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Decoding Action Intentions from Preparatory Brain Activity
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How and where in the human brain high-level sensorimotor processes such as intentions and decisions are coded remain important yet
essentially unanswered questions. This is in part because, to date, decoding intended actions from brain signals has been primarily
constrained to invasive neural recordings in nonhuman primates. Here we demonstrate using functional MRI (fMRI) pattern recognition
techniques that we can also decode movement intentions from human brain signals, specifically object-directed grasp and reach move-
ments, moments before their initiation. Subjects performed an event-related delayed movement task toward a single centrally located
object (consisting of a small cube attached atop a larger cube). For each trial, after visual presentation of the object, one of three hand
movements was instructed: grasp the top cube, grasp the bottom cube, or reach to touch the side of the object (without preshaping the
hand). We found that, despite an absence of fMRI signal amplitude differences between the planned movements, the spatial activity
patterns in multiple parietal and premotor brain areas accurately predicted upcoming grasp and reach movements. Furthermore, the
patterns of activity in a subset of these areas additionally predicted which of the two cubes were to be grasped. These findings offer new
insights into the detailed movement information contained in human preparatory brain activity and advance our present understanding
of sensorimotor planning processes through a unique description of parieto-frontal regions according to the specific types of hand

movements they can predict.

Introduction

Significant developments in understanding the neural underpin-
nings of highly cognitive and abstract processes such as inten-
tions and decision-making have predominantly come from
neurophysiological investigations in nonhuman primates. Prin-
cipal among these has been the ability to predict or decode up-
coming sensorimotor behaviors (such as movements of the arm
or eyes) based on changes in parieto-frontal neural activity that
precede movement onset (Andersen and Buneo, 2002; Gold and
Shadlen, 2007; Andersen and Cui, 2009; Cisek and Kalaska,
2010). To date, the ability to predict goal-directed movements
based on intention-related cortical signals has almost entirely
been constrained to invasive neural recordings in nonhuman pri-
mates. Recently, however, advances in neuroimaging using pat-
tern classification, a multivariate statistical technique used to
discriminate classes of stimuli by assessing differences in the elic-
ited spatial patterns of functional magnetic resonance imaging
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(fMRI) signals, have made it possible to probe the cognitive con-
tents of the human mind with a level of sensitivity previously
unavailable. Indeed, pattern classification has provided a wealth
of knowledge within the domain of sensory-perceptual process-
ing, showing that visual stimuli being viewed (Haxby et al., 2001;
Kamitani and Tong, 2005), imagined (Stokes et al., 2009), or
remembered (Harrison and Tong, 2009) and that categories of
presented auditory stimuli (Formisano et al., 2008) can be accu-
rately decoded from the spatial pattern of signals in visual and
auditory cortex, respectively.

Few pattern classification experiments to date, however, have
examined the primary purpose of perceptual processing: the
planning of complex object-directed actions. Given the rather
poor understanding of the human sensorimotor planning pro-
cesses that guide target-directed behavior, the goals of this
experiment were twofold. The first goal was to examine whether
object-directed grasp and reach actions with the hand can be
decoded from intention-related activity recorded before move-
ment execution, as has only been shown previously with neural
recording studies in monkeys (Andersen and Buneo, 2002). The
second goal, pending success of the first, was to determine
whether different parieto-frontal brain areas can be characterized
according to the types of planned movements they can decode.
For instance, we questioned whether plan-related activity in in-
terconnected reach-related areas, such as superior parietal cortex,
middle intraparietal sulcus (IPS), and dorsal premotor (PMd)
cortex (Andersen and Cui, 2009), can predict an upcoming reach
movement. Similarly, we questioned whether preparatory signals
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in interconnected hand-related areas, such as posterior (pIPS)
and anterior (aIPS) IPS and ventral premotor (PMv) cortex (Riz-
zolatti and Matelli, 2003; Grafton, 2010), can predict upcoming
grasp movements and moreover even discriminate different pre-
cision grasps. More revealingly, we wondered whether the in-
creased sensitivity of decoding approaches would enable us to
predict an upcoming movement from brain regions not previ-
ously implicated in coding particular hand actions. Given that
conventional fMRI analyses in humans have shown widespread,
highly overlapping, and essentially undifferentiated activations
for different movements (Culham et al., 2006), combined with
mounting evidence that standard fMRI methods may ignore the
neural information contained in distributed activity patterns
(Harrison and Tong, 2009), we expected that our pattern classi-
fication approach might offer a new understanding of how vari-
ous parieto-frontal brain regions contribute to the planning of
goal-directed hand actions.

Materials and Methods

To address these two main questions, we measured activity across the
whole brain using fMRI while human subjects performed a delayed
object-directed movement task. The task required three different hand
actions to be performed on a target object comprising a small block
attached atop a larger block (Fig. 1). These actions included grasping the
top (GT), grasping the bottom (GB), or touching the side (touch) of the
target object (Fig. 1 B). This delayed movement task allowed us to sepa-
rate, in time, the transient neural activity associated with visual responses
(preview phase) and movement execution (execute phase) responses
from the more sustained plan-related responses that evolve before the
movement (plan phase) (Andersen and Buneo, 2002; Beurze et al., 2007)
(Fig. 1C,D). This experimental design permits a direct investigation of
whether pattern classifiers implemented during the planning phase of an
action in a given brain area can decode (1) upcoming grasp versus touch
actions (GT vs touch and GB vs touch), two general types of hand move-
ments requiring slight differences in wrist orientation and hand preshap-
ing, and (2) upcoming grasp movements from each other (GT vs GB),
performed on different blocks, requiring far more subtle differences in
size and location. Emphasis on decoding during the planning phase of
actions has the added advantage of using activity patterns uncontami-
nated by the subject’s limb movement. Importantly, given this task de-
sign, in which all actions are performed on a centrally located object that
never changes position from trial-to-trial, any movement decoding dur-
ing planning would be independent of simple retinotopic and general
attention-related differences across trial types.

First, to localize the common brain areas among individuals in which
to perform pattern analyses, we searched for regions at the group level
preferentially involved in movement planning. To do this, we contrasted
activity elicited by the planning of a hand action (i.e., after movement
instruction) versus the transient activity elicited by visual presentation of
the object before the instruction (plan > preview). We reasoned that,
compared with the activity elicited when the object was illuminated and
the subject was unaware of the action to be performed (preview phase),
areas involved in movement planning should show heightened responses
once movement instruction information has been given (plan phase),
although the object was visible in both phases. This rationale provides a
logical extension of recent studies that examined areas involved in plan-
ning to temporally spaced instructions about target location, effector to
be used, and grasp type in fMRI movement tasks (Beurze et al., 2007,
2009; Chapman et al., 2011). This group contrast allowed us to define 14
well-documented action-related regions-of-interest (ROIs) as well as
three sensory-related ROISs that could then be reliably identified in single
subjects with the same contrast. In each subject, we then iteratively
trained and tested pattern classifiers in each predefined ROI to determine
whether, before movement, its preparatory spatial activity patterns were
predictive of the hand movement to be performed.

