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Burst firing is ubiquitous in nervous systems and has been intensively studied in central pattern generators (CPGs). Previous
works have described subtle intraburst spike patterns (IBSPs) that, despite being traditionally neglected for their lack of relation
to CPG motor function, were shown to be cell-type specific and sensitive to CPG connectivity. Here we address this matter by
investigating how a bursting motor neuron expresses information about other neurons in the network. We performed experiments
on the crustacean stomatogastric pyloric CPG, both in control conditions and interacting in real-time with computer model
neurons. The sensitivity of postsynaptic to presynaptic IBSPs was inferred by computing their average mutual information along
each neuron burst. We found that details of input patterns are nonlinearly and inhomogeneously coded through a single synapse
into the fine IBSPs structure of the postsynaptic neuron following burst. In this way, motor neurons are able to use different time
scales to convey two types of information simultaneously: muscle contraction (related to bursting rhythm) and the behavior of
other CPG neurons (at a much shorter timescale by using IBSPs as information carriers). Moreover, the analysis revealed that the
coding mechanism described takes part in a previously unsuspected information pathway from a CPG motor neuron to a nerve that
projects to sensory brain areas, thus providing evidence of the general physiological role of information coding through IBSPs in
the regulation of neuronal firing patterns in remote circuits by the CNS.

Introduction
Burst coding is a phenomenon far from being completely under-
stood, and is just a part of a central issue in neuroscience related
to the understanding of the neural code in a broad sense. Burst
firing is an important excitability property related to motor con-
trol in central pattern generators (CPGs) (Brocard et al., 2010;
Selverston, 2010), to sensory information processing in visual
and auditory centers (Reinagel et al., 1999; Eyherabide et al.,
2008; Sabourin and Pollack, 2009), and is known to enhance
signal detection in thalamocortical circuits (Steriade et al., 1993;
Sherman, 2001).

Many studies have brought burst coding (Eyherabide and
Samengo, 2010) to increased attention, especially for one of its

most prominent features: bursting is an effective way for a system
to code different types of information using (at least) two distinct
timescales, one related to the bursting period and another to the
intraburst spiking timescale (Kayser et al., 2009; Panzeri et al.,
2010).

CPGs, such as those found in the crustacean stomatogastric
nervous system (STNS), have been traditionally used to analyze
how complex dynamics emerge in small circuits (Marder and
Bucher, 2007). Bursting activity of pyloric CPG motor neurons of
the stomatogastric ganglion (STG) is clearly associated with mus-
cle contraction that is insensitive to small changes in intraburst
spike timing (Morris and Hooper, 1997). Despite not expressing
obvious motor information, intraburst spike patterns (IBSPs)
presented by CPG neurons are characteristic of each neuron and
change according to network connectivity (Szücs et al., 2003).
Thus, in addition to motor information expressed in bursting,
CPG neurons also have potential to express other kinds of infor-
mation through IBSPs (Latorre et al., 2006). We investigated this
matter by analyzing experimental data through an information
theoretical tool that we developed specifically to compute infor-
mation expressed within IBSPs.

We performed experiments on a pair of neurons of the blue
crab STG pyloric CPG: the pyloric dilator (PD) neuron, which
belongs to the pacemaker group, and the lateral pyloric (LP)
neuron. These neurons are coupled with mutual inhibition and
operate in antiphase (Selverston et al., 1976). Since the pace-
maker receives the strongest feedback from the circuit through
the inhibitory synapse from LP to PD, we choose to address the
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information flow in that direction. We
found that the PD neuron is able to dy-
namically express information received
from the previous LP burst. This is not
only observed in the intact network, but
also when PD is coupled to an artificial
neuron that mimics LP activity.

Moreover, the information expressed
in the IBSPs is inhomogeneous along the
burst, revealing the ability of a single mo-
tor neuron to nonlinearly encode infor-
mation through a single synapse. We also
found that the informational content of
IBSPs of the LP neuron not only affects
PD dynamics, but also appears in the ac-
tivity of the inferior ventricular nerve
(ivn), a nerve that connects the STNS to
the brain and has been shown to project
into sensory areas of the brain in other
crustacean species (Böhm et al., 2001).
Our findings suggest that this nonlinear
coding capability through spike patterns
(Tiesinga et al., 2008) of motor neurons
could be useful to higher levels of motor control mechanisms.

Materials and Methods
Animals. We experimented mostly on adult blue crabs (Callinectes sapi-
dus) of either sex from the southern coast of São Paulo state. A few
experiments were done with California spiny lobsters (Panulirus inter-
ruptus), also of either sex, at the Institute for Nonlinear Science—Uni-
versity of California San Diego. All procedures followed the ethical
principles suggested by the Society for Neuroscience and were approved
by the Committee on Ethics in Animal Experimentation of the Federal
University of São Carlos.

Preparations. Dissection and preparation procedures were similar to
those traditionally used in spiny lobsters or crab STNS preparations
(Selverston et al., 1976). The STNS was removed from the crab stomach
and pinned in a silicone elastomer-lined (Sylgard 184; Dow Corning)
dish, filled with crustacean normal saline (in mM: 479 NaCl, 13 KCl, 14
CaCl2, 6 MgSO4 4 Na2SO4, 5 HEPES, and 5 TES; pH 7.4).

In addition to the STG, we removed the commissural ganglia (CoGs)
and the oesophageal ganglia (OG), their connecting and motor nerves,
and the ivn nerve, cutting it as close to the brain as possible (Fig. 1 A).
During all experiments, preparations were superfused with saline and
maintained either at 23 � 1°C (crabs) or 16 � 1°C (lobsters).

Electrophysiology. Extracellular signals were recorded from the lateral
ventral motor nerve (lvn) and the ivn with stainless steel electrodes.
Nerve signals were amplified by an A-M 1700 differential AC amplifier
(A-M Systems).

Neurons were impaled with sharp glass microelectrodes (filled with 3
M K-acetate � 0.1 M KCl; resistance �30 M�) and intracellular signals
were amplified using Neuroprobe 1600 amplifiers (A-M Systems).

Intracellular and extracellular signals were digitized at a 10 kHz sample
rate by a Digidata 1322 ADC interface (Molecular Devices) using a ded-
icated acquisition software (Axoscope9; Molecular Devices). Neurons
were identified by their characteristic bursting phase and by comparing
their intracellular spike timings to the impulses recorded from their re-
spective motor nerves.

