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Hippocampal Polysynaptic Computation
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Neural circuitry is a self-organizing arithmetic device that converts input to output and thereby remodels its computational algorithm to
produce more desired output; however, experimental evidence regarding the mechanism by which information is modified and stored
while propagating across polysynaptic networks is sparse. We used functional multineuron calcium imaging to monitor the spike outputs
from thousands of CA1 neurons in response to the stimulation of two independent sites of the dentate gyrus in rat hippocampal networks
ex vivo. Only pyramidal cells were analyzed based on post hoc immunostaining. Some CA1 pyramidal cells were observed to fire action
potentials only when both sites were simultaneously stimulated (AND-like neurons), whereas other neurons fired in response to either
site of stimulation but not to concurrent stimulation (XOR-like neurons). Both types of neurons were interlaced in the same network and
altered their logical operation depending on the timing of paired stimulation. Repetitive paired stimulation for brief periods induced a
persistent reorganization of AND and XOR operators, suggesting a flexibility in parallel distributed processing. We simulated these
network functions in silico and found that synaptic modification of the CA3 recurrent excitation is pivotal to the shaping of logic plasticity.
This work provides new insights into how microscopic synaptic properties are associated with the mesoscopic dynamics of complex

microcircuits.

Introduction

In a simplified framework, the hippocampal network can be
viewed as a hybrid circuit in which CA3 recurrent networks are
intercalated between two relatively simple feedforward networks,
i.e., the dentate gyrus (DG)-to-CA3 and CA3-to-CAl projections
(Amaral and Lavanex, 2007). Using this polysynaptic circuit, the
hippocampus receives neural information from the entorhinal
cortex and sends the calculation result back to the entorhinal
cortex, during which the hippocampal network reorganizes itself
through synaptic plasticity so as to generate more appropriate
outputs. The input-output function and self-rewritability of the
hippocampus are believed to underlie abstract representations,
such as spatial mapping (O’Keefe and Dostrovsky, 1971), object
identification (Quiroga et al., 2005), and learning and memory
(Scoville and Milner, 1957).

Recent in vivo studies have highlighted the hippocampal
formation as a kernel for pattern completion and separation
(Guzowski et al., 2004; Leutgeb and Leutgeb, 2007). Pattern
completion refers to the ability of a network to retrieve the entire
previously stored output pattern from a partially presented input
pattern, whereas pattern separation refers to the ability to differ-
entiate the representations of two similar input patterns into
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more dissimilar patterns. To execute these abilities, the hip-
pocampal network must be able to integrate and segregate neural
information in parallel; however, it remains unclear how these
distinct operation modes are achieved at the microcircuit level.
Functional multineuron calcium imaging (fMCI) is an optical
technique that records the firing responses of large populations of
neurons en masse with cellular resolution by taking advantage of
the fact that action potentials are reflected in transient calcium
elevations in neuronal cell bodies (Takahashi et al., 2007). fMCI
can separate even synchronous action potentials without the
need for spike-sorting algorithms, identify the location of indi-
vidual neurons regardless of their spiking behavior, and indentify
the cell types, including excitatory and inhibitory neurons, via
post hoc histochemical labeling. In the present work, we used
fMCI to capture the spike patterns of CA1 neurons (hippocampal
outputs) in response to the stimulation of two different popula-
tions of DG neurons (hippocampal inputs) so as to examine how
these two distinct inputs are combined and separated during
polysynaptic network processing. In our experimental design, we
considered hippocampal networks to act as a large-scale arithme-
tic operator that associates a given DG-input pattern with a spe-
cific CAl output pattern. We found that the hippocampal
polysynaptic pathway behaves like an integrated circuit unit that
outputs a combination of Boolean AND/XOR-like outputs.

Materials and Methods

Animal experiment ethics. The experiments were performed with the ap-
proval of the animal experiment ethics committee at the University of
Tokyo (approval number 19-43) and according to the University of To-
kyo guidelines for the care and use of laboratory animals.

Slice preparation. Hippocampal slice cultures were prepared from
postnatal day 7 Wistar/ST rats of either sex (SLC) as previously described
(Koyama et al., 2007). Briefly, rats were deeply anesthetized by hypother-
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mia and decapitated. The brains were removed and horizontally cut into
300-um-thick slices using a DTK-1500 microslicer (Dosaka) in aerated,
ice-cold Gey’s balanced salt solution that had been supplemented with
36 mm glucose. The resultant hippocampal slices were placed on
Millicell-CM culture wells (Millipore) or Omnipore membrane filters
(Millipore) on plastic rings, and they were fed with 1 ml of a culture
medium that consisted of 50% minimal essential medium, 25% Hanks’
balanced salt solution, and 25% horse serum (Cell Culture Laboratory)
that had been supplemented with 33 mm glucose and antibiotics consist-
ing of 50 s/ml penicillin G (Meiji) and 100 ug/ml streptomycin (Meiji).
The medium was changed every 3.5 d. The slices were cultivated at 37°C
in a humidified atmosphere at 5% CO, 10—14 d before use.