Subjects. Nine right-handed volunteers participated in this study (five
males; mean age, 26.2 years) and were recruited from the University of
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Figure 1.  Experiment setup, conditions, timing, and trial-related brain activity. 4, Setup

from side view. The participant’s head is tilted to permit direct viewing of objects on the plat-
form. B, Experimental apparatus and graspable object shown from the participant’s point of
view. The same object (consisting of a smaller cube attached atop a larger cube) was always
presented at the same location on the platform for every trial. Green star with dark shadow
represents the fixation LED and its location in depth. Hand is positioned at its starting location.
Right, The three different hand movements. €, Timing of one event-related trial. Trials began
with the 3D graspable object being illuminated while the subject maintained fixation (preview
phase; 65). Subjects were then instructed via headphones to perform one of three hand actions:
grasp the top cube (Top), grasp the bottom cube (Bottom), or touch both cubes with their
knuckles (Touch). This cue initiated the plan phase portion of the trial, in which, in addition to
having visual information from the object, subjects also knew which hand action they were to
perform. After a delay interval (10's), subjects were cued (via an auditory beep) to perform the
instructed hand movement (execute phase). Two seconds after the movement, vision of the
object was extinguished and participants waited for commencement of the following trial (14,
T1). D, Example event-related BOLD activity from parietal cortex (posterior IPS) over the length
of atrial. Eventsin D are time locked to correspond to events in C. Pattern classification analysis
was performed on single trials based on the windowed average of the percentage signal change
(% SC) corresponding to the three different time points denoted by each of the gray shaded bars
(each corresponding to activity elicited from the 3 distinct trial phases preview, plan, and
execute).

Western Ontario (London, ON, Canada). One subject was excluded as a
result of head motion beyond 1 mm translation and 1° rotation in their
experimental runs (see below, MRI acquisition and preprocessing). In-
formed consent was obtained in accordance with procedures approved
by the University of Western Ontario Health Sciences Research Ethics
Board.
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Setup and apparatus. Each subject’s workspace within the MRI scanner
consisted of a black platform placed over their waist and tilted away from
the horizontal at an angle (~10-15°) that maximized comfort and target
visibility. To facilitate direct viewing of the workspace, we also tilted the
head coil (~20°) and used foam cushions to give an approximate overall
head tilt of 30° from supine (Fig. 1 A). Participants performed actions
with the right hand and had the right upper arm braced such that arm
movement was limited to the elbow and wrist, creating an arc of reach-
ability [movements of the upper arm have been shown to cause pertur-
bations in the magnetic field and induce artifacts in the participant’s data
(Culham, 2004)]. The target object was made up of a smaller cube atop a
larger cube (bottom block, 5 X 5 X 5 cm; top block, 2.5 X 2.5 X 1.5 cm)
and was secured to the workspace at a location along the arc of reachabil-
ity for the right hand, at the point corresponding to the participant’s
sagittal midline. The exact placement of the object on the platform was
adjusted to match each participant’s arm length such that all required
movements were comfortable. During the experiment, the object was
illuminated from the front by a bright yellow light emitting diode (LED)
attached to flexible plastic stalks (Loc-Line; Lockwood Products). To
control for eye movements, a small green fixation LED was placed im-
mediately above the target object (fixation). Subjects were asked to
always foveate the fixation LED during functional scans. Experimental
timing and lighting were controlled with in-house software created with
Matlab (MathWorks).

For each trial, the subjects were required to perform one of three
actions on the object: GT, using a precision grip with the thumb and
index finger placed on opposing surfaces of the cube; GB, using the same
grip; or manually touch the side of the object with the knuckles (trans-
port the hand to the object without hand preshaping). Importantly,
for each trial, the graspable object never changed its centrally located
position.

Experiment design and timing. To isolate the visuomotor planning re-
sponse from the visual and motor execution responses, we used a slow
event-related planning paradigm with 32 s trials, each consisting of three
distinct phases: preview, plan, and execute (Fig. 1C). We adapted this
paradigm from one of our previous studies (Chapman et al., 2011) as well
as previous work with eye movements and working memory that have
successfully parsed delay activity from the transient responses after the
onset of visual input and movement execution (Curtis and D’Esposito,
2003; Curtis et al., 2004, 2005). Each trial was preceded by a period in
which participants were in complete darkness except for the fixation LED
on which they maintained their gaze. The trial began with the preview
phase and illumination of the workspace and centrally located object.
After 6 s of the preview phase, a voice auditory cue (0.5 s; one of “top,”
“bottom,” or “touch”) was given to the subject and instructed the corre-
sponding upcoming movement, marking the onset of the plan phase.
Although participants had visual information of the object to be acted on
during the preview phase, only in the plan phase did they know which
action was to be performed, thus providing all the information necessary
to prepare the upcoming movement. Critically, the visual information
during the preview and plan phases was constant for all trials, only the
planned movements changed. After 10 s of the plan phase, a 0.5 s auditory
beep cue instructed participants to immediately execute the planned
action (for a duration of ~2 s), initiating the execute phase of the trial.
Two seconds after the beginning of this go cue, the illuminator was
extinguished providing 14 s of darkness/fixation that allowed the blood
oxygenation level-dependent (BOLD) response to return to baseline be-
fore the next trial [intertrial interval (ITI) phase]. Other than the execu-
tion phase of each action, throughout the other phases of the trial
(preview, plan, and ITT) the hand was to remain still and in a relaxed
‘home’ position on the platform to the right of the object. The three trial
types, with six repetitions per condition (18 trials total per run), were
pseudorandomized within a run and balanced across all runs so that each
trial type was preceded and followed equally often by every other trial
type across the entire experiment.

During the anatomical scan (collected at the beginning of every exper-
iment) and before entering the scanner, brief practice sessions were con-
ducted (equivalent to the length of one experimental functional run) to
familiarize participants with the paradigm, especially the delay timing,
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which required performing the cued action only at the beep (go) cue. A
testing session for one participant included setup time (~45 min), eight
or nine functional runs, and one anatomical scan and lasted ~2.5-3 h.
We did not conduct eye tracking during the scan session because there
are no MR-compatible eye trackers that can monitor gaze in the head-
tilted configuration (because of occlusion from the eyelids). Neverthe-
less, multiple behavioral control experiments from our laboratory have
shown that subjects can maintain fixation well under experimental
testing.