A simplified version of the pyloric CPG consists of the pacemaker
group, composed of the anterior burster interneuron (the only neuron in
the pyloric CPG known to project to the anterior ganglia), two PD neu-
rons, and the LP neuron, the only motor neuron from which PD receives
presynaptic inputs (Fig. 1 B).

Hybrid circuit experiments. We used the dynamic clamp method to
simulate an inhibitory synaptic connection between a computer model
artificial neuron (AN) and the PD neuron (Fig. 1C). A Digidata 1200B

data acquisition interface (Molecular Devices) was used to implement a
protocol based on previous homemade implementations of the dynamic
clamp (Pinto et al., 2001; Nowotny et al., 2006). In the original dynamic
clamp protocol, a computer simulates synapses between neurons by
monitoring their membrane potentials and generating the currents to be
injected. The currents are calculated from equations modeling the
voltage- and time-dependent synaptic conductances. We modified the
protocol to simultaneously compute the membrane potential of AN
from a mathematical model and simulate a synapse from AN to a biolog-
ical neuron. Such a modification allowed the delivery of inhibitory cur-
rents to the PD neuron according to the behavior of a presynaptic AN
membrane potential computed in real time.

Our AN neuron was either a real-time implementation of a whole-cell
stochastic model of LP (stochastic AN) or simply a sequence of random
spikes (random AN). Both were set to resemble the original LP mean
behavior and its variability, as detailed below.

The stochastic AN is based on a stochastic LP model that was
previously developed to reproduce the irregular behavior of biologi-
cal LP neurons, which is absent in the Hodgkin–Huxley deterministic
model (Carelli et al., 2005). Due to its stochastic nature, the model
naturally presented spike timing variability from burst to burst. In
our implementation of the stochastic LP model in the dynamic clamp,
we were able to tune the stochastic AN to mimic the original LP
variability in each preparation by changing the values of the following
maximum conductances (G_i, range in mS/cm 2 in parenthesis): slow
calcium (3.0 � G_Cas � 4.0), transient calcium (0.9 � G_Cat � 1.1),
and calcium-dependent potassium (3.5 � G_K[Ca] � 4.5). The tuning
of these parameters was done by visual comparison between the mem-
brane potential traces of the original LP and of the stochastic AN. All
other parameters were kept the same as described in the original
reference (Carelli et al., 2005). The dynamic clamp synapse from PD
to the stochastic AN was set to shutdown AN when PD starts a burst.
A typical value of this conductance was G_synPD3AN � 200 mS.

The random AN burst sequences were obtained from statistics during
5–10 min on the original PD/LP bursting behavior at each preparation
regarding time of first and last spikes of LP after PD hyperpolarization
(LPstart/LPend), maximum and minimum number of spikes in a LP burst
(max_spk/min_spk), and minimum interspike interval of LP (min_ISI).
Values of these parameters varied widely among different preparations
according to the pyloric rhythm natural variability. An example of a set is
max_spk � 6, min_spk � 4, min_ISI � 15 ms, LPstart � 50 ms, LPend �
400 ms. Next, we generated a long sequence of bursts in which, for
each burst, we chose from flat random distributions, as follows: n_spk,
the number of spikes of that burst (min_spk � n_spk � max_spk); the time

Figure 1. Experimental procedures. A, Representation of the whole stomatogastric nervous system in the Petri dish: the two
commissural ganglia (CoGs) and the OG are kept in the preparation to provide neuromodulation to the STG. In a set of experiments,
extracellular signals are recorded from the lvn, which contains LP spikes, and from the ivn, which connects the STNS to the brain. B,
Simplified scheme of the intact pyloric CPG. The pacemaker group is composed of two PD motor neurons that are connected to the
anterior burster interneuron (AB) and to each other through electrical synapses. The LP neuron receives inhibitory synapses from
the pacemaker group neurons and is the only presynaptic motor neuron to the pacemaker group. C, An inhibitory current ILP is used
to hyperpolarize LP while PD is connected to the AN, which mimics ISI variability, number of spikes per burst, and burst duration of
the original LP. AN and PD real-time interaction is provided by a dynamic clamp protocol that injects IPSCs from the AN into PD
according to a model of synaptic chemical inhibition. One PD neuron is impaled with two electrodes: one to record the membrane
potential and the other to inject the artificial IPSCs.
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of the first spike, t1, in the range [LPstart, LPstart� (LPend � LPstart)/n_spk];
and the random sequence of spikes, with each ti randomly chosen in the
range [ti � min_ISI, ti � min_ISI � (LPend � ti � min_ISI)/(N_spk �
i)], where 1 � i � (n_spk � 1). This sequence of random bursts was
stored in a file to be used by the dynamic clamp to implement the random
AN in real time. During the experiments with the random AN, the dy-
namic clamp detected each PD hyperpolarization and generated the ar-
tificial membrane potential according to the previously stored sequence
of random bursts.

The synaptic strength from AN to the PD was adjusted in the dynamic
clamp until inhibitory postsynaptic potentials, with amplitude similar to
those produced by the activity of the original LP, were found in the PD
trace [typical values of conductance used were in the range (50 mS �
G_synAN3PD � 200 mS)]. Values of AN spikes per burst ranged from
4 � 1 to 8.0 � 0.8 in different experiments, corresponding to 10 –25% of
variation from burst to burst.

The experiments consisted of impaling the LP neuron with a single
electrode and one PD neuron with two electrodes, one for current injec-
tion and the other for membrane potential recording. We simultaneously
recorded PD and biological LP neurons with no artificial stimulation for
�30 min. After that, we hyperpolarized the biological LP with a current
of ��10 nA, and then connected the AN to the PD neuron by the
artificial dynamic-clamp synapse, recording both PD and AN membrane
potential as well as the current delivered to PD for �30 min.

LP and ivn recordings. In the last set of experiments, we recorded
long time series (�30 min to 2 h) of lvn and ivn extracellular signals
(Fig. 1 A). LP spikes could be easily identified in the lvn trace because
of their large amplitude and characteristic phase. The length of the ivn
nerve is typically �8 mm (from the OG to the brain in blue crabs) and
the extracellular electrode recording ivn activity was positioned �4
mm far from the OG.