Two-photon cell count. A cultured slice was fixed overnight in 4%
paraformaldehyde in 0.1 M PB that consisted of the following (in mm): 78
Na,HPO, - 12 H,O and 19 NaH,PO, - 2 H,O. After being washed in
PBS, each slice was permeabilized with 0.3% Triton X-100, and nonspe-
cific antibody binding was blocked with 5% goat serum for 60 min at
room temperature. Then, each slice was treated with a primary mouse
monoclonal antibody against neuronal-specific nuclear protein (NeuN)
(1:400; MAB377, Millipore Bioscience Research Reagents) overnight for
24 h. After being washed with PBS, each slice was stained with secondary
anti-mouse IgG Alexa Fluor 488 (1:400; A11001, Invitrogen) in 2% goat
serum for 24 h at room temperature and then washed with PBS. Neurons
were imaged in PBS using a two-photon laser microscope that was based
on a mode-locked Ti:sapphire laser with a 100 fs pulse width, 80 MHz
pulse frequency, and 920 nm wavelength (Maitai; Spectra Physics) that
had been mounted on an upright microscope (BX61WI; Olympus). The
excitation light was focused using a water-immersion objective [20X,
0.95 numerical aperture (NA), XLUMPIlanFI/IR; Olympus]. The emitted
fluorescence was captured through a 685 nm, short-pass barrier filter
using a photomultiplier tube detector (r7862, Hamamatsu Photonics)
that was controlled by FV10-ASW software, version 1.7 (Olympus). All
images were collected usinga 0.5 wm Z-step. The entire field that covered
the entire slice was divided into 25 partly overlapping microscopic sub-
fields of view. Neurons were identified by eye, manually counted, and
verified twice.

Electrophysiological recording. All electrophysiological and live-
imaging experiments were performed in artificial CSF (aCSF) that con-
sisted of the following (in mm): 127 NaCl, 26 NaHCO;, 1.6 KCl, 1.24
KH,PO,, 1.3 MgSO,, 2.4 CaCl,, and 10 glucose that had been aerated
with 95% O, and 5% CO,. Each slice was mounted in a recording cham-
ber and perfused with aCSF at 25—27°C at a rate of 1.0—2.0 ml/min. This
relatively low temperature was required so as to suppress spontaneous
background activity and stimulus-evoked excessive synchronization,
both of which might mask the true properties of network computation.
CA1 and CA3 pyramidal cells (PCs) were visually identified using infra-
red differential interference contrast microscopy and randomly selected
for patch-clamp recordings. Recordings were obtained using a Multi-
clamp 700B amplifier (Molecular Devices) and a DigiData 1321A digi-
tizer (Molecular Devices). Cell-attached recordings were conducted
under the voltage-clamped configuration (Sasaki et al., 2011). For cell-
attached recording, borosilicate glass pipettes (4—6 M(2) were filled with
aCSF. For voltage-clamped recording, these pipettes were filled with the
following (in mm): 120 K-gluconate, 10 KCI, 10 HEPES, 0.2 EGTA, 10
phosphocreatine, 4 MgATP, and 0.3 NaGTP. Signals were low-pass fil-
tered at 2— 6 kHz, digitized at 20 kHz, and analyzed with pCLAMP soft-
ware, version 10.0 (Molecular Devices).

fMCI. Each slice was transferred into a 35 mm dish that had been filled
with 2 ml of dye solution and incubated for 60 min in a humidified
incubator at 37°C in a 5% CO, atmosphere (Takahashi et al., 2007). The
dye solution consisted of aCSF that contained 0.0005% Oregon Green
488 BAPTA-1 AM (OGBI, Invitrogen), 0.005% Cremophor EL (Sigma-
Aldrich), 0.01% Pluronic F-127 (Invitrogen), 100 um sulfinpyrazone
(Sigma-Aldrich), and 0.8% DMSO. After washing, each slice was incu-
bated in aCSF at 25-27°C for at least 30 min, mounted in a recording
chamber, and perfused with the same aCSF at 25-27°C ata rate of 1.0-2.0
ml/min. The imaging session was started >20 min after the stimulating
electrodes were placed on the DG. Calcium activity was recorded from
the CAl PC layer. Images (653 X 492 pixels, 16-bit resolution) were
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captured at 10-30 frames/s for 3 s per stimulation via a Nipkow
spinning-disk confocal microscope (CSU10; Yokogawa Electric), a
cooled EM-CCD camera (iXon DU887, Andor), an upright microscope
(AxioSkop2, Zeiss), a water-immersion objective (20X, 1.0 NA, Achro-
plan, Zeiss), and image-acquisition software (MetaMorph; Molecular
Devices). Stimulation was applied 500 ms after the onset of each image
acquisition period. The OGBI was excited at 488 nm with an argon-
krypton laser (641-YB-A01; Melles Griot) and visualized with a 507 nm,
long-pass emission filter.

Stimulation protocol. Two bipolar tungsten electrodes were placed in
the infrapyramidal (stim A) and suprapyramidal (stim B) blades of the
DG granular cell layer. To avoid a possible crossing of these stimulated
pathways, three parts in each slice were carefully incised using a small
surgical knife: (1) along the hippocampal fissure, (2) from the upper end
of the hippocampal fissure to the granular cell layer, and (3) vertically
across the DG in the middle of the sites of stim A and stim B (see Fig. 2 A).
This procedure not only made the two stimulation sites independent but
also eliminated the undesired stimulation of the perforant or temporo-
ammonic fibers. Single-pulse stimulation (a rectangular 50 us pulse) was
applied every 40 s in the order of no stimulation (i.e., at an intensity of 0
1A), stim A, a combination of stim A and stim B (stim A&B), and stim B.
The stimulation intensity was set from 50 to 300 A so that ~15% of CA1
neurons fired action potentials. To obtain the mean firing probability,
this stimulation cycle was repeated 10 times over a period of ~27 min (4
stimulation types X 40 s intervals X 10 cycles). The same monitoring
session was repeated from 30 to 57 min after the induction of plasticity.
This long period of imaging (total 54 min) caused no significant photo-
bleaching or photodamage (Sasaki et al., 2007). Plasticity was induced by
pairing protocols in which stim A and stim B were paired at 0 or 10 ms
intervals and repeatedly applied 20 times at 1 Hz.