MRI acquisition and preprocessing. Imaging was performed on a 3 tesla
Siemens TIM MAGNETOM Trio MRI scanner. The T1-weighted ana-
tomical image was collected using an ADNI MPRAGE sequence [repeti-
tion time (TR), 2300 ms; echo time (TE), 2.98 ms; field of view, 192 X
240 X 256 mm; matrix size, 192 X 240 X 256; flip angle, 9% 1 mm
isotropic voxels]. Functional MRI volumes were collected using a T2*-
weighted single-shot gradient-echo echo-planar imaging acquisition se-
quence [TR, 2000 ms; slice thickness, 3 mm; in-plane resolution, 3 X 3
mm; TE, 30 ms; field of view, 240 X 240 mm; matrix size, 80 X 80; flip
angle, 90°% and acceleration factor (integrated parallel acquisition tech-
nologies or IPAT) of 2 with generalized autocalibrating partially parallel
acquisitions reconstruction (or GRAPPA)]. We used a combination
of parallel imaging coils to achieve a good signal/noise ratio and to
enable direct viewing without mirrors or occlusion. We tilted (~20°)
the posterior half of the 12-channel receive-only head coil (six chan-
nels) and suspended a four-channel receive-only flex coil over the
anterosuperior part of the head. Each volume comprised 34 contigu-
ous (no gap) oblique slices acquired at a ~30° caudal tilt with respect
to the anterior-to-posterior commissure (ACPC) line, providing near
whole-brain coverage.

Preprocessing included slice scan-time correction, 3D motion correc-
tion (such that each volume was aligned to the volume of the functional
scan closest in time to the anatomical scan), and high-pass temporal
filtering (three cycles per run). We also performed functional-to-
anatomical coregistration such that the axial plane of functional and
anatomical scans passed through the ACPC space, which was then trans-
formed into Talairach space (Talairach and Tournoux, 1988). Other than
inadvertent smoothing arising from the sinc interpolation for all trans-
formations, no additional spatial smoothing was performed. Talairach-
transformed data was only used for group voxelwise analyses to define
the planning-related ROIs common across all subjects. These same areas
were then defined anatomically within each subject’s ACPC data. We
decided to define ROIs within the ACPC data in this way because multi-
voxel classification analysis discriminates spatial patterns across voxels
and the additional spatial interpolations inherent in normalization may
hinder such analyses. Indeed, pattern classification using three of the
subject’s Talairach-transformed data showed that decoding accuracies
were on average ~1-2% less during both plan and execute time phases
than in the corresponding subject’s ACPC data. Using the ACPC data
also had the advantage that each region of interest could be reliably
identified in single subjects regardless of variations in slice planes, a
particular problem given the sulcal variability of parietal cortex. The
cortical surface from one subject was reconstructed from a high-
resolution anatomical image, a procedure that included segmenting the
gray and white matter and inflating the surface at the boundary between
them. This inflated cortical surface was used to display group activation
for figure presentation (Fig. 2).

For each participant, functional data from each session were screened
for motion and/or magnet artifacts by examining the time course movies
and the motion plots created with the motion correction algorithms. Any
runs that exceeded 1 mm translation or 1° rotation within the run were
discarded, leading to the removal of all runs from one subject and one
run from another subject. Action performance was examined offline
from videos recorded using an MR-compatible infrared-sensitive camera
that was optimally positioned to record the participant’s movements
during functional runs (MRC Systems). No errors were observed, likely
because, by the time they actually performed the required movements in
the scanner, subjects were well trained in the delay task. All preprocessing
and analyses were performed using Brain Voyager QX version 2.12
(Brain Innovation).
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Figure 2.  Decoding of object-directed movement intentions across the parieto-frontal
network. Cortical areas that exhibited larger responses during movement planning
than the preceding visual phase (plan > preview) are shown in orange/yellow activation.
Results calculated across all subjects (random-effects GLM) are displayed on one repre-
sentative subject’s inflated hemispheres. The general locations of the selected ROIs
are outlined in circles (actual ROIs were anatomically defined separately in each subject).
Each ROl is color coded according to the pairwise discriminations they can decode dur-
ing the plan phase (found in Fig. 4); see color legend at top for classification profiles (colors
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Regions of interest. To localize specific planning-related areas in which
to implement pattern recognition analyses, we used a general linear
model (GLM) group random-effects (RFX) voxelwise analysis (on the
Talairach-transformed data). Predictors were defined at the onset of the
preview, plan, and execute periods for each individual trial with a value of
1 for (1) three volumes during the preview phase, (2) five volumes during
the plan phase, and (3) one volume for the execute phase and 0 for the
remainder of the trial period (ITI). Each of these predictors was then
convolved using a Boynton hemodynamic response function (Boynton
et al., 1996). Data were processed using a percentage signal change
transformation.

Using the GLM, we contrasted activity for movement planning versus
the simple visual response to object presentation [plan > preview: (GT
plan + GB plan + touch plan) vs (GT preview + GB preview + touch
preview)]. This plan > preview statistical map of all positively active
voxels (RFX, t;y = 3.5, p < 0.01) was then used to define 17 ROIs [foci of
activity selected within a (15 mm)? cube centered on a particular ana-
tomical landmark; only clusters of voxels larger than 297 mm > were used
(minimum cluster size estimated by 1000 Monte Carlo simulations of
p < 0.05 corrected, implemented in the cluster threshold plug-in for
BVQX)], which could then be localized in single subjects. Fourteen of
these ROIs (across parietal, motor, and premotor cortex) were selected
based on their well documented and highly reliable coactivations across
several movement-related tasks and paradigms (Andersen and Buneo,
2002; Chouinard and Paus, 2006; Culham et al., 2006; Filimon et al.,
2009; Cisek and Kalaska, 2010; Filimon, 2010; Grafton, 2010) and the
other three ROIs (somatosensory cortex and left and right Heschl’s
gyrus) were selected as regions known to respond to transient stimuli
(i.e., sensory and auditory events) and often activated in experimental
contexts but not expected to necessarily participate in sustained move-
ment planning or intentional-related processes (i.e., to serve as sensory
control regions). Importantly, all these ROIs are easily defined according
to anatomical landmarks (sulci and gyri) and functional activations in
each individual subject’s ACPC data (see below, ROI selection). Criti-
cally, given the contrast used to select these 17 areas (i.e., plan > pre-
view), their activity is not biased to show any plan-related pattern
differences between any of the experimental conditions (for confirma-
tion of this fact, see the univariate analyses in Fig. 5).

Voxels submitted for pattern classification analysis were selected from
the plan > preview GLM contrast on single-subject ACPC data and based
on all activity within a (15 mm) > cube centered on defined anatomical
landmarks for each of the 17 ROIs (for details, see below, ROI selection).
We chose (15 mm)?> cubes for our ROI sizes not only to allow for the
inclusion of numerous functional voxels for pattern classification (an
important consideration) but also to ensure that adjacent ROIs did not
overlap. These ROIs were selected at a threshold of t = 3, p < 0.003, from
an overlay of each subject’s activation map (cluster threshold corrected,
p < 0.05, so that only voxels passing a minimum cluster size were se-
lected; average minimum cluster size across subjects, 110 mm 3). All uni-
variate statistical tests used the Greenhouse—Geisser correction and for
post hoc tests (two-tailed paired ¢ tests), we used a threshold of p < 0.05
(see Fig. 5). Only significant results are reported.

