepithelium.



Herzog et al. @ RhoA in Neuroepithelium Organization

E 10.5

control RhoA mutant

N-Cadherin

J. Neurosci., March 30, 2011 - 31(13):5120-5130 * 5127

E11.5
control RhoA mutant

D

beta-catenin

Figure7.

RhoA is required for AJ maintenance and for mDial
localization to AJs

We show that RhoA is essential for A] maintenance and cytoskel-
etal integrity. This is consistent with the findings that the actin
cytoskeleton is required for the stabilization and function of ma-
ture AJs (Samarin and Nusrat, 2009), and Rho GTPases are major
regulators of actin dynamics (Etienne-Manneville and Hall,
2002). Actin dynamics has been implicated in the regulation of
AJs in different epithelial cells (Samarin and Nusrat, 2009), in-
cluding those of the neuroepithelium (Cappello et al., 2006; Chen

RhoA s required for the maintenance of cell— cell adhesions. A-L’ Immunohistochemistry to reveal the structure of cell- cell adhesion on control and mutant spinal cord cross-sections.
In RhoA mutants, the staining pattern for the cell— cell adhesion markers N-cadherin and 3-catenin is altered at E10.5, and the staining is less intense, less structured, and not continuous at the
ventricular surface (arrows in B, F,Jand in higher magnificationin B’,B”, F', F",J’, J'). Cortical actin is less intense and appears to be more diffuse and less well structured (JJ' J”) in RhoA mutant
spinal cords. AtE11.5, the gaps in mutant ventricular surface cell- cell adhesions are more prominent and are identified as the areas in which cells invade the spinal cord lumen (D, H, Land in higher

magnificationin D', H', L"). Scale bars: A-L, 20 pum; A’-L", A"-J",10 pm.

et al., 2006). We addressed the potential mechanisms by which
RhoA could regulate AJ stability. Active RhoA functions through
activating downstream effector proteins such as ROCK and
mDial (Jaffe and Hall, 2005). Both ROCK and mDial regulate
AJs. However, ROCK regulation of acto-myosin contractility
seems not to be essential for the maintenance of epithelial junc-
tions. Therefore, we focused on mDia and effects RhoA ablation
may have on this arm of the downstream signaling pathway.
mDial-mediated actin polymerization downstream of RhoA is
essential for localizing cadherins and B-catenin to cell-cell con-




5128 - J. Neurosci., March 30, 2011 - 31(13):5120-5130

tacts, a crucial step in AJ maintenance (Sa- A
hai and Marshall, 2002; Carramusa et al.,
2007), and in epithelial cell lines, RhoA
localizes mDial to AJs (Carramusa et al.,
2007). We show that mDial, but not
ROCK, localizes to AJs in the neuroepi-
thelium in a RhoA-dependent manner
(Fig. 8).

Furthermore, we demonstrate that ex-
pression of DN mDial in neural stem/
progenitor cells results in loss of AJs and
apical polarity (Fig. 9) (supplemental Fig.
6, available at www.jneurosci.org as sup-
plemental material). Hence, interfering
with mDial function phenocopies the ef-
fect of RhoA ablation in neural stem/pro-
genitor cells, suggesting that mDial
mediates RhoA function in NEPs. There-
fore, we propose that one effect of RhoA
ablation from NEPs in the neuroepithe-
lium is to disrupt mDial association with
the AJs, resulting in weakening and dis-
ruption of the junctional complex. This is
in contrast to a recent report describing
the effects of Rho1 ablation in mature pu-
pal eye epithelium in Drosophila, suggest-
ing that the role of Drosophila Dia in
maintaining AJs is not essential (Warner
and Longmore, 2009). Although Dia cooperates with ROCK and
myosin to sustain apical cell tension via the regulation of filamen-
tous actin, A] maintenance depends only on Rhol inhibition of
DE-cadherin endocytosis in Drosophila, possibly by blocking
Cdc42/Par6 activity (Warner and Longmore, 2009). This appears
not to be the case in the mammalian nervous system (see below)
and is also in contrast to previous analyses in Drosophila epithelia
(Homem and Peifer, 2008).

Cdc42 also regulates A] maintenance in the mammalian neu-
roepithelium (Cappello et al., 2006; Chen et al., 2006). Condi-
tional ablation of Cdc42, like RhoA, leads to loss of apical polarity
and AJs (Cappello et al., 2006; Chen et al., 2006). Therefore, we
addressed whether loss of RhoA has an effect on other members
of the Rho GTPase family, potentially reducing their expression
and activity. We show that, whereas the loss of RhoA does not
affect the levels or activity of Racl and does not result in a loss of
Cdc42, there is a significant decrease in Cdc42 activation levels in
neurosphere cultures derived from RhoA mutant spinal cords
(supplemental Fig. 3C, available at www.jneurosci.org as supple-
mental material). It remains unclear whether this is an indirect
result of loss of AJs in the RhoA mutants or could have a causative
effect on the stability of AJs.

control

mDia1

Figure 8.