Cell identification. After the experiments, the slice were fixed overnight in
49% paraformaldehyde and 0.1 M PB. They were permeabilized with 0.3%
Triton X-100, and nonspecific antibody binding was blocked by 5% goat
serum for 60 min at room temperature. The slices were then treated with
primary antibodies against NeuN (mouse, 1:400; MAB377, Millipore Bio-
science Research Reagents) and GABA (rabbit, 1:1000; A2052, Sigma-
Aldrich) overnight at 4°C and with secondary anti-mouse IgG Alexa Fluor
488 (1:400; A11001, Invitrogen) and anti-rabbit IgG Alexa Fluor 594 (1:400;
A11012, Invitrogen) antibodies in 2% goat serum for 6 h at room tempera-
ture. The slices were imaged in PBS with a laser-scanning confocal micro-
scope (MRC-1024; Bio-Rad). Inhibitory neurons were distinguished from
excitatory PCs on the basis of GABA immunoreactivity.

Spike detection. Regions of interest (ROIs, ¢ = ~10 wm) were estab-
lished on neuronal cell bodies by referring to measured OGB1 and NeuN
signals. The time-series fluorescence intensity of each ROI was measured,
and spikes were reconstructed using custom-written software in NIH
Image], MATLAB (The MathWorks), and Microsoft Visual Basic as pre-
viously described (Ikegaya et al., 2004; Sasaki et al., 2008). Briefly, the
fluorescence F, at time t was calculated as:

Ft = Fraw - Fbackground + Fpre_background) (1)

where F,,, is the raw fluorescence intensity in a given ROI at time t,
Fpackground 15 the mean fluorescence intensity in the entire imaged field at
time t, and F,,,._packground 18 the mean fluorescence intensity in the entire
imaged field that was averaged from —500 to 0 ms before stimulation.
This background compensation was required to remove stimulation-
evoked presynaptic and dendritic calcium signals, which occasionally led
to false-positive spikes (Sasaki et al., 2006). The fluorescence change,
AF/F, was calculated as (F, — F,)/F,, where F, is the mean F, over a period
of 500 ms before stimulation. A transient AF/F increase with a >3.5%
amplitude and >10%/s maximal first derivative (At = 0.3 s) was auto-
matically defined as a spike-triggered calcium signal (Sasaki et al., 2007)
and then inspected by eye so as to remove any noise that was detected in
error. Spikes were analyzed using custom-written software with MATLAB,
Microsoft Visual Basic, and Visual Basic for Application Excel (Mi-
crosoft). Because patch-clamp analysis revealed that CA1 PCs fired ac-
tion potentials within 100 ms after DG stimulation, calcium transients
with latencies of <100 ms poststimulation were considered to be
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stimulation-evoked responses. Neurons that did not respond to any pat-
terns of stimulation were excluded from the subsequent analyses because
they might not be embedded in the activated network. To statistically
control trial-to-trial variation in each cell, we considered the firing prob-
ability (P) to be the proportion of trials that evoked spikes in a total of 10
trials. Although the stimulation intensities of stim A and stim B were
adjusted so as to induce ~15% of the CA1 neurons to fire, the mean P
values varied slightly from slice to slice and could not directly be com-
pared among different slices. Thus the firing probability was standard-
ized (Zscore) to minimize the variability and facilitate mass statistics. For
the firing probability (P;) of the cell;, the Z; score was defined as:

Z; = (P; = Py)log, (2)

where P, and o, are the mean and SD of the firing probability of all cells
that were monitored in the slice that included the cell;. After the induc-
tion of plasticity, the Z, score was calculated using P, and o, before the
induction of plasticity.

Data analysis. For each cell, the firing probability P to stim A&B was
statistically expected based on two experimentally obtained firing prob-
abilities in reaction to either stim A and stim B (P, and Pj;) on the
assumption that the activities that were evoked by either stim A and stim
B were independent during propagation. The spontaneous spike rate,
i.e., the firing probability by no stimulation (P,,,,,), was also considered
so as to avoid the additional contributions of background activity to this
calculation, although spontaneous activity was reduced under our exper-
imental conditions as described above (thus, P, .. = 0in most neurons).

spont
The expected firing probability by stim A&B (P,,,,) is:
Pexp = (PA - Psponl) + (PB - Psponl)
- (PA - Pspont)(PB - Pspom) + Pspom' (3)

Based on the bimodal distribution, the number of successful trials that
evoke spikes (1) out of a total of 10 trials conforms to a probability mass
function f(n):

10' n 10—n
'Pexp (1 - Pexp) . (4)

fin) = n!(10 — n)

This expected distribution was compared with the experimentally ob-
served firing probability in reaction to stim A&B (P,.,). When P, fell
within the upper 5% or lower 5% of the distribution of f(n), the neuron
was defined as an AND-like or XOR-like logical operator, respectively.

Repetitive paired stimulation-induced changes in the cell frequency
were estimated as (N,ger — Npetore)/ Nater T Noefore)> Where Ny g, and
N, fier are the numbers of neurons in a given 1 X 1 square bin area in a
two-dimensional space of the standardized firing probabilities Z, and
Zg. This value was spatially Gaussian-filtered (o = 1) and pseudocolored,
with warmer colors indicating increases in frequency (see Figs. 5C,F, 6 B).
To depict the movement of neurons in the Z plot, vectors were calculated
as the sums of all outgoing vectors from the bin areas and all incoming
vectors to the bin areas.