ROI selection. The following ROIs were chosen: left and right superior
parieto-occipital cortex (SPOC), defined by selecting voxels located me-
dially and directly anterior to the parieto-occipital sulcus on the left and
right (Gallivan et al., 2009); left anterior precuneus (L-aPCu), defined by
selecting voxels farther anterior and superior to the L-SPOC ROI, near
the transverse parietal sulcus (in most subjects, this activity was located
medially, within the same sagittal plane as SPOC, but in a few subjects,
this activity was located slightly more laterally) (Filimon et al., 2009); left
pIPS (L-pIPS), defined by selecting activity at the caudal end of the IPS
(Beurze et al., 2009); left middle IPS (L-midIPS), defined by selecting
voxels approximately halfway up the length of the IPS, on the medial

<«

denote significant decoding accuracies for upcoming actions with respect to 50% chance).
Sulcal landmarks are denoted by white lines (stylized according to the corresponding legends
below each brain). LH, Left hemisphere; RH, right hemisphere.
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Table 1. ROIs with corresponding Talairach coordinates (x, y, and z center of mass mean and SD)

Talairach coordinates ROl size
ROl name Mean x Mean y Meanz SDx SDy SDz mm> nvoxels
R-SPOC 4 —70 38 46 35 4.1 1782 66
L-SP0OC —6 —74 36 4 39 3.6 2189 81
L-aPCu -4 —74 44 3.7 38 34 1895 70
L-pIPS —16 —63 50 33 4 3 1996 74
L-midIPS —35 —57 4 3.6 4 43 2053 76
L-post alPS —36 —44 46 3.9 39 38 2094 78
L-alPS —49 —34 44 3.8 4 4 1926 Al
L-SMG —58 —41 29 3.6 33 42 1782 66
L-motor cortex —-33 -19 56 4.5 4.4 3.6 1278 47
L-PMd cortex -23 -9 58 4.1 4 3.6 1914 71
L-precentral gyrus -39 -1 55 3.5 3 32 1679 62
L-PMv cortex —53 4 31 3.1 2.7 29 1617 60
L-preSMA -8 4 41 32 4 4 1896 70
L-SMA -7 -3 51 3.5 39 3.4 2026 75
L-SS cortex —41 -32 54 38 39 42 1528 57
L-HG —57 —26 6 4 3.7 41 1956 72
R-HG 57 =21 7 3.9 3.6 32 1627 60

Mean ROI sizes across subjects from ACPC data (in cubic millimeters and functional voxels).

bank (Calton et al., 2002), near a characteristic “knob” landmark that we
observed consistently within each subject; left region located posterior to
L-aIPS (L-post aIPS), defined by selecting voxels just posterior to the
junction of the IPS and post-central sulcus (PCS), on the medial bank of
the IPS (Culham, 2004); left aIPS (L-aIPS), defined by selecting voxels
directly at the junction of the IPS and PCS (Culham et al., 2003); left
supramarginal gyrus (L-SMG), defined by selecting voxels on the supra-
marginal gyrus (SMG), lateral to the anterior segment of the IPS (Lewis,
2006); left motor cortex, defined by selecting voxels around the left “hand
knob” landmark in the central sulcus (CS) (Yousry et al., 1997); left PMd
(L-PMd), defined by selecting voxels at the junction of the precentral
sulcus (PreCS) and superior frontal sulcus (SFS) (Picard and Strick,
2001); left precentral gyrus, defined by selecting voxels lateral to the
junction of the PreCS and SFS, encompassing the precentral gyrus and
posterior edge of the PreCS; left PMv (L-PMv), defined by selecting
voxels slightly inferior and posterior to the junction of the inferior frontal
sulcus (IFS) and PreCS (Tomassini et al., 2007); left presupplementary
motor area (L-PreSMA), defined by selecting bilateral voxels (although
mostly left-lateralized) superior to the middle/anterior segment of the
cingulate sulcus, anterior to the plane of the anterior commissure and
more anterior and inferior than those selected for left supplementary area
(Picard and Strick, 2001); left supplementary motor area (L-SMA), de-
fined by selecting voxels bilaterally (although mostly left-lateralized) ad-
jacent and anterior to the medial end of the CS and posterior to the plane
of the anterior commissure (Picard and Strick, 2001); left somatosensory
cortex (L-SS cortex), defined by selecting voxels medial and anterior to
the aIPS, encompassing the postcentral gyrus and PCS; and left (L-HG)
and right (R-HG) Heschl’s gyri, defined by selecting voxels halfway up
along the superior temporal sulcus (STS), on the superior temporal gyrus
(between the insular cortex and outer-lateral edge of the superior tem-
poral gyrus) (Meyer et al., 2010). See Table 1 for details about ROI
coordinates and sizes and Figure 2 for anatomical locations on one rep-
resentative subject’s brain.

Non-brain control regions. To demonstrate classifier performance out-
side of our plan network ROIs, we defined two additional control ROIs in
which no BOLD signal was expected and thus no reliable classification
performance should be possible. To select these ROIs in individual sub-
jects, we further reduced our statistical threshold (after specifying the
plan > preview network within each subject) to t = 0, p = 1 and
selected all positive activation within a (15 mm)? cube centered on
two consistent points: (1) within each subject’s right ventricle and (2)
just outside the skull of the brain, near right visual cortex in the ACPC
plane.

Multivoxel pattern analysis. Multivoxel pattern analysis (MVPA) was
performed with a combination of in-house software (using Matlab) and
the Princeton MVPA Toolbox for Matlab (http://code.google.com/p/

princeton-mvpa-toolbox/) using a support vector machines (SVM) bi-
nary classifier (LibSVM, http://www.csie.ntu.edu.tw/~cjlin/libsvm/).
The SVM model used a linear kernel function and a constant cost param-
eter, C = 1 [congruent with many other fMRI studies (LaConte et al.,
2003; Mitchell et al., 2003; Mourao-Miranda et al., 2005; Haynes et al.,
2007; Pessoa and Padmala, 2007)] to compute the hyperplane that best
separated the trial responses.

Voxel pattern preparation. For each voxel within a region and each trial,
we extracted the average percentage signal change activation correspond-
ing to the 4 s time windows specified by each of the gray shaded bars in
Figures 1D and 3 (i.e., the activity elicited by each distinct phase of the
trial: plan, preview, and execute) and entered these as data points for
pattern classification. Beyond allowing us to characterize which types of
movements within an area could be accurately decoded, this time-
specific approach also allowed us to investigate when predictive informa-
tion pertaining to a particular movement was available (i.e., within the
preview, plan, or execute phase).