Analysis method. Studying the information conveyed by spike trains
requires the identification of patterns that are usually defined before the
analysis in terms of burst occurrences or certain spike/ISI sequences that
can be associated with some specific stimulus features (Butts et al., 2007;
Tiesinga et al., 2008; Eyherabide and Samengo, 2010; Kumar et al., 2010;
Kreuz et al., 2011).

When dealing with sensory systems, an experimenter can readily infer
what stimulus features are important (i.e., certain odor or sound fre-
quency) and, based on previous knowledge of what is being coded, iden-
tify interesting patterns in the response spike train. However, studying
information flow between two bursting neurons requires a different ap-
proach. In this case, both stimulus and response signals are sequences of
spikes occurring in each neurons burst, so there is no simple criterion to
determine which stimulus characteristics are important to be coded by
the response neuron. Since we cannot adopt a relevance criterion, we use
entropy to estimate which stimulus features are most informative.

We developed a method to extract all ISI patterns that occurred in a
large number of sequential pairs of stimulus and response bursts. Then
we computed the average mutual information to estimate how much the
response IBSPs express information about stimulus IBSPs. This way we
infer information flow between neurons while making the least number
of assumptions about the code itself.

Information theory. Information theory presents powerful concepts
that can be applied to the study of neural coding (Shannon, 1948; Borst
and Theunissen, 1999). If a specific event, x, occurs with probability p(x),
the informational content of x (in bits) is defined as

i� x	 � log2

1

p�x	
.

For a series of discrete events, x, belonging to a set X � (x1, x2, …, xn), the
entropy of X, related to the degree of variability of the set, is defined as

H�X	 � � �
x

p�x	log2p�x	.

A neuron is able to express information about stimuli if the variability of
its response is somehow correlated to stimuli changes. The mutual infor-

mation i between a stimulus s belonging to a set S and a response r
belonging to a set R is defined as

i�s,r	 � log2� p�s,r	

p�s	p�r	�,

where p(s,r) is the joint probability of finding the stimulus s and the
response r. The average mutual information (AMI) is a measure of the
mutual information of all possible pairs of (stimulus, response) defined
by S and R:

AMI�S,R	 � �
s,r

p�s,r	i�s,r	.

Algorithm. The two simultaneously recorded membrane potential time
series of the stimulus (LP) and response (PD) neurons were treated using
a simple algorithm that detects spikes (using derivative and amplitude
threshold), providing a spike timing time series for each neuron. Burst
occurrences were identified as any spike sequence between two large ISIs
(�0.2 s). Only stationary series with respect to the mean and standard
deviations of number of spikes per burst, period, and burst duration of
each neuron were considered for further analysis. After finding all bursts,
pairs of stimulus (LP) and response (PD) bursts were collected by im-
posing that the LP burst must precede the PD burst. This constraint
guaranteed a causality relation, allowing us to claim that information
flows from the stimulus to the response neuron, despite the symmetry
(S � R) of AMI measure.

Since the bursting period has some intrinsic variability, it is necessary
to choose a time reference for each pair of stimulus and response bursts.
We set the first PD spike as time reference (Fig. 2 A). The same choice is
often used in other techniques applied to pyloric neurons time series
analysis (Ayers and Selverston, 1984; Canavier and Achuthan, 2010). The
PD neuron is part of the pacemaker group, which strongly inhibits all
other motor neurons, dictating the pyloric rhythm. Thus, the PD burst
onset is important to determine when LP is allowed to fire. One conse-
quence of this choice is that burst-to-burst natural fluctuations of the
interval between the onsets of LP and PD will be reflected in the LP firing
patterns extracted during the analysis. However, this choice is neither
obvious nor unique, and all choices have different consequences. Other
choices of the time reference can be used to explore complementary
properties of information coding in the system. For example, they can be
used to investigate how the interval between the onsets of LP and PD
influences the results. Other parameters such as the start (sLP) and end
(eLP) of LP burst and the end of PD burst (ePD), are obtained from
statistics over the whole series.

A string of zeros is associated with each burst of stimulus/response
(each bit of the string has a time bin b0�
t, where 
t � 0.1 ms is the
resolution of the data acquisition). When a spike is detected in a burst,
the corresponding bit of the string is set to 1. Two pointers i and j are used
to represent the displacement along the duration of the bursts, corre-
sponding to the ith and jth bit of the stimulus and response strings,
respectively.

For a pair of pointers (i, j), two sets of n bits words are extracted: a
stimulus set Si

1 � (W 1
LP,i,1, W 1

LP,i,2, . . . , W 1
LP,i,N) and a response set

Rj
1 � (W 1

PD,j,1, W 1
PD,j,2, . . . , W 1

PD,j,N) (Fig. 2 A), where N is the total
number of bursts in the time series. The word W 1

LP,i,1 corresponds to the
sequence of n bits starting at the ith bit of the LP string of the first pair of
bursts. Analogously, the following word, W 1

LP,i,2, is an n bits word start-
ing at the ith bit of the LP string of the second pair of bursts, and so on.
The same logic applies to words of the response set.

The stimulus entropy H(Si
1) is computed based on the probability of

occurrence of every possible word in the set Si
1. The same is done to

compute the response entropy H(Rj
1) for the pointer j.

The following steps consisted in repeating the procedure of word ex-
traction to calculate entropies for words with larger bins (Fig. 2 A). This is
achieved by using a resampling parameter k, so that the new bin is b �
k
t. The word Wk

LP,i,m is also an n bits word starting at the pointer i of the
LP mth burst string, except that each bit is set to 1 if a spike occurs within
the new bins. This procedure produces stimulus sets Si

k � (Wk
LP,i,1,

Wk
LP,i,2, . . . , Wk

LP,i,N) as function of k. Analogously, for a certain j
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pointer of the response strings, we computed a response set Rjk � (Wk
-

PD,j,1, Wk
PD,j,2, . . . , Wk

PD,j,N) for every possible k value. From the prob-
abilities of each word in the sets Si

k and Rj
k�, we compute stimulus H(Si

k)
and response H(Rj

k’) entropies.
The sets used to calculate AMI were chosen by looking for the value of

k (k�) that correspond to the set Si
k(Rj

k�) with the maximum value of
entropy H(Si

k)[H(Rj
k�)]. Considering K and K�, the values of k and k� that

respectively maximize the entropy of Si
k and Rj

k�, we compute AMI(Si
K,

Rj
K’) based on the joint probabilities of occurrence of all possible pairs of

words (WK
LP,i,m, WK�PD,j,m). AMI was calculated for all possible pointer

values (i, j), leading to a matrix of AMI values (Fig. 2 B).
In the analysis of LP/ivn time series, a slightly modified protocol had to

be used, since the ivn nerve does not present burst activity. First, all LP
and ivn spikes were detected and LP bursts separated. Each pair of stim-
ulus and response consisted in one LP burst and the ivn spikes within the
interval of [�2:2] s with respect to the first spike of each LP burst.