Hippocampal network model. All model neurons obeyed the Izhikev-
ich’s formulation (Izhikevich, 2004):

dvidt = 0.04v> + 5v + 140 — u + I
du/dt = a(bv — u)

syn + Inoise + Istim

V<<

ifv = 30mV,then{ we—u + d,

(5)

where a = 0.02, b = 0.2, c = —65, and d = 8 for excitatory pyramidal
neurons (Ex), whereas a = 0.1, b = 0.2, c = —65, and d = 2 for fast-
spiking inhibitory interneurons (Inh). All neurons received a weak back-
ground input that can be represented as Gaussian white noise of mean 0
and a diffusion constant of 3.0 mV?*/ms. Our hippocampal network
model consisted of CA3 and CAl layers, both of which had 400 excitatory
and 100 inhibitory neurons with a total of ~172,000 AMPA and ~55,000
GABA synapses. Approximately 67% of the excitatory synapses were modi-
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fiable. Excitatory-to-excitatory and excitatory-to-inhibitory inputs were me-
diated by AMPA receptor-mediated glutamatergic synapses, whereas
inhibitory-to-excitatory and inhibitory-to-inhibitory synaptic transmis-
sions were mediated by GABA , receptors. Synaptic currents are described as:
+ s() » (V= Eampacasa)s

Lispacasa = — gampa,casa

(6)

where the gating variables s() of AMPA and GABA, synapses were in-
creased by 1.0 at the arrival of every presynaptic spike and then decayed
following first-order kinetics with a decay constant of 5 ms. The reversal
potentials of synaptic currents were set as E y;pa = 0 mV and Egapp =
—70 mV, and the values of maximum conductance were g, ;pa = [0.250,
0.275, 0.300, 0.325, 0.350] mS and gz, = (0.8, 1.0, 1.2, 1.4, 1.6] mS, as
depicted below in Figure 8, C and D, and gs\ipa = 0.3 mS and g;appa =
1.2 mS, as depicted below in Figure 8 E-I.

The connectivity of CA3-to-CA3 synapses was 50%, and that of the
other projections was 30%. These synaptic connections are not specific to
the types of presynaptic and postsynaptic neurons. CA1-to-CA1 synaptic
connections were randomly wired with a 30% connectivity, and CAlp,-
to-CAly, connections were eliminated because CA1 has very few recur-
rent excitatory connections (Deuchars and Thomson, 1996).

AMPA synapses at CA3 -to-CA3, and CA3 -to-CAl,, projections
were modifiable according to spike timing-dependent plasticity (STDP)
(Bi and Poo, 1998; Abbott and Nelson, 2000; Song et al., 2000):

g8 t ZuaG(AD

A, exp(—At/T,) At =ty —

B e >0
G(Ar) = { —A_exp(—|Af/T_) At <0,

(7)

where At is the relative time between presynaptic and postsynaptic
spikes. The additive STDP was used, and the parameter values were set as
A, =0.05A_=0.0525and 7, = 7_ = 20 ms.

Recent experimental findings have shown that excitatory synapses
onto CAl interneurons are also plastic (Kullmann and Lamsa, 2007).
CA3,-to-CAly,,, excitatory synapses have been shown to have Hebbian
plasticity, in which the conductance of a synapse is modified whenever a
presynaptic spike arrives at the synapse:

g8 T ZumadW, (8)
Aw = a/(1 + exp(—(r(t) — r)/T)) + b, (9)

where a = 0.05, r, = 20, T = 2.0, and b = |u|/2, and the instantaneous
firing rate of a postsynaptic neuron is described as follows:

t

r(t) =

Tmonitnr

f 6(t, - tspike)dt/v Tmonilor = 50 ms.
t— Tmonitor
(10)

CAly,-to-CAly,, excitatory synapses obey anti-Hebbian plasticity,
which is described by the same above equations but witha = —0.05. In all
of the simulations with plastic synapses, the conductance of excitatory
synapses was bounded to a value that was below twice g, ypa-

Two independent external inputs with I; ., = 7.5 mA were applied to
20% of the CA3 pyramidal neurons. These inputs mimicked the DG
stimuli in the experiments. The responses of pretrained and post-trained
networks were tested in four different conditions (no stimulation, stim
A, stim B, and stim A&B), each consisting of 10 trials (200 ms in length).
All plasticity rules were turned off in these test simulations. For each
combination of the four plasticity rules, we trained the network with stim
A followed by stim B at an interval of 10 ms.

To classify neuronal responses, we examined whether each neuron fired
impulses within 100 ms after the applied stimulus and calculated the re-
sponse probability in each stimulus condition as the number of trials with
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abscissa indicates the average C values that
were separately obtained for stim A and stim B.
The simulation software was written in C
and MATLAB and executed on a Quad-core
Xeon 3.2 GHz X 2 CPU personal computer.

4208 4409

Results

The total number of neurons in the
hippocampal slice cultures

To estimate the network size that was

B CA? neuron CA1 neuron studied in this work, we conducted two-
A Y A r photon reconstruction of all of the neurons
DG stim DG stim . . .
#10 5 ] in the hippocampal slice cultures. Neurons
= 1 ; 1 : were identified based on NeuN immunore-
£ 1 | : : : : — — activity, which is a marker that is specific to
0 5 10 15 20 0 5 10 15 20 (ms) the nuclei of neuronal cells (Fig. 1A). We
c selected a typical slice and counted the total
50 number of neurons in each hippocampal
# 5 40 subregion. The slice contained 8168 neu-
S ¢ 30 rons in the DG, 4208 neurons in the CA3,
S5 s 2 and 4409 neurons in the CAI.
8in ‘
T T Tt g oGS nd A
spike latency after DG stimulation (ms) .
The DG granular cell layer was single-
D 014 CcA3 pulse stimulated, and the evoked spikes
c 00 -_l.-.‘.hh— . . were cell-attached recorded from the CA3
e CA1 and CAl PCs (Fig. 1B). The PCs re-
o 0.1+ . R ! .
S 404 u m sponded typically with single spikes and

coefficient of variation

CA1 CA3

very rarely with multiple or burst spikes
(Fig. 1C). On average, the CA3 PCs re-
sponded significantly earlier than the CA1
PCs; the first-spike latency (mean * SD)
was 10.1 * 3.8 ms in the CA3 PCs and
15.1 £ 6.8 ms in the CA1 PCs (Fig. 1D,
p < 0.01, Kolmogorov—Smirnov test). In
both the CA3 and CA1 PCs, the coefficient
of variance (CV) of the spike latency pos-
itively correlated with the mean spike

0 10 20 30
mean first spike latency (ms)

Figure 1.