Loss of RhoA results in the formation of dysplasias

In areas in which RhoA was deleted in the neuroepithelium and
in which AJs were absent, the loss of normal VZ organization was
associated with the formation of dysplasias from E11.5 onward
(Fig. 2D',F',H',]'), resembling the process of epithelial-mesen-
chymal transition (EMT). EMT is a complex process occurring
during normal development and in different pathologies, most
notably during the formation of metastases (Thiery, 2002; Lee et
al., 2006). EMT involves disruption of epithelial cell-cell junc-
tions, loss of apico-basal polarity, breakdown of cell-basal mem-
brane interactions, and changes in cytoarchitecture (Hay, 1995).
The process can be initiated by dysregulation of cadherin and
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RhoA localizes mDia1 but not ROCK1 to the apical membrane. 4, Immunohistochemistry for the Rho downstream
effectormDia1 show that this protein is poorly localized to the ventricular surface of mutant RhoA spinal cords (arrowsin ¢, ¢’ and
in higher magpnification in d, d'). B, The localization of another important Rho downstream effector, ROCK1, shows no obvious
alteration in RhoA mutant spinal cords. Scale bars: a, a’, ¢, ¢’, 20 um; b, b’, d, d’, 10 m.

catenin signaling (Hay, 1995; Thiery, 2002) and, most relevant in
the context our results, by downregulation of RhoA signaling
(Nakaya et al., 2008). After E11.5, NEPs in the spinal cords of
RhoA mutants contained rosette-like structures, closely resem-
bling those seen in some primary neuroepithelial tumors. Be-
cause Rho GTPase signaling has been linked to different types of
cancer (Sahai and Marshall, 2002) and tumorigenesis (Karlsson
et al., 2009), our observations have potential implications for
brain tumor formation. Indeed, these rosettes were also remi-
niscent of those observed by disruption of the AJ in the neu-
roepithelium by function-blocking antibodies directed against
the ectodomain of N-cadherin (Ginzler-Odenthal and Redies,
1998) and are also observed when interfering with mDial func-
tion (supplemental Fig. 6, available at www.jneurosci.org as sup-
plemental material). This lends support for our hypothesis that a key
function for RhoA in the developing nervous system is to maintain
cell adhesion and polarity by dynamic regulation of AJs and cell-cell
contacts, possibly through its downstream effector mDial.

RhoA is required for NEP maintenance

Our results indicate that cell proliferation and survival is signifi-
cantly reduced in the neuroepithelium of RhoA mutants, and
mutant cells withdrew from the cell cycle and differentiated pre-
cociously (Figs. 4, 5). Mitotic cells were frequently found in non-
apical positions (Fig. 3), but it cannot be ruled out that some of
these cells are not NEPs dividing in abnormal positions but rep-
resent abnormally behaving progenitors that have re-entered the
cell cycle.

Instructive cues originating at the neural tube lumen are
thought to regulate proliferation and survival of NEPs through
receptors located on their apical membrane (Gotz and Huttner,
2005). It is likely that, during loss of AJs, RhoA mutant NEPs,
which were not properly anchored to the apical surface of the
neuroepithelium, lose their positional information and conse-
quently their ability to integrate proliferative and survival signals
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Figure9. Overexpression of DN mDia1in neural stem progenitor cells results in the loss
of AJs and apical polarity. Forebrain progenitors of wild-type E12.5 embryos were elec-
troporated in utero with a GFP expression vector (control) or coelectroporated with the
GFP vectorand DN mDia1 expression vector and analyzed 24 h later. Transfected cells were
identified by GFP expression. A-F", Confocal images of immunohistochemistry for
N-cadherin (4, A”, B, B" and z-projections of higher magnification in E, E”, F, F") show a
loss of Als at the ventricular surface in neural stem/progenitor cells transfected with DN
mDiaT (areas of lost AJs marked by arrows in B, B’, and F, F”) but not in cells expressing
GFP only (A, A" and E, E”). Apical polarity and disruption of PKC{ localization is lost after
DN mDial expression (marked by an arrow in D, D) compared with GFP-expressing
control areas (C, C'). Scale bars: A-D’, 50 pm; E-F", 20 pm.
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at their apical membranes. AJs are thought to provide epithelial
cells with information about their position, cell-type specificity,
and overall density of their neighbors (Lien et al., 2006a). In
NEPs, loss of apical B-catenin, part of the cadherin—catenin com-
plex forming the AJs, results in proliferation defects leading to the
reduction of the neural stem cell pool (Machon et al., 2003; Zech-
ner et al., 2003). RhoA activity has also been implicated in the
direct regulation of cell cycle progression in a cell-autonomous
way in a variety of different cell types (Jaffe and Hall, 2005; Na-
rumiya and Yasuda, 2006). RhoA promotes G1-to-S-phase pro-
gression by increasing the amounts of cyclin D1 and reducing the
levels of the cell-cycle inhibitors p21cipl and p27kip1 (Karlsson
etal., 2009). Furthermore, RhoA regulates the ratio of symmetric
versus asymmetric cell divisions in the chick neuroepithelium by
controlling spindle orientation favoring asymmetric neurogenic
cell divisions (Roszko et al., 2006). These mechanisms may explain
the decrease in NEP proliferation and the increase in cell-cycle exit
and differentiation observed in RhoA-mutant neuroepithelium
compared with controls embryos (Figs. 3-5).

In summary, using tissue-specific conditional gene ablation,
we show a key role for RhoA signaling in the control of mamma-
lian CNS development. Although the requirements to regulate
stem cell self-renewal, proliferation, and fate acquisition are likely
to be cell-type and context specific, our data draw additional
attention to the growing importance of Rho GTPase signaling in
cellular and developmental neurobiology (Cappello et al., 2006;
Chen et al., 2006; Feltri et al., 2008; Fuchs et al., 2009; Leone et al.,
2010). Our findings also indicate that a better understanding of
such signaling pathways will increase our knowledge of the mech-
anisms regulating nervous system function in health and disease.
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