Then we calculated entropies and AMI values following the same steps
previously described. In the AMI matrix obtained for LP/ivn, those re-
gions with positive ivn time index correspond to information flow from
LP to ivn and those with negative ivn time index correspond to informa-
tion flow from ivn to LP.

Analysis. To ease the interpretation of our results, instead of bin size we
used the word duration LLP,i � n.K.
t, which is associated with the
pointer i of the LP string for which K maximizes the entropy. In the
graphs, we used l, which is L normalized by the burst duration. Also,
instead of dealing with pointers, we used an equivalent but more intuitive
timescale: tLP is proportional to i and tPD is proportional to j. In the
results section, t will be referred to as “time index.”

All analyses were made with fixed n � 5, chosen by using a criterion of
information gain over time. For each neuron and for n ranging from 2 to
12 bits, we calculated Hi(n)/Li(n) along the burst. Typically, the values of

n maximizing information gain over time for any index were �5 bits, so
n � 5 seemed to be the best choice (data not shown).

Since data were acquired at 10 kHz, the maximum resolution is 0.1 ms.
The analysis starts at the beginning of the burst (i � 1), with k � 1 (b0 �
0.1 ms). Because this bin is too small, these words will be mostly popu-
lated by zeros and will form a set with low entropy. The value of k is
increased unit by unit until it reaches a maximum value (typically �500)
that corresponds to a word duration equal to the burst duration. In this
case, the bin is too large, resulting in a set of low entropy because the
words will be mostly populated by ones. The values of K, which maximize
the entropy of a neuron in a given position of the burst, are strongly
dependent on the bursting frequency and average spike number/burst in
that specific preparation. In addition to the great variations of the values
obtained for K (50 –200), they typically correspond to word lengths of
�20 –30% of the total burst duration.

In addition to computing entropies and mutual information, we ap-
plied the method of surrogates (Theiler et al., 1992) based on randomly
scrambling all stimuli of the stimulus/response bursts pairs to break the
causal relation within pairs. The AMI of the surrogate set AMIsur(Si

K,
Rj

K’) is computed using joint probabilities of occurrence of all possible
pairs of words (WK

LP,i,R, WK�PD,j,m), where R is an index of the scrambled
order of burst occurrences. Therefore, AMIsur results must be due to
statistical properties of IBSPs across the whole time series, disregarding
causality.

To determine whether the results were statistically significant, we
computed significance as sig � (AMIrel � �AMIsurr�)/�surr, where
�AMIsurr� is the mean and �surr is the standard deviation of AMIsurr

results calculated for 20 surrogate datasets. All results reported in this
manuscript were considered statistically significant if sig �7.

Instead of just computing AMI, we normalized it by the entropy of the
response, which we called relative mutual information AMIrel � AMI/

Figure 2. Entropy maximization and AMI representation. A, Illustration of the mth pair of stimulus (LP) burst followed by the response (PD) burst. Time series are resampled into two binary strings
in which a bit is set to one or zero according to spike occurrence, depicted above LP or below PD neuron trace, respectively. The time reference (thick vertical line) is set at the first spike of the PD burst
for each pair of bursts. The start and end of LP (sLP and eLP, respectively) and the end of PD (ePD) bursts are chosen according to statistics over the whole time series. Five bits words are formed
beginning at the string bit pointed by i or j. The first stimulus word W 1

LP,i,m is composed of the sequence of five bits starting at the i pointer position. The resampling parameter k is used to select words
of larger bins (W 1

LP,i,m, W 2
LP,i,m, . . . , WK

LP,i,m,. . . ); this way, the words represent a larger portion of the burst. Note that for very small k, the words have almost all bits equal to zero and for very large
k, the words have almost all bits equal to one, producing small entropy values. k � K provides the stimulus set Si

K � (WK
LP,i,1, WK

LP,i,2, . . . , WK
LP,i,m, .., WK

LP,i,N) that maximizes entropy. LLP,i (LPD,j)
is the word duration associated with the stimulus (response) set. It measures the portion of the burst that Si

K (or Ri
K�) represents and can vary along the burst. B, Schematic representation of AMI

graphs: AMI(Si
K, Rj

K’) is computed for all possible pairs of pointers (i, j) according to the procedure described in A.
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H( R). It represents how much of the response neuron coding capability
is dedicated to encode information about the stimulus.

Analysis programs were developed using C�� language and ran in
free open source Ubuntu Linux 9.04 (Canonical) based AMD64 3200
MHz PCs or similar.

Results
In intracellular experiments made with the intact STG (Fig.
1A,B), we identified and impaled PD and LP neurons with mi-
croelectrodes and recorded long stationary time series of their
antiphasic activity (Fig. 3A) for further analysis. Recording times
varied from 30 min to 2 h, containing 1200 – 6000 pairs of bursts
depending on pyloric rhythm. In a second set of experiments, we
interfaced the PD neuron to a computer model neuron in real
time while the real LP was maintained hyperpolarized (Fig. 1C).
Finally, we performed experiments recording the extracellular
activity at the lvn and at the ivn that connects the OG to the brain
(Fig. 1A).

PD neuron is sensitive to previous IBSPs of the presynaptic
LP neuron
In this section, we show a detailed analysis of data obtained in a
single typical experiment. First, we calculated the spike distribu-
tion for all pairs of the PD burst preceded by an LP burst using the
first PD spike as time reference (Fig. 3B). The first few spikes of
the PD neuron presented a pattern consisting of a sequence of
ISIs occurring in a reproducible manner with well defined means
and deviations. The latter portion of the distribution shows that
spike times are progressively less precise along the burst. The LP

spike distribution presents no clear pat-
tern because the natural fluctuations of
the beginning of LP burst with respect to
the first spike of the next PD contribute
with additional variability to LP spike
timing.