0.00.2 0.00.2
fraction

Characterization of DG stimulation-evoked action potentials in CA3 and CAT neurons: patch-clamp recording. 4,
NeuN-positive neurons in the DG, CA3, and CA1 regions of a slice were two-photon imaged (left), and the locations (middle) of
individual cells and their numbers (right) were measured. B, Representative cell-attached recordings (top) and spike timings
(bottom) of CA3 and CA1 PCs after single-pulse stimulation of the DG granular cell layer. €, Raster plots of 50 responsive CA3 and
CA1 neurons, each of which involves spikes in response to 10 trials of DG stimulation. Neurons were sorted via the mean first-spike
latency. The distributions of the spike latency of the CA3 and CA1 neurons are significantly different (p << 0.01, two sample

T latency (Fig. 1 D), and the correlation coef-
ficient R was 0.33 and 0.53, respectively. Al-
though some neurons had CVs of <0.05
even at a mean spike latency of >15 ms,
these positive correlations imply that, as a
whole, spike timings become less accurate
during polysynaptic processing, consistent
with a previous study using organotypic cul-
tures of neocortical slices (Buonomano,
2003).

Kolmogorov—Smirnov test, N = 459 CA3 and 439 CA1 spikes that occurred at latencies ranging from 1 to 100 ms after DG

stimulation). D, The CV of the first-spike latency of each individual neuron was plotted against the mean first-spike latency. Only
neurons that showed spikes in more than two of 10 trials of stimulation are shown. Each dot represents a single neuron. The
depicted lines represent the best linear fit (CA3, r = 0.33, p = 0.02; CA1, r = 0.53, p < 0.001). The top and right histograms

indicate the mean spike latency and CV distributions, respectively.

spike responses divided by the total number of trials. Next, the logic opera-
tion of each neuron was determined from its firing probability according to
the same criteria that were used in experiments. The index of the plasticity-
induced activity change was defined as:

- Ppreix)/(PposLx + Ppreix)) (1 1)
where P, and P

re_x bost_x correspond to the firing probabilities of individ-
ual neurons in the condition X = [stim A, stim B, stim A&B] before and
after the training session, respectively. In Figure 9C (see below), the

Cx = (P post_x

Logical operator-like CA1 output

Cultured slices were loaded with the fluo-
rescent calcium indicator OGB1. DG
stimulation-evoked calcium responses
were imaged from 94 = 36 CAl neurons
per slice (mean = SD, 45-209 neurons, N = 58 slices) using fMCI
(Fig. 2A). Two independent sites in the DG were alternatively
(stim A or stim B) or concurrently (stim A&B) stimulated at an
interval of 40 s. Cell-attached recordings revealed that transient
calcium increases in the neuronal somata reflected action poten-
tials (Fig. 2 B). Consistent with this, the calcium responses of the
CA1 neurons followed an all-or-none fashion. Thus, neurons
that did or did not emit spikes were firmly identifiable (Fig. 2C).
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—_— s
firing probability

cell # 183

Spike responses of CA1 neuron populations to combinatorial DG inputs: calcium imaging. A, Experimental design to examine the activity flow through hippocampal polysynaptic

networks. Two stimulating electrodes were placed on the infrapyramidal (stim A) and suprapyramidal blades (stim B) of the DG granule cell layer. An incision was made along the thick black lines
to anatomically isolate the two stimulation sites. Stim A, stim B, and simultaneous stim A&B were given 10 times each, and the spikes of CAT neurons were monitored using fMCl. B, Simultaneous
cell-attached recording and calcium imaging revealed that spikes elicited transient calcium elevations in the soma. €, Representative spike responses of 67 CA1 neurons to a single stim A. Calcium
traces were superimposed onto an 0GB fluorescence image (top). Neurons that fired are indicated by red circles in the bottom cell map. D, Slices were post hocimmunolabeled with NeuN and GABA,
and only PCs were analyzed. E, Firing patterns of 183 CA1PCsin aslice in response to stim A (top), stim B (middle), and stim A&B (bottom) (10 trials each). The mean firing probability across 10 trials
(mean) is shown in the bottom rastergrams and the right cell map in a pseudocolor scale.

The stimulation intensity was set to evoke
action potentials in ~15% of the CAl
neurons. After imaging, the slices were
processed for NeuN and GABA immuno-
staining (Fig. 2 D), and PCs were selected
for data analysis. Inhibitory interneurons
were not analyzed in this study because the
sample size was not large enough for popu-
lation statistics.

Typical responses to stim A, stim B,
and stim A&B in a slice culture are shown
in Figure 2 E. There was trial-to-trial vari-
ation in spike responses; hence, we calcu-
lated the mean firing probability (P)
across 10 trials for individual cells. To
pool data from different slices, we nor-
malized P to the Z score, which was de-
fined as Z = (P — P,y)/oy, where P and
o, are the mean and SD of the mean fir-
ing probability of all of the neurons in the
same slice. The Z value has mean = 0 and
SD = 1, and higher firing probabilities
score higher Z values. The Z scores in re-
sponse to stim A, stim B, and stim A&B
(Zns Zy, and Z 45, respectively) of 3466
neurons from 44 slices were plotted in
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Figure3. Logical connective-like responses of CAT pyramidal cells to combinatorial DG inputs. A, Standardized firing probability
(Zscore) is plotted in two-dimensional spaces of stim A versus stim B (left), stim A versus stim A&B (middle), and stim B versus stim
A&B (right). The size of each dot indicates the number of neurons that fell into the corresponding data point. The top and right
histograms indicate the distributions of the Z scores. B, The frequency of logical operator-like neurons. ¢, AND/XOR neurons are
shown in a three-dimensional Z-score space of stim A, stim B, and stim A&B. D, Spatial distribution of AND/XOR neurons. CA1 PCs
are superimposed into a single cell map after spatial adjustment by rotation orinversion of the CA1 PClayer so that the left-to-right
direction represents the direction from the CA3 region to the subiculum, and top toward the stratum oriens. Data were obtained
from 3466 neurons in 44 slices.