The baseline window was defined as the average of volumes 1 and 2
with respect to the start of the trial (which avoids contamination from the
previous trial and in which response amplitude differences do not exist).
For the preview phase time points, we extracted the mean of volumes
3—4, time points that correspond to the peak of the visual transient
response (Fig. 3). For the execute phase time points, we extracted the
average of volumes 11-12, which correspond to the peak of the transient
movement response, after the subject’s action (Fig. 3). Last, for the plan
phase, the time points of critical interest for decoding subject’s inten-
tions, we extracted the average of volumes 7—8 (the final two volumes of
the plan phase), corresponding to the sustained activity of a planning
response (Fig. 3). After the extraction of each trial’s percentage signal
change, these values were z-scored across the run, for each voxel within
an ROL

Our reasoning for using the average of volumes 7—8 (the final two
volumes of the plan phase) for pattern classification is obvious: planning
is not a transient but sustained process. Whereas simple visual or motor
execution responses typically show transient neural activity (Andersen et
al., 1997; Andersen and Buneo, 2002), in which the hemodynamic re-
sponse function peaks approximately at 6 s after the event and then falls,
planning responses generally remain high for the duration of the in-
tended movement (Curtis and D’Esposito, 2003; Curtis et al., 2004;
Chapman et al.,, 2011). With this rationale, we figured that, if pattern
differences were to arise during movement planning, they would more
likely occur during the sustained planning response after the hemody-
namic response had reached its peak. For these reasons, we selected the
final two volumes of the plan phase to serve as our data points of interest:
a critical two-volume window in which the hemodynamic response had
already plateaued, any non-plan-related transient responses associated
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with the auditory cue would be diminishing, 25
and most importantly, a time point before the 2
subject initiated any movement.

Single-trial classification. For each subject
and for each of the 17 plan-related ROIs, nine
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for MVPA (i.e., for each of the preview, plan,
and execute phases and each pairwise compar-
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to test the accuracy of the binary SVM classifiers,
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of iterations was increased for some subjects.
For instance, for subjects with eight runs, 1002

-

iterations were used (each trial was used exactly
167 times to train the classifier). For subjects
with nine runs, a perfect solution was not 2
achievable. For these subjects, the number of
iterations was increased to 1026 to ensure that
each trial was used 152 * 1 times to train the
classifier. This high number of train-and-test
iterations produces a precise estimate and highly
representative sample of true classification accu-
racies (this method showed a test—retest reliabil-
ity within #0.5%; based on multiple simulations
of 1026 iterations conducted in three subjects).
Given the noise inherent in single trials and the
fact that each trial for training could be randomly
selected from any point throughout the experi-
ment, single-trial classification provides a highly
conservative but robust measure of decoding ac-
curacies. Moreover, much of the motivation of this present work is to deter-
mine the feasibility of predicting specific motor intentions from single fMRI
trials, which could be then be applied to human movement-impaired patient
populations.

Decoding accuracies were computed separately for each subject, as an
average across iterations. The average across subjects for each ROI is
shown in Figure 4. To assess the statistical significance of decoding accu-
racies, we performed one-sample ¢ tests across subjects in each of the
ROIs to test whether the decoding accuracy for each pairwise discrimi-
nation was significantly higher than 50% chance (Fig. 4, black asterisks,
two-tailed tests) (Chen et al., 2011).

SVMs are designed for classifying differences between two stimuli and
LibSVM (the SVMs implemented here) uses the so-called “one-against-
one method” for each pairwise discrimination. Often the pairwise results
are combined to produce multiclass discriminations (Hsu and Lin, 2002)
(i.e., distinguish among more than two stimuli). For this particular ex-
periment, however, looking at the individual pairwise discriminations
was valuable because it could specifically determine what particular
type(s) of planned movements were decoded within each brain area. For
instance, a brain region showing a decoding pattern of grasps versus

Figure 3.
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Trial-related percentage signal change fMRI activations from each of the 14 plan-network ROIs and three sensory
control ROIs. Activity in each plot is averaged across voxels within each ROl and across subjects. Plots show the profiles of typical
preparatory activity found throughout parieto-frontal network areas. Vertical dashed lines correspond to the onset of the preview,
plan, and execute phases of each trial (from left to right). Shaded gray bars highlight the two-volume (4 s) windows that were
averaged and extracted for pattern classification analysis. Note that time corresponds to imaging volumes (TR of 2) and not

touches (GT vs touch and GB vs touch, but not GT vs GB movements), an
interesting theoretical finding here, would be very difficult to assess with
multiclass discrimination approaches.

Permutation tests. In addition to the f test, we separately assessed sta-
tistical significance with nonparametric randomization tests (Golland
and Fischl, 2003; Etzel et al., 2008; Smith and Muckli, 2010; Chen et al.,
2011), which also determined that the chance distribution of decoding
accuracies was approximately normal and had a mean ~50%. For each
subject, after classifier training (and testing) with the true trial identities,
we also performed 100 random permutations of the test trial identities
before testing the classifier. That is, to empirically test the statistical sig-
nificance of our findings with the true data labels, we examined how a
model trained on true data labels would perform when tested on ran-
domized trial labels. For each of the 100 permuted groupings of test
labels, we ran the same cross-validation analysis procedure 1002/1026
times (depending on the number of runs per subject). As in the standard
analysis, we averaged across the 1002/1026 cross-validation iterations to
generate 100 mean accuracies. We then used these 100 random mean
accuracies plus the real mean accuracy (the one correct labeling) in each
subject to estimate the statistical significance of our group mean accuracy
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ceding preview phase. In other words, we
wanted to assess whether significant pattern
classifications observed in the plan and execute
phases could unequivocally be attributed to
movement intentions (and executions) rather
than simple visual pattern differences that
begin to arise during object presentation when
subjects had no previous knowledge which
action they would be performing (preview
phase). To do this, we ran paired ¢ tests in each
ROI to determine whether the decoding ac-
curacies discriminating between trial types
during the plan and execute phase were sig-
nificantly higher than the preview phase de-
coding accuracies occurring earlier within the
same trials (Fig. 4, two-tailed tests, red aster-
isks). For all parametric tests, we additionally
verified that the mean accuracies across sub-
jects were in accordance with an underlying
normal distribution by performing Lilliefors
tests.

55 55

50+

507 b

45 45

40 40

L-alPS L-SMG L-Motor cortex L-HG

Figure 4.

discriminations and not trial types.

for the eight subjects (see below paragraph for additional details on how
exactly this was accomplished). This procedure was performed for each
ROI and pairwise discrimination separately.

The data plotted in Figure 4 represent the average across each subject’s
mean accuracy, calculated from the cross-validation procedure. Thus,
the empirical statistical significance of this “true” group mean accuracy is
equal to the probability that the true group mean accuracy lies outside a
population of random group mean accuracies (Chen et al., 2011). This
population was generated from 1000 random group accuracies in which
each sample was the average, n = 8, of randomly drawn accuracies from
each subject’s 101 permuted test labels. The percentile of the true group
mean accuracy was then determined from its place in a rank ordering of
the permuted population accuracies [thus, the peak percentile of signif-
icance (p < 0.001) is limited by the number of samples producing the
randomized probability distribution]. The important result of these
randomization tests is that brain areas showing significant decoding
with one-sample parametric ¢ tests (vs 50%) also show significant decod-
ing (at p < 0.001) with empirical nonparametric tests (data not shown).
Thus, the results of this nonparametric randomization test generally pro-
duced significant results with much higher significance than those found
with the parametric t test (a finding also noted by Smith and Muckli,
2010; Chen et al., 2011). This may indicate that the f test group analysis
(as shown in Fig. 4) is a rather conservative estimate of significant decod-
ing accuracies. Near identical results were produced when trial identities
were shuffled before classifier training (data not shown).