The use of more sophisticated tools
allows one to distinguish other firing
structures in a neuron burst. Previous
studies revealed interesting patterns
that can be seen in subsequent in-
traburst ISIs return maps of CPG neu-
rons in crayfish (Segundo et al., 1998),
lobster (Szücs et al., 2003), and leech
(Campos et al., 2007), but cannot be
recognized just by looking at spike
distributions.

Some of these return map patterns
have been referred to as ISI signatures of
the neurons (Szücs et al., 2003; Latorre et
al., 2006; Campos et al., 2007) because
they are very similar for the same neuron
type among preparations and distinct for
different neuron types. In our experi-
ments, we found that a blue crab PD neu-
ron ISI signature has a typical structure of
clusters organized in a V shape (Fig. 3C),
which is similar to the one found for the
lobster PD neuron.

The V-shaped pattern of ISI first re-
turn maps could be seen as a consequence
of a well known progressive increase fol-
lowed by a decrease of spiking frequency
along the PD burst (Fig. 3A). Thus, the
first return maps reveal a pattern that can

be visually identified in the PD neuron membrane potential trace.
However, both branches of the V-shaped signature clearly pres-
ent clusters, a feature of the ISI first return map that would not be
identified by simple visual inspection of the intracellular trace.
The clusters’ positions in the signature are sensitive to changes in
the circuit connectivity (Szücs et al., 2003, 2005) and each cluster
seems to have no inner structure. The ISI first return map of the
blue crab LP neuron (data not shown) also resembles the LP
signature found in the lobster (Szücs et al., 2003). It consists of a
single comet-shaped cluster formed by apparently noisy deceler-
ation of ISIs.

If we looked into the apparently noisy clusters of each neuron
signatures, would we find even more structured patterns and could
they be somehow correlated? We developed an information theoret-
ical analysis tool that allowed us to unveil such fine patterns along the
burst and to infer information coding capacity of these neurons.

In information theory (Shannon, 1948; Borst and Theunissen,
1999), the entropy (H) is a measure of variability and determines the
maximum amount of information in a system. In our case, H is a
measure of IBSPs variability along the burst (Fig. 3D,E).

Starting at the same given position within all bursts, which
defines our time index (T), we choose a word of duration L and
divide it into five bins. We build a set of words by assigning a bit
one or zero according to the occurrence of a spike within each bin
and then calculate the entropy of the set. After computing the
entropy for different values of L, we find Lmax as the one that
maximizes the entropy as a function of T (Fig. 2A), ensuring that
IBSPs have the greatest variability. We chose L to be a variable

Figure 3. Time series, spike distributions, ISI signature, and entropies. A, Sample of LP and PD neurons time series presenting
a typical antiphasic periodic bursting behavior. Spike rate of PD neuron is not uniform along the PD burst: from the beginning to the
middle of the burst ISIs get progressively smaller and from the middle to the end of the burst, ISIs get progressively larger. B, Spike
distributions of PD and LP using the first spike of each PD burst as time reference. The first spikes of PD occur in a well defined
sequence that becomes less reliable along the burst. The distribution portion corresponding to the set of words of maximum local
entropy for TPD �0.03 s is shown in red. Because of the time reference chosen, the distribution of LP spikes is much less precise. The
distribution portion corresponding to the set of words of maximum local entropy for TLP ��0.36 s is shown in blue. C, Intraburst
ISI first return map showing clusters organized in a V-shape signature, characteristic of the PD. The clusters apparently present no
inner structured pattern. D, Entropy HLP (in bits, right y-axis) and lLP (dimensionless, left y-axis); word duration is normalized by the
LP burst duration. The blue dashed line is an example where TLP ��0.36 s corresponds to HLP � 4.0 bits and the set of words that
maximizes entropy has a word duration lLP � 0.3 (30% of LP burst). E, Same as D but for PD bursts. The red dashed line indicates
TPD � 0.03 s that corresponds to HPD � 2.8 bits and the set of words that maximized the entropy has a word duration lPD � 0.22
(22% of the PD burst). HLP is approximately four bits along all LP burst while HPD increases from 2.5 to four bits along the PD burst.
The entropies are smooth but not homogeneously distributed along the bursts. l is also smooth for each neuron but there is no
simple relation between H and l.
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rather than a constant, as is usual in infor-
mational analysis, to allow a possibly in-
homogeneous coding of information
along the burst duration.

Both neurons present high entropy
values (HLP, HPD) along their bursts, close
to the maximum possible value of five bits
(Fig. 3D,E). Entropy is clearly inhomoge-
neous throughout the PD burst and there
is also some entropy fluctuation along the
LP neuron burst. The parameter lLP (lPD),
which is Lmax normalized by the burst du-
ration, presents small variations that are
independent of those found in HLP(HPD).
This fact justifies allowing different values
of L along the bursts.

From the values of T and L, it is possible to find which spikes
contribute to entropy maximization. For instance, the word du-
ration maximizing entropy for the time index TPD � 0.03 s is
Lmax,PD � 0.11 s, and the corresponding normalized value is lPD

� 0.22 (Fig. 3E). The spikes that lie within the [0.03:0.14] s inter-
val of the PD histogram (Fig. 3B), where the second, third, and
fourth spikes can be visually discriminated, code up to HPD � 2.8
bits of information in their IBSPs (Fig. 3E).

To infer how much PD and LP IBSPs variabilities are corre-
lated along bursts, we computed their AMI and represented it in
a 2D color map (Fig. 2B). In a typical experiment, AMI (Fig. 4A)
is not uniform along PD and LP bursts, and its maximum value of
0.66 bits (Fig. 4A) corresponds to the first half of LP burst, start-
ing at TLP � �0.36 s (Fig. 3B, blue region), with the beginning of
the PD burst at TPD � 0.03 s (Fig. 3B, red region). The AMI peak
represents a twofold increase with respect to the background val-
ues, in contrast to the entropies that do not present such abrupt
behavior (Fig. 3D,E).