Kimura et al. e Logic Plasticity

J. Neurosci., September 14,2011 - 31(37):13168 —13179 « 13173

A ) stim A&B .
stim A 30ms 10ms 5ms Oms -5ms -10ms -30ms stim B
Al | l | | l l |
B stim A 30 ms 10 ms 5ms 0Oms -5ms -10 ms -30 ms stim B
s oNE D 2% © b Nt € v\l & oV ¥, A 2B LW 2V
ST ST S04 S0 &M &L &3 &R ST
L] L] e 100
0 1 - D 0y, . won ° um
firing probabilit s R so iy ® 2 222G 3e 2 2 B ;2 @ AND
sty Smobd S SN GRS S S S L
15 Q< g x
c XOR Hes 5 = 2
£ 10 T 273
& 2 c 3 5
£ 5 AND oL Ss
S x = (S
B 2 0 Z®
otr————— X8 . ; : : SE
30 10 5 0 -5 -10 -30 R+ 30 10 5 0 o=

timing of A =B stim (ms)

Figure 4.

time difference between stim A and B (ms)

Spike timing-dependent switch of logical operation. A, Schematic of combinatorial DG stimuli with different timings (At). Stim A and stim B were applied in pairs using time lags of

—30,—10,5,0, —5,10,and 30 ms. B, Representative cell maps of the firing probability (top) and AND/XOR neurons (bottom) in 113 CA1 PCs of a slice in response to paired DG stimuli. , The ratios
of AND/XOR neurons to the total 1182 neurons that were obtained from 14 slices as a function of the time interval between stim A and stim B. D, The ratio of the number of neurons that were XOR
at At = *=30msand AND at At = =10, =5, and 0 ms to the total number of XOR neurons at At = 30 ms (purple) and the ratio of the number of neurons that were AND at At = 0 ms and
XOR at At = 30, =10, and =5 ms to the total number of AND neurons at At = 0 ms (dark blue) are plotted.

two-dimensional spaces of Z, versus Zg, Z, versus Z,qp, and Zy
versus Z,gqp (Fig. 3A). These plots indicate a vast diversity of neu-
ronal responses. For example, some neurons favored stim A over
stim B, whereas other neurons exhibited the opposite preference.
Some neurons responded more or less strongly to stim A&B com-
pared with either stim A or stim B.

This diversity motivated us to classify the neuronal response
profiles. Analogous to Boolean calculus, we defined logical
conjunction-like responses (AND) and exclusive disjunction-
like responses of individual neurons (XOR) as whether the firing
probability to stim A&B (P,gg) is statistically larger or smaller
than the combinatorial probability that was expected from P,
and Py on the assumption of the independence of stim A and stim
B (see Materials and Methods). Neurons that exhibit AND-like
behaviors, which are termed AND neurons herein, may work to
combine two DG inputs, whereas XOR neurons may function so
as to avoid cross talk between two inputs. Of the 3466 neurons,
22.6% were AND neurons and 5.1% were XOR neurons (Fig.
3B,C). To compare these frequencies to statistical chance, we
generated 1000 surrogates, in which spikes were randomly shuf-
fled within a rastergram of stim A, stim B, and stim A&B each.
The original datasets involved both AND and XOR neurons sig-
nificantly more often than any of the 1000 surrogates (i.e., p <
0.001), indicating that the existence of AND/XOR neurons can-
not be explained by mere chance. Interestingly, AND and XOR
neurons coexisted in 37 (84%) of the 44 test slices, suggesting
parallel integration and segregation. The distributions of AND/
XOR neurons in the CA1 PC layer did not show a specific spatial
pattern (Fig. 3D).

Of the remaining 72.3% neurons (non-AND/XOR type), 6.4%
had Z, > 1and Z; > 1 (OR-like responses), 9.1% neurons had Z, >
land Z =< 1 (stim A-biased responses), and 9.4% neurons had Z, =
1 and Z; > 1 (stim B-biased responses) (Fig. 3B).

In the above experiments, stim A&B was presented as a simul-
taneous (zero-time lag) application of stim A and stim B. To

examine how the relative timing of stim A and stim B affects the
observed AND/XOR responses, we applied stim A and stim B at
time differences of —30, —10, —5, 0, 5, 10, and 30 ms (Fig. 4A).
Different stimulation timings produced different firing probabil-
ities and AND/XOR responses from individual neurons (Fig.
4 B). The overall tendency of the AND/XOR ratios was obtained
from 1182 neurons in 14 slices (Fig. 4C). Larger time differences
resulted in a decrease in AND neurons and an increase in XOR
neurons, although the total fraction of neurons exhibiting these
logical properties was consistently ~20%, regardless of the stim-
ulation timings. For behaviors of individual neurons, a fraction
of AND neurons at some stimulation timing exhibited XOR re-
sponses at other stimulation timings, and vice versa (Fig. 4D),
indicating that their logical properties are switchable depending
on the relative timing of the two inputs. We did not examine
larger time differences, because our definition of AND/XOR re-
sponses was applicable to only spikes within a latency of 100 ms
after stimulation; however, we expect that the interaction be-
tween stim A and stim B disappears for longer lags, because net-
work responses to the stimulation are transient and typically
terminate within 30 ms (Fig. 1C,D).