Within-trial tests. We also performed a within-trial test for the signif-
icance of our decoding accuracies by examining whether classification
accuracies found during the plan and execute phases of the trial were
significantly higher than the decoding accuracies found during the pre-

(lassifier decoding accuracies for each ROI for the three trial phases (preview, plan, and execute; the middle 3 bars
correspond to accuracies elicited during the plan phase). Error bars represent SEM across subjects. Solid black lines are chance
accuracy level (50%). Black asterisks assess statistical significance with two-tailed ¢ tests across subjects with respect to 50%. Note
that no above-chance decoding is shown during the preview phase, when subjects were unaware which movement they were
going to perform. Red asterisks denote statistical significance with paired two-tailed t tests for decoding accuracies across subjects
for plan and execute phases with respect to within-trial decoding accuracies found during the preceding preview phase (i.e.,
assessing where accuracies are higher than that for simple object visual presentation, when subjects were unaware which action
they would be performing). Importantly, any areas showing significant decoding during the plan phase with respect to 50% also
show significant decoding with respect to the permutation tests (see Materials and Methods) and preview phase. Note that
accurate classification can only be attributed to the spatial response patters of different planned movement types and not the
overall signal amplitudes within each ROI (see Fig. 5). Also note that decoding accuracies are color coded according to pairwise

M GT vs Touch
M GB vs Touch

Results

The voxel patterns within several of the
plan-related ROIs enabled the accurate
decoding of grasp versus touch compari-
sons (GT vs touch and GB vs touch) and,
in some cases, all three comparisons (also
GT vs GB) with respect to 50% chance
(for the corresponding plan-related de-
coding accuracies, see Fig. 4). For in-
stance, pattern classification in all of the
following ROIs successfully decoded
movement plans for the grasp versus
touch conditions (GT vs touch and GB
vs touch): L-SPOC, L-aPCu, L-midIPS,
L-aIPS, L-SMA, and L-PreSMA. Given
that we found overlapping and indistin-
guishable response amplitudes for the
three different movements types in all of these areas for each of
the different time phases (preview, plan, and execute) (Fig. 3),
this decoding result suggests that each of these regions differen-
tially contribute to both grasp and reach planning (instead of
coding one action vs the other) but, importantly, not toward the
planning of the two different grasp movements. Instead, the de-
coding of movement plans for precision grasps on the different
sized objects (as well as differentiation of grasp vs touch actions:
GT vs GB and GT vs touch and GB vs touch) were constrained to
a different set of ROIs: L-pIPS, L-post aIPS, L-motor cortex,
L-precentral gyrus, L-PMd, and L-PMv (Fig. 4). This pattern of
results across these parieto-frontal areas suggest that regions can
be functionally classified according to whether the resident pre-
paratory signals are predictive of upcoming grasp versus reach
movements or, in addition, different precision grasps (for in-
stance, for a color coding of the ROIs depending on the types of
movements they can predict, see Fig. 2). Note that decoding ac-
curacies were based on single-trial classifications and, as such,
demonstrate that the spatial voxel patterns generated during
movement planning (and used for classifier training) were robust
and consistent enough across the full experiment (all eight to
nine experimental runs) to allow for successful prediction.

As anticipated, the three sensory control areas (L-SS cortex,
L-HG, and R-HG) showed no significant decoding during plan-
ning, highlighting the fact that predictive information can be
specifically localized to particular nodes of the parieto-frontal
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network. This is particularly intuitive in 28
. z e
the case of somatosensory cortex: it e 03
o
should not be expected to decode any- 518 & 4

thing until the mechanoreceptors of the
hand are stimulated at movement onset
(Fig. 4). Likewise, L-HG and R-HG are
primary auditory structures and thus are
not expected to carry sustained plan-
related predictive information. Null re-
sults should always be interpreted with
caution in pattern classification [because
they may reflect limitations in the classifi-
cation algorithms rather than the data
(Pereira and Botvinick, 2011)]; neverthe-
less, the absence of decoding during plan- p
ning in these areas is certainly consistent
with expectations.

Importantly, our results also show that
plan-related decoding can only be attrib-
uted to the intention to perform a specific
movement, because we find no significant
decoding above 50% chance in the preced-
ing preview phase (i.e., when movement-
planning information was unavailable).
Moreover, when we additionally tested
whether above-chance decoding during
planning was also significantly higher than the within-trial decoding
found during the preceding preview phase, we found this to be the
case in every region (Fig. 4, red asterisks). Critically, accurate classi-
fication only reflects the spatial response pattern profiles of different
planned movement types and not the overall fMRI signal amplitudes
within each ROL. When we averaged the trial responses across all
voxels and subjects in each ROI (as done in conventional fMRI ROI
analyses), we found no significant differences for the three different
hand movements, in any phase of the trial (preview, plan, or execute)
(see trial time courses in Fig. 3 and an univariate analysis of signal
amplitudes for the same time windows as those extracted for MVPA
in Fig. 5 for confirmation of this fact). As an additional type I error
control for our classification accuracies, we ran the same pattern
discrimination analysis on two noncortical ROIs outside of our
plan-related network in which accurate classification should not be
possible: the right ventricle and outside the brain. As expected, pat-
tern classification revealed no significant decoding in these two areas
for any phase of the trial (Fig. 6).

In addition to using the spatial voxel activity patterns to pre-
dict upcoming hand movements, we performed a voxel weight
analysis for each ROI (for example, see Kamitani and Tong, 2005)
to directly determine whether any structured spatial relationship
of voxel activity according to the action being planned could be
found (data not shown). To do this, for each iteration of the
cross-validation procedure (1002 or 1026 iterations, depending
on the number of runs per subject), a different SVM discriminant
function was refined based on the subset of trials included for
training. We calculated the voxel weights for each function and
then averaged across all iterations to produce a set of mean voxel
weights; this procedure was repeated for each pairwise compari-
son, ROI, and subject (note that the weight of each voxel provides
a measure of its relationship with the class label as learned by the
classifier; in this case, GT, GB, or touch planned actions) (for
details, see Pereira and Botvinick, 2011). Both across and within
subjects for each ROI and pairwise comparison, we found little
structured relationship of voxel weights according to the action
being planned. For instance, no correspondence was found be-
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No fMRI signal amplitude differences found within the parieto-frontal regions used for pattern classification. Re-
sponses are averaged across voxels within each ROl and across subjects (2-volume averaged windows corresponding to preview,
plan, and execute phases). Note that only one significant univariate difference is observed in R-SPOC, a non-decoding region. Error
bars represent SEM across subjects.