AMI is symmetric with respect to stimulus and response (de
Ruyter van Steveninck et al., 1997; Borst and Theunissen, 1999;
MacKay, 2003). Therefore, it does not imply causality. To over-
come this limitation, our method establishes a precedence rela-
tion of LP burst with respect to the following PD burst.
Additionally, we calculate AMI for surrogate data (Theiler et al.,
1992) where the order of LP bursts is scrambled, thus disrupting
causality. AMI for the surrogate data (AMIsurr) (Fig. 4B) drops to
only 10% of the original values. This means that the conspicuous
AMI values of the original series are due to the causal relation
(stimulus–response) between the LP IBSPs and the subsequent
PD IBSPs. The AMI values are statistically significant (see Mate-
rials and Methods, above) at the peak and surrounding regions.
By normalizing AMI to the response neuron entropy AMIrel �
AMI/HPD, it is possible to infer how much PD is dedicated to
code LP IBSPs. The peak of AMIrel indicates that up to 25% of
PD IBSPs can be predicted once LP IBSPs are known (Fig. 4C).
Hence, AMIrel takes into account fluctuations in response en-
tropy, allowing direct comparison of AMIrel results along PD
burst. Clearly, the position of maximum values of the AMIrel

matrix indicates that information is mainly transmitted from
the first half of the LP burst to the beginning of the PD burst.

The analysis of the information flow in the opposite direc-
tion, from a PD burst to the next LP burst (data not shown),
produced statistically significant peaks in different regions of
the AMI diagram, indicating that the sensitivity to presynaptic
IBSPs is also a property of other bursting neurons and not only
of the PD neuron.

Information flow from LP to PD is ubiquitous
It is widely known that pyloric neurons can present similar be-
havior in different preparations despite variations of their intrin-
sic excitability properties (Marder and Prinz, 2002; Goaillard et
al., 2009). Is it possible for pyloric neurons of different animals to
share a common information coding mechanism?

To address this question, we applied the same analysis to sev-
eral LP/PD time series from experiments with Callinectes sapidus
and Panulirus interruptus. We collected data from several crab
preparations until having approximately a threefold natural vari-
ation of some important pyloric features, such as the pyloric
period (from 0.44 � 0.03 s to 1.3 � 0.7 s) and number of spikes
per burst of the LP neuron (from 4.4 � 0.5 to 15 � 3) and of the
PD neuron (from 7.5 � 0.5 to 20 � 1). Despite such wide differ-
ences in pyloric general behavior, the results of AMIrel were qual-
itatively very similar for different preparations.

Despite some differences in the overall conformation of
AMIrel hot spots along diagrams for different preparations, there
are strong similarities in the position of AMIrel peaks (Fig. 5). To
observe the peak position more accurately, it is necessary to con-
sider what portion of the burst corresponds to the maximum
value of AMIrel. The maximum values of AMIrel can vary in each
case, but for most preparations the position of the global peak is
close to the beginning of both stimulus (LP) and response (PD)
bursts. In Figure 5, above the AMIrel graphs, the upper box rep-
resents the LP burst duration normalized to the pyloric period
and the lower box represents the PD burst duration. The shaded
regions in each pair of boxes represent the burst portions that
correspond to the AMIrel global peak. In this representation, it is
clear that the peak of AMIrel corresponds to the beginning (first
few spikes) of LP and PD bursts in all six cases. From a total 16
time series from different crab (Fig. 5A-D) and lobster (Fig. 5E)
preparations analyzed, 14 (87.5%) have their absolute or local
maximum at the beginning of LP and 13 (81%) have absolute or
local maximum at the beginning of LP with the beginning of PD.
In all cases, AMIrel peaks are statistically significant.

A hybrid circuit where PD is connected to a model neuron
through a single synapse presents similar results to those
obtained for the intact circuit
The results presented so far indicate an information flow mech-
anism shared among different animals, but the question of
whether such information flows through a single synapse or fol-
lows an indirect pathway using other connectivities across the
STNS remains unanswered.

We investigated this matter by doing several experiments in
which the PD neuron interacted with an AN in real time, while
the LP neuron was kept hyperpolarized to a quiescent state. In

Figure 4. Average mutual information. A, Matrix of local AMI values calculated for LP and PD in bits. TLP and TPD (in seconds) are
the time indexes that vary along the neurons bursts. As the first spike of PD is used as time reference, TPD is always positive and TLP

has negative values. There is a strong peak of 0.66 bits at (0.03,�0.36) s. B, AMI from LP to PD using surrogate sets where LP bursts
order was scrambled. The surrogate matrix has a much lower amplitude, meaning that the peak observed in A is due to the causality
relation between LP and PD: the PD neuron changes its IBSPs according to the input previously received from LP. C, AMIrel �
AMI/HPD, which gives how much of the PD informational capacity is dedicated to encode LP stimuli.
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this hybrid circuit, interaction was provided by a single inhibitory
artificial synapse from AN to PD, implemented through a dy-
namic clamp protocol (Pinto et al., 2001; Nowotny et al., 2006).
The AN was implemented either as a random spike generator or
as a conductance-based model with additional stochastic dynam-
ics (Carelli et al., 2005) and it was prepared to mimic the bursting
phase and the average number of spikes/burst found in the orig-
inal LP. The PD hyperpolarization onset determined when AN
was allowed to burst and it was the only influence the biological
circuit had over the AN. This way it was impossible for any CPG
neuron to influence AN�s IBSPs.

The preparations used in the hybrid experiments showed vari-
ability regarding to the pyloric period (from 0.62 � 0.03 s to
0.83 � 0.05 s), number of spikes per burst of the PD neuron
(from 7.4 � 0.7 to 15 � 2), and number of spikes per burst of the
AN that mimicked the original LP (from 4 � 1 to 8.0 � 0.8).
These fluctuations are comparable to those observed in intact

circuit experiments. Moreover, of a maximum value of five bits,
the entropy values obtained along the bursts of both random and
stochastic AN were in the range of [2.2, 4.5] bits in different
experiments, very similar to the range of [2.3, 4.6] bits obtained
for the real LP in intact circuit experiments. Our hybrid circuit
experiments presented AMIrel results qualitatively similar to
those found for the intact circuit: the peak of AMIrel lies at the
beginning of both stimulus and response neuron bursts (Fig. 5F).
From a total of 16 experiments performed, 15 (94%) had an
absolute maximum at the beginning of AN with the beginning of
PD (statistically significant in all cases). Since AN entropy is typ-
ically high and AMIrel also has very prominent values, the PD
neuron IBSPs can reflect IBPSs variations of a presynaptic neu-
ron, even if it they are completely artificially generated.