The long-lasting plasticity of logical operations

To examine whether logical operator-like neurons can be remod-
eled in a use-dependent manner, we applied a repetitive paired
stimulation of stim A and stim B (20 paired stimuli at 1 Hz). First,
we used a 10 ms time lag between stim A and stim B that was
analogous to STDP (Markram et al., 1997; Bi and Poo, 1998,
1999) and remonitored the responses from the same neuron pop-
ulations after 30— 60 min. The 0 ms lag was used as stim A&B. The
repetitive paired stimulation induced a substantial change in the
firing responses (Fig. 5A; N = 680 neurons from 11 slices). The Z
scores before and after the pairings are shown in Figure 5B, and
their average changes are illustrated in Figure 5C. The Z-score
dynamics appeared to exhibit three streams: (1) more responsive
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to stim A only (rightward movement, Fig.
5C), (2) more responsive to stim B only
(upward movement), and (3) more re-
sponsive to both stim A and stim B (diag-
onal right-up movement). Interestingly,
this reorganization accompanied a decrease
in the number of AND neurons and an in-
crease in the number of XOR neurons (Fig.
5D). The changes between logical operators
were evaluated using the y? test under the
null hypothesis of independence between
the prior and posterior distributions (Fig.
5E). Significant movement was found from
AND neurons to XOR neurons, indicating
that a portion of AND neurons switched
their response properties to XOR. No
remodeling occurred in the control ex-
periments without a repetitive paired
stimulation (Fig. 5F, N = 1604 neurons
from 15 slices).

We next applied a repetitive paired
stimulation of stim A and stim B with a
time lag of 0 ms (20 stimuli at 1 Hz).
This pairing protocol also induced a
global change in firing responses (Fig.
6A); however, unlike the case of the 10-
ms-lag pairing, the Z-score dynamics
showed only diagonal movement to-
ward the upper right (Fig. 6B). This
reorganization was accompanied by a
decrease in the number of AND neurons
and an increase in the number of XOR
neurons (Fig. 6C), although we detected
no significant switching between logical
operators (Fig. 6 D).

This apparent inconsistency suggests
that our parameters may not completely
capture what occurred during the remod-
eling. We thus introduced a new index,
similarity, which is defined as the product
of the Z scores of a given neuron in re-
sponse to stim A and stim B, i.e., Z, X Z.
The similarity index is a more positive
value when the responsiveness to stim A
and stim B is similar, regardless of
whether each is weaker (Z < 0) or stron-
ger (Z > 0) than the average. A respon-
siveness is more negative when a neuron
responds strongly to one stimulation
(Z > 0) and weakly to the other (Z < 0).
The similarity index distributions were
compared before and after repetitive
paired stimulation (Fig. 7). The similar-
ity index distribution was significantly
changed in slices that received pairings
at time lags of 10 ms (Fig. 7A) and 0 ms
(Fig. 7B) but not in control slices that
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did not receive pairings (Fig. 7C, Kolmogorov—Smirnov test).
The 10 ms and 0 ms pairings exerted different effects, partic-
ularly on negative values of the similarity index. The 0 ms
pairing led to a unidirectional shift in the distribution toward
an increase in similarity, whereas the 10 ms pairing led to a
bidirectional shift with an increase and decrease in similarity.

Implications of the hippocampal network models

Recent experimental studies have revealed that hippocampal lo-
cal circuits display a variety of Hebbian or anti-Hebbian synaptic
plasticities (Kullmann and Lamsa, 2007). We constructed a com-
putational model of hippocampal networks to test whether these
plasticity rules can account for the observed changes in the neu-
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ronal responses (see Materials and Methods). The model con-
sisted of the CA3 and CA1 layers. Each layer consisted of 400
excitatory and 100 inhibitory neurons (Fig. 8 A). Stim A and stim
B were set to exclusively activate 20% of the CA3y, neurons.

A single neuron in this model does not necessarily represent a
single biological neuron, but rather, corresponds to a single cell
assembly, which is a group of neurons that show similar spiking
behaviors. Likewise, a single synaptic weight in the model is not
necessarily equivalent to a real unitary synaptic weight. There-
fore, we first searched for AMPA ( gavpa) and GABA synapse
( goapa) weights that were suitable for replicating the experimen-
tal data. For this purpose, we referred to the fractions of AND and
XOR neurons at various time differences between stim A and
stim B (Fig. 4C). The strength of all of the synapses of the same
type (AMPA or GABA) was set to be an identical value, and AND
and XOR neurons were classified according to the same statis-
tical criteria that were used in the experiments. The parameter
fitting was separately conducted for AND neurons and XOR
neurons, and the parameter values that were most consistent
with the experimental results were identified (Fig. 8C,D). The
interneurons were crucial for inhibiting runaway excitation of
the CA3 recurrent network. Specifically, they were responsible
for suppressing the responses to stim A&B and thereby realiz-
ing XOR-like operation. In contrast, the two stimuli only
weakly recruited inhibitory neurons, in particular, when the
two stimuli were presented alone or with a large time differ-
ence. As a result, the best fitting was given at g,\;pa = 0.3 mS
and ggapa = 1.2 mS (Fig. 8D, E).
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We next analyzed synaptic connectivity in this optimized
model network. AND neurons received significantly more nu-
merous projections from the directly stimulated ensembles of
CA3y, neurons than XOR neurons (Fig. 8 F); however, projec-
tions from the other nonstimulated CA3, neurons were not dif-
ferent between AND and XOR neurons (Fig. 8G). The inhibitory
inputs from CA3,,,;, (Fig. 8 H) and CAl,,;, neurons (Fig. 8 I) were
stronger to XOR neurons than to AND neurons. Thus, the AND/
XOR-like operations were identified to emerge, at least in part,
from structurally defined neural connectivity.