tween the GT versus touch and GB versus touch spatial arrange-
ment of voxel weights in each ROI, despite the two grasp actions
being highly similar and the two touch actions being exactly the
same. We did, however, notice that, within individual ROIs, de-
spite the inconsistency of voxel weight patterns across subjects
and across pairwise comparisons, voxels that discriminated one
planned movement versus another tended to cluster. That is,
voxels coding for one particular movement (reflected by the pos-
itive or negative direction of the weight) tended to lie adjacent to
one another within the ROI, although these sub-ROI clusters
were not necessarily consistent between comparisons. Although
caution should be applied to interpreting the magnitude of the
voxel weights assigned by any classifier (Pereira and Botvinick,
2011), this general result is to be expected based on the structure
of the surrounding vasculature and spatial resolution of the
BOLD response (Logothetis and Wandell, 2004), further rein-
forcing the notion that spatial voxel patterns directly reflect un-
derlying physiological changes. Furthermore, and more
generally, the findings from this voxel weight analysis are highly
consistent with expectations from monkey neurophysiology. The
neural organization of macaque parieto-frontal cortex is highly
distributed and multiplexed, with neurons containing different
sensorimotor frames of reference and separate response proper-
ties (e.g., for effector or location) residing in close anatomical
proximity (Snyder et al., 1997; Andersen and Buneo, 2002; Cal-
ton et al., 2002; Andersen and Cui, 2009; Chang and Snyder,
2010). As such, combined with the fact that we are able to accu-
rately predict upcoming hand actions from the trained pattern
classifiers, the primarily unstructured arrangement of voxel
weights appears to have a well-documented anatomical basis.

Additional univariate analyses

Although not shown, we also performed a univariate contrast of
[(GT execute + GB execute) vs 2 * (touch execute)] to define left
alPS, a brain area frequently reported in studies from our labora-
tory, consistently shown to be preferentially involved in grasping
actions (Culham et al., 2003; Gallivan et al., 2009; Cavina-Pratesi
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Figure 6.  (lassifier decoding accuracies in non-brain control regions. A, Non-brain control

ROIs defined in each subject (denoted in green; example subject shown). B, Classifier accuracies
for the three trial phases for the right ventricle (left) and outside the brain ROI (right). Error bars
represent SEM across subjects. Solid lines show chance classification accuracy (50%). Impor-
tantly, no significant differences were found with t tests across subjects with respect to 50%
chance.

etal,, 2010). We localized this region in six of eight subjects (f =
2.4, p < 0.05, in four subjects these clusters did not survive cluster
threshold correction), allowing a direct comparison of its general
anatomical location with the left aIPS regions we defined in single
subjects for pattern analyses according to the contrast of plan >
preview (which instead shows no univariate differences between
grasp vs touch trials during the execute phase) (Fig. 5). We found
a good degree of overlap between the (plan > preview)-defined
left aIPS and the left aIPS defined by a contrast of [(GT execute +
GB execute) vs 2 * (touch execute)], with the latter aIPS being
much smaller in size. For instance, in the six subjects who showed
activity in aIlPS with the [(GT execute + GB execute) vs 2 * (touch
execute)] contrast, we found that this area shared the following
percentage of its total voxels with the larger aIPS area defined by
the plan > preview contrast: subject 1 (13.7%; size of grasps vs
touch defined aIPS, 66 voxels; size of plan > preview defined
alPS, 100 voxels), subject 2 (25%; size of grasps vs touch defined
alPS, 4 voxels; size of plan > preview defined aIPS, 97 voxels),
subject 3 (75%; size of grasps vs touch defined alPS, 4 voxels; size
of plan > preview defined alPS, 62 voxels), subject 4 (33.3%; size
of grasps vs touch defined aIPS, 6 voxels; size of plan > preview
defined aIPS, 59 voxels), subject 5 (33.3%; size of grasps vs touch
defined aIPS, 3 voxels; size of plan > preview defined alPS, 92
voxels), and subject 6 (75%; size of grasps vs touch defined alPS,
4 vogxels; size of plan > preview defined aIPS, 84 voxels). The
discrepancy in the size and signal amplitude differences between
these two regions can be easily explained as a difference of con-
trasts: specifying, a directed search for grasps > touches reveals a
much smaller subset of aIPS voxels, with each individual voxel
showing the specified effect. In comparison, the anatomically
defined aIPS for the more general contrast of plan > preview
(used for pattern analyses here) additionally selects for voxels
outside the range of this smaller voxel subset, and, thus, when
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averaging the response amplitudes across this larger cluster size
(as shown in Figs. 3, 5), we effectively diminish the influence of
the contribution of each individual voxel on the overall ROI sig-
nal. It is worth mentioning that, in addition to finding small left
alPS activations in six subjects with the univariate contrast of
[(GT execute + GB execute) vs 2 * (touch execute)], small clus-
ters of voxels in three other areas (left pIPS, left motor cortex, and
left PMd) were also reliably coactivated; areas revealed here to
decode all three planned movements with pattern classification
analyses. Apart from distinguishing univariate and multivariate
approaches (for additional explanations and examples, see Mur
et al., 2009; Pereira et al., 2009; Raizada and Kriegeskorte, 2010),
these findings, more than anything, highlight the additional plan-
related information contained in voxel spatial patterns.

Discussion

For the first time, fMRI signal decoding is used to unravel predic-
tive neural signals underlying the planning and implementation
of real object-directed hand actions in humans. We show that this
predictive information is not revealed in preparatory response
amplitudes but in the spatial pattern profiles of voxels. This find-
ing may explain why previous characterizations of plan-related
activity in parieto-frontal networks from traditional fMRI sub-
traction methods have been primarily met with mixed degrees of
success. From a theoretical perspective, these results provide new
insights into the different roles played by various regions within
the human parieto-frontal network, results that add to our pre-
vious understanding of the predictive movement information
contained in parietal preparatory responses (Andersen and
Buneo, 2002; Cisek and Kalaska, 2010) and advance previous
notions of motor and premotor contributions to movement
planning (Tanné-Gariépy et al., 2002; Filimon, 2010).

Decoding in parietal cortex
A particularly notable finding from this study is that preparatory
activity along the dorsomedial circuit (L-SPOC, L-aPCu, and
L-midIPS) decodes planned grasp versus touch movements. Al-
though these areas are well known to be involved in the planning
and execution of reaching movements in both humans and mon-
keys (Andersen and Buneo, 2002; Culham et al., 2006; Beurze et
al., 2007), there has been remarkably little evidence to suggest
their particular involvement during grasp planning. To our
knowledge, the only evidence to date in support of this notion
comes from neural recordings in monkeys showing that parieto-
occipital neurons, in addition to being sensitive for reach direc-
tion, are also sensitive to grip/wrist orientation and grip type
(Fattori et al., 2009, 2010). Based on our similar findings in
SPOC, it now seems clear that fMRI pattern analysis in humans
can provide a new tool for capturing neural representations only
previously detected with invasive electrode recordings in mon-
keys. Moreover, our present results advance these previous find-
ings by showing for the first time that motor plans requiring hand
preshaping or precise object-directed interactions extend farther
anteriorly into both the precuneus and midIPS.