Information from the LP motor neuron is found in a nerve
with fibers that project into sensory areas of the brain
Could the LP neuron be able to transmit information contained
in its IBSPs to STNS neurons other than the PD neuron? If so,
what could this information be used for?

We addressed this question by looking for information flow
between the LP neuron and the ivn nerve that connects the OG to
the brain (Böhm et al., 2001), using the same analysis technique
for computing AMIrel. Since the ivn signal is tonic, some adjust-
ments were necessary as the original method was designed to
separate the time series in pairs of bursts. Using the first spike of
each LP burst as time reference, we collected all LP bursts with
their corresponding portions of the ivn signal in the range of
[�2:2] s with respect to the local time reference.

We computed AMIrel between LP burst and ivn IBSPs (Fig. 6).
The IBSPs corresponding to ivn spikes occurring before the LP
burst were considered stimuli and the LP IBSPs were taken as

Figure 5. AMIrel results in different preparations for experiments with LP and PD neurons.
A–D, Preparations with the intact circuit of Callinectes sapidus. E, Preparations with the intact
circuit of Panullirus interruptus. F, A hybrid circuit in which the LP neuron was replaced by an AN
(prepared to mimic the original LP) and connected to PD through an artificial inhibitory synapse.
Above each graph is a representation of the LP (upper box) and PD (lower box) average bursting
duration and phases (time reference in the first spike of the PD bursts). The lateral bars represent
SDs. The size of rectangles were normalized to the bursting period (horizontal bar with the same
length for all maps). Bursting frequency (fB in Hertz) and the number of pairs of bursts (NB) used
in the analysis are also indicated in each case. The average number of spikes/burst of each
neuron is indicated inside each rectangle. Gray shading represents the portions of the bursts
that correspond to the maximum peak of AMIrel, and the arrow points the direction of informa-
tion flow from LP to PD. AMIrel peaks correspond to the beginning of both LP and PD bursts in all
cases. Results are similar for different animals (with different LP and PD bursting phases, aver-
age spike numbers, and pyloric frequencies) and even among different species and are repro-
duced in hybrid circuit experiments.

Figure 6. AMIrel between LP neuron and ivn as a function of TLP and Tivn. The upper trace is
the extracellular signal obtained from the lvn; we can clearly see and detect the LP spikes (big
units). The lower trace is the extracellular signal recorded from the ivn. The peak of AMIrel lies at
Tivn �0.6 s. The red shaded rectangles represent portions of the LP and ivn signals that corre-
spond to the AMIrel peak.
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responses. Conversely, if ivn IBSPs happened after LP IBSPs, LP
was considered stimulus signal and ivn the response.

We found that part of the LP IBSPs is actually coded by ivn
active units. The maximum AMIrel region lies at a positive value
of Tivn, meaning information flows from LP to ivn (Fig. 6). The
nerve takes approximately one pyloric cycle to express informa-
tion received from the LP, �0.6 s after the LP burst. Since con-
duction velocity in the ivn is likely to be of the order of meters per
second (for the superior oesophageal nerve, see Moulins et al.,
1979; for the stomatogastric nerve, see Russell and Hartline,
1984), and the STG is only a few centimeters apart fror the ivn
electrode, the nerve conduction velocity does not justify the delay
found. This result suggests that the delay found is related to the
way information is processed/coded, synapse by synapse, from
the LP until it reaches the ivn. The most prominent values of
AMIrel correspond to a region near the beginning of the LP burst
reaching a value of 12.5%. Three of 10 different crab preparations
showed no significant AMIrel values in any region of the graph.
Nevertheless, the other seven cases (70%) presented an informa-
tion flow from LP to ivn, with AMIrel peaks ranging from 2.5% to
28.0% (all statistically significant).

Discussion
The study of complex burst dynamics is improving concomi-
tantly with the development of dedicated analysis tools. For in-
stance, phase response curves (PRCs) (Ayers and Selverston,
1984; Canavier and Achuthan, 2010) have greatly contributed to
our understanding of synchronization in CPGs, considering neu-
rons as periodic oscillators (Oprisan et al., 2004; Galán et al.,
2005; Ermentrout et al., 2007; Schleimer and Stemmler, 2009).
PRC methods target the phase shifts produced in periodic bursts
by interacting neurons, disregarding any oscillations of in-
traburst ISIs. In fact, a few neurons’ burst onsets and termina-
tions dictate the constriction and dilation rhythm of pyloric
muscles, so little attention has been traditionally paid to in-
traburst ISIs due to their lack of influence on motor activity.

Nevertheless, return maps of intraburst ISIs (Segundo et al.,
1998) of CPG neurons reveal fine patterns that are sensitive to
physiologically meaningful alterations of the circuit (Szücs et al.,
2003, 2005; Campos et al., 2007). The shapes in first return maps
were called neural signatures due to their reproducibility, typical
of each neuron type. We found that the blue crab PD neuron has
a very similar signature to the one previously reported for the
lobster PD neuron (Szücs et al., 2003). This previous work de-
scribed changes in the lobster PD neuron signature when the LP
to PD synapse is artificially modified, meaning that PD’s IBSPs
are sensitive to LP activity or connectivity.

In the present work, we thoroughly investigated such rela-
tions, not only considering first-order ISI patterns, but also look-
ing at a wide range of IBSPs using an information theoretical
analysis tool. Although the method was developed to find and
measure informational content of IBSPs, it may also have other
applications due to its power to reveal hidden information in
spike patterns.

In fact, we found that PD is able to express informational
content of LP IBSPs that reaches significant amounts of its coding
capacity. An even more interesting phenomenon is that usually
the region of maximum AMIrel corresponds to the beginning of
both LP and PD bursts. Moreover, this result is robust in different
preparations and even across different species.

Furthermore, wide variations in AMIrel values were clearly not
directly dependent on entropy variations of both neurons. If we

think of the PD neuron as a simple integrator of synaptic inputs
received in the hyperpolarization phase, then the dynamics ob-
served during the depolarization phase should depend linearly on
the inputs. If we observe that both entropies vary smoothly along
the bursts, singular peaks can only be found in the AMIrel graphs
if the input information is coded into output through a nonlinear
transfer function, which is in agreement with the predictions of
previous work (Chacron et al., 2004).