The pIPS in the human and macaque monkey appears to serve
a variety of visuomotor and attention-related functions: it is in-
volved in the orienting of visual selection and attention (Szcz-
epanski et al., 2010), encodes the 3D visual features of objects for
hand actions (Sakata et al., 1998), and integrates both target and
effector-specific information for movements (Beurze et al,
2009). pIPS preparatory activity in our task may primarily reflect
the combined coding of all these properties given that differences
in finger precision, hand orientation, and attention to 3D object
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shape is required across the three hand movements. Because atten-
tion is often directed toward a target location before movement,
these particular findings might provide additional evidence for the
integration of visuomotor and attention-related processes within
common brain areas during movement planning (Moore and
Fallah, 2001; Baldauf and Deubel, 2010).

Area alP$ in both the human and monkey shows selective
activity for the execution of grasping movements (Murata et al.,
2000; Culham et al., 2003). Here we show that both aIPS and an
immediately posterior division, post-alPS, are selective for the
planning of grasp versus reach movements. Moreover, aIPS de-
codes between similar grasps on objects of different sizes during
execution, whereas post-aIPS performs such discriminations
during planning. These results are consistent with the object size
tuning expected from macaque anterior intraparietal area (AIP)
(Murata et al., 2000) and provide additional support for a homol-
ogy between AIP and human alPS. Importantly, the distinction
here between the two human divisions of alPS provides evidence
for a gradient of grasp-related function, with an anterior division
perhaps more related to somatosensory feedback (Culham, 2004)
and the online control of grip force (Ehrsson et al., 2003) and a
posterior division more related to visual object features (Culham,
2004; Durand et al., 2007) and object—action associations (Valy-
ear et al., 2007). In fact, these functionally distinct regions may
correspond to anatomically distinct regions defined by cyto-
architechtonics (Choi et al., 2006).

Decoding in motor and premotor cortex

Although motor cortex, traditionally speaking, is predominantly
engaged near the moment of movement execution and pre-
sumed, at least compared with the higher-level cognitive process-
ing observed in parietal and premotor cortex, to be a relatively
lower-level motor output structure [i.e., given its direct connec-
tions with corticospinal neurons (Chouinard and Paus, 2006)
and that much of its activity can be explained in simple muscle
control terms (Todorov, 2000)], such descriptions likely only
partially capture some of its complexity. For instance, micro-
stimulation of motor cortex structures can produce a complex
array of ecologically relevant movements [e.g., grasping, feeding,
etc. (Graziano, 2006)], and recent evidence also suggests that its
outputs reflect whether an action goal is present or not (Cattaneo
et al., 2009). The fact that we can decode each particular hand
movement from the preparatory responses in motor cortex sev-
eral moments before action execution might additionally speak
to a more prominent role in movement planning processes. Al-
ternatively, it might reflect the fact that higher-level signals from
other regions must often pass through motor cortex before going
to spinal cord.

In addition to motor cortex, areas in premotor cortex have
direct anatomical connections (albeit weaker) to spinal cord (Ch-
ouinard and Paus, 2006) but, importantly, are also highly inter-
connected with frontal, parietal, and motor cortical regions
(Andersen and Cui, 2009), making them ideally situated to
receive, influence, and communicate high-level cognitive
movement-related information. Beyond forming a critical node
in the visuomotor planning network, recent evidence proposes
that different premotor areas (e.g., PMd and PMv) may have
dissociable processes. For instance, experiments in both humans
and monkeys appear to suggest that PMv is more involved in
hand preshaping and grip-specific responses (distal components),
whereas PMd is more involved in power-grip or reach-related hand
movements (proximal components) (Tanné-Gariépy et al., 2002;
Davare et al., 2006). These findings are consistent with the sugges-
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tion that PMv and PMd form the anterior components of dissociable
parieto-frontal networks involved in visuomotor control, with the
dorsolateral circuit—involving connections from pIPS to AIP and
then to PMv—thought to be specialized for grasping, and the dor-
somedial circuit—involving connections between V6A/aPCu to
midIPS and then to PMd—thought to be specialized for reaching
(for review, see Rizzolatti and Matelli, 2003; Grafton, 2010). Given
that most of these previous distinctions are based on characteriza-
tions of activity evoked during the movement itself, the accurate
decoding of different planned hand movements shown here pro-
vides a significant additional dimension to such descriptions. In-
deed, although our finding that PMv can discriminate different
upcoming movements with the hand (grasps and reaches) may be
congruent with this parallel-pathway view, the same finding in PMd
(more traditionally implicated in reach planning) seems essentially
incompatible. There are several reasons, however, to suspect that
PMd, as shown here, may also be involved in grasp-related move-
ment planning. For instance, both PMd and PMv contain distinct
hand digit representations (Dum and Strick, 2005), PMd activity is
modulated during object grasping (Raos et al., 2004), by grasp-
relevant object properties (Grol et al., 2007; Verhagen et al., 2008)
and the grip force scaling required (Hendrix et al., 2009), and mul-
tiunit responses in PMd (as well as PMv) are highly predictive of the
current reach and grasp movement (Stark and Abeles, 2007). Fur-
thermore, previous work from our laboratory has found differences
in PMd between grasping and reaching during the execution phase
of the movement (Culham et al., 2003; Cavina-Pratesi et al., 2010).
Our current findings with fMRI in humans add to an emerging view
that simple grasp (distal) versus reach (proximal) descriptions can-
not directly account for the preparatory responses in PMd and PMv
and that significant coordination between the two regions is a re-
quirement for complex object-directed behavior.

Implications

Here we have demonstrated that MVPA can decode surprisingly
subtle distinctions between actions across a larger network of
areas than would be expected from past human neuroimaging
research. Based on nonhuman primate neurophysiology, one
might expect decoding of more pronounced differences between
trials (such as the effector used or the target location acted on).
Here, however, effector and object location remained constant,
yet we found decoding of slight differences in the planning of
actions: in several areas, we were able to discriminate upcoming
grasp versus reach hand movements, and, in a subset of these
areas— even more surprisingly—we could additionally discrim-
inate upcoming precision grasps on objects of subtly different
sizes. These findings suggest that neural implants within several
of the reported predictive regions may eventually enable the re-
construction of highly specific planned actions in movement-
impaired human patient populations. A critical consideration for
cognitive neural prosthetics is the optimal positioning of elec-
trode arrays to capture the appropriate intention-related signals
(Andersen et al., 2010). Here, we highlight a number of promis-
ing candidate regions that can be further explored in nonhuman
primates to not only further assist their development but also
expand our understanding of intention-related signals related to
complex sensorimotor behaviors.
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