PRC studies have described the effect of inhibitory pulses on
PD phase by using its burst onset as time reference (Oprisan et al.,
2004). The AMIrel results are also consistent with those findings:
the beginning of a LP burst (which usually comprises the first LP
spike) is strongly correlated with the very beginning of the fol-
lowing PD burst. However, our analysis considers not only vari-
ations in PD phase relative to LP onset, but also the detailed spike
timing within LP burst. If the PD neuron were only sensitive to
phase variations, then the expected position of the AMIrel peak
would be at the very beginning of LP, and the peak region should
be quite small, comprising only the first LP spike and not the
subsequent ones. Our results reveal that not only phase, but also
slight variations in ISI of a series of spikes are important to ac-
count for information expressed in the PD following burst.

Our results revealed correlations between LP and PD IBSPs in
the intact circuit. However, they do not rule out the possible
influence of a third element in both neurons activity. To clarify
this issue, we showed that the PD response to an artificial neuron
is quite similar to its response to LP in the intact network. The
model neuron mimics, on average, the LP bursting phase and
duration and its spike distribution is also similar to the original
neuron. This way, spike timing is dictated only by parameters set
before the experiment, based on statistics of the LP behavior.
Therefore, PD’s IBSPs variability in this case can only be affected
by the AN spontaneous IBSPs variability. These results allow us to
claim that the variations of the patterns of AN are reflected in the
IBSPs of PD and that a single synapse is sufficient to account for
the IBSP information coding mechanism found.

In crustacean CPG motor neurons, bursting is associated with
coordination of muscle contraction, but intraburst ISI timescale
cannot be directly associated with motor control. Morris and
Hooper (Morris and Hooper, 1997; Hooper et al., 2007) showed
that the cpv1b muscle contraction, controlled by the PD neuron
through a graded synapse, is determined by spike number in such
a way that small variations in frequency do not affect its contrac-
tion slope. Therefore, muscle contraction must be independent
of information encoded in IBSPs. In contrast, in a different neu-
romuscular system (Zhurov and Brezina, 2006), the accessory
radula closer muscle of Aplysia operates between the fast and slow
regimens, presenting nonlinear contraction responses to differ-
ent spike timings. The authors argue that such properties con-
tribute to maintaining robust muscle contraction patterns in
vivo. Therefore, although it is not the case for the pyloric PD
neuron and cpv1b muscle (Morris and Hooper, 1997), in a sys-
tem with nonlinear muscle properties, the IBSP information cod-
ing shown here could be directly involved in a mechanism of
motor regulation.

If information expressed through IBSPs is not important for
muscle contraction, does it have any relevance to the system at
all? To address this question, we looked for information trans-
mitted to another nerve that connects the STNS to the brain. In
fact, ivn expresses information from LP IBSPs. In this analysis,
the time reference is at the first spike of LP bursts; therefore, all
information contained in IBSPs is only due to intraburst spike
timing variability and not related to phase or pyloric period.
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A previous study in crayfish (Böhm et al., 2001) showed that
there are STNS neurons located within the OGs and CoGs that
send fibers through the ivn. Arborizations of these neurons
spread inside the protocerebrum and other areas, mainly the neu-
ropils of the first and second antennae, leading to communica-
tion with important processing centers in the brain. As the STNS
is known to be quite functionally invariant across species, ivn is a
good candidate for a pathway that delivers information from the
pyloric circuit to sensory areas of the brain. Although it is not
possible to ensure, based only on information theoretical results,
that the information conveyed would actually be used to affect
behavior, it is consistent to assume that the pathway described
makes information about pyloric neurons behavior available to
the brain.

In the pyloric CPG of the STG, the intrinsic bursting capabil-
ities of neurons interplay with synaptic connectivity, providing
an autonomous way to generate output pattern. However, the
CPG is controlled by higher centers and through sensory feed-
back that together regulate the bursting pattern (Selverston et al.,
2000). Although neuromodulators, synapses, and cellular ma-
chinery of the STNS have been extensively studied, there is still no
broad understanding of how the CPG is regulated. We propose
the coding mechanism found as an alternate feedback pathway to
help modulatory control.

Another important finding is that AMIrel results are qualita-
tively similar across different preparations. The pyloric CPG can
present a vast repertoire of rhythms in a single animal and across
different specimens due to intrinsic variability in cellular excit-
ability machinery, synaptic strength, and baseline neuromodula-
tor concentrations. All animals used in our experiments were
collected from their natural habitat, so we may consider the vari-
ability of pyloric activity observed to be representative of the
dynamical repertoire that would be found in the natural environ-
ment (Goaillard et al., 2009). Our results revealed an information
flow phenomenon that is ubiquitous among different prepara-
tions and for different species, despite striking differences in py-
loric period, number of spikes per burst, or phase relations
between LP and PD across different animals.

Recent experimental and theoretical works have shown that
circuits with different cellular and network properties can present
similar activity regarding bursting period and phase, meaning
that they must be functionally equivalent (Marder and Prinz,
2002; Goaillard et al., 2009; Grashow et al., 2010). It has been
proposed that such a remarkable phenomenon can be part of
intricate mechanisms responsible for homeostasis maintenance.
We showed that a subtle phenomenon, such as information
transmission through IBSPs, is conserved despite differences in
network properties, and even in circuits with functionally differ-
ent activities. Thus, it could be considered evidence of another
level of homeostatic regulation. We are currently investigating
what ionic mechanisms might be responsible for the observed
phenomena.

Previous studies have shown that sensory neurons can use
temporal spike patterns and firing rate to code different signals
simultaneously (Bair and Koch, 1996; Panzeri et al., 2010;
Middleton et al., 2011). In the present work, we have shown that
bursting motor neurons, usually seen as workhorses of muscle
contraction, can also perform this task. They are able to use pat-
terns of different time scales to simultaneously encode the con-
spicuous motor information and also information about how
other CPG neurons are working. Furthermore, they may play a
role in the regulation of neuronal firing patterns within the net-
work or by the CNS.

These findings expand the view of the role attributed to CPG
bursting neurons. As it happened with many other phenomena
first observed in the STNS (Clarac and Pearlstein, 2007; Marder
and Bucher, 2007), we hope our findings can lead to new insights
in the investigation of neural coding in invertebrate and verte-
brate nervous systems in the future.
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