Our experiments revealed that the repeated coapplication of
stim A and stim B at a time difference of 10 ms induced a decrease
in the number of AND neurons and an increase in the number of
XOR neurons. We examined whether similar changes were rep-
licable in our network model. Synaptic plasticity was now intro-
duced at excitatory synapses. STDP was incorporated into
CA3p,-to-CA3g, and CA3p,-to-CAlyg, synapses, and Hebbian
and anti-Hebbian synaptic plasticity was incorporated into
CA3p,-t0-CAly,, and CAlg,-to-CAl,,, synapses, respectively
(Fig. 9A; see Materials and Methods). For these four excitatory
synaptic pathways, we tested all 15 (= 2*-1, because all-off was
not considered) possible on and off combinations for each syn-
aptic plasticity rule. During these tests, we found that CA3,-to-
CAlg, STDP and CA3 -to-CAl,,;, Hebbian plasticity had little
effect; whether or not these two plasticity rules were embedded
did not significantly affect AND/XOR remodeling (Fig. 9B).
Therefore, we separated our models into four (= 22) types (type
I-IV), depending on whether two other plasticity rules were in-
corporated, that is, type I: CA3p,-to-CA3, STDP and CAl,-to-
CAly,, anti-Hebbian, type II: CA3p,-to-CA3g, STDP only, type
III: none, and type IV: CAlg,-to-CAl,,;, anti-Hebbian only (Fig.
9A table). As shown in Figure 9B, our model best replicated the
experimentally observed changes in the AND/XOR responses
when STDP was on and anti-Hebbian was off (type II). This result
is consistent with an experimental study reporting a lack of plas-
ticity at excitatory synapses onto inhibitory postsynaptic neurons
in cultured hippocampal neurons (Bi and Poo, 1998). The model
that concurrently used STDP and anti-Hebbian (type I) was also
consistent with the experimental observations, although the
quantitative shift toward more XOR neurons exceeded the exper-
imental data; however, we cannot exclude the type I model be-
cause the magnitude of the response shift may depend on the
choice of the parameter values for modeling the synaptic plasticity.
In contrast, the models that did not include STDP and anti-Hebbian
(type II) did not show a significant shift. Finally, when STDP was
offand anti-Hebbian was on (type IV), the responses shifted in
the opposite direction so as to favor more AND neurons.

Because the above comprehensive analyses consistently un-
derlined the importance of synaptic modification in CA3p,-to-
CA3,, recurrent connectivity rather than a CAl read-out from
the CA3 neuron layer, we sought to compare the responsiveness
of CA3g, neurons to stim A, stim B, or stim A&B before and after
the induction of plasticity (Fig. 9C). Although the responses of
the directly stimulated CA3, neuron groups were not largely
changed as a whole, the majority of the nonstimulated CA3,
neurons became more strongly responsive than those previ-
ously to a single stimulus (stim A or stim B) without altering
the responsiveness to stim A&B. Thus, the increase in XOR
CALl neurons seems to be primarily attributable to an acquired
responsiveness of nonstimulated CA3, neurons to either stim
A or stim B.
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Experimental reconfirmation of the simulation results

Finally, we attempted an experimental confirmation for plastic
changes in CA3 responses, which were predicted from our com-
putational model. Specifically, if our model is correct, the intra-
cellular responses in CA3 neurons to stim A or stim B must be
enhanced after the induction of plasticity, whereas the responses
to stim A&B was not altered. To confirm this prediction, we
returned to electrophysiological recordings (Fig. 10A). CA3 PCs
were voltage-clamped at —70 mV to monitor EPSCs evoked by
stim A, stim B, and stim A&B (0 ms interval). To evaluate the total
synaptic charge that involves the monosynaptic and polysynaptic
components during network activation, we calculated the area
under the EPSC curve. As expected by our simulation, we found

a significant increase in the synaptic charge to either stim A or
stim B (p = 0.038, t4) = 2.437, paired t test), but not to stim A&B
(p =0.244, 1, = 1.367), after application of 20 pairs of stim A&B
at a time difference of 10 ms (Fig. 10B, C).

Discussion

We have demonstrated that hippocampal polysynaptic networks
respond to combinatorial inputs with logical operator-like out-
puts, and that this computation is subject to use-dependent plas-
ticity. This gross-scale flexibility may represent a circuit basis for
parallel distributed processing through which learning embodies
pattern completion and separation.
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Plasticity rule-dependent AND/XOR reorganization: numerical simulation. A, Schematicillustration of the synaptic plasticity rule that was incorporated into our hippocampal network
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from 6 CA3 PCs in 6 slices. Single stimulation (stim A or stim B). Paired ¢ test.

AND-like and XOR-like logical

operators

The neuron is a nonlinear operator that acts as an integrate-and-
fire unit. As it has a threshold that must be reached for it to emit
an action potential, stronger synaptic inputs are more apt to
make the neuron fire. Thus, a neuron typically behaves as an
AND-like unit. Nonetheless, we found a significant fraction of
XOR-like neurons. XOR is one of the fundamental connectives in
the logic circuit and may contribute to the segregation of infor-
mation into dissimilar patterns by routing it to different path-
ways; however, the so-called “XOR problem” exists in
computational neuroscience, that is, an XOR function cannot
be implemented by the perceptron, which is an artificial neural
network that has no hidden layer (Rosenblatt, 1957). In general,
the XOR operator requires a hidden layer, unlike AND/OR
operators, which are possible via two simple layers that consist
of an input layer and an output layer. In the hippocampus, the

Repetitive paired stimulation-induced alteration in CA3 responses. A, Experimental design. A CA3 PC was voltage-
clamped at —70 mV, and the area under the curve (AUC) of an EPSC event was measured as a synaptic charge during network
activation. Plasticity was induced by 20 pairs of stim A and stim B at an interval of 10 ms. B, Representative traces of EPSCs evoked
by stim A, stim B, and stim A&B (0 msinterval) before (blue) and after (red) the plasticity induction. €, Summary of data obtained

CA3 layer may work as a hidden layer to
realize XOR-like operations. Consistent
with this idea, our previous study using
monosynaptic stimulation of Schaffer
collaterals demonstrated that CA1 neu-
rons responded simply to more syn-
chronous inputs with higher firing
probabilities, which is a sign of AND-
like operation (Sasaki et al., 2006). Vo-
gels and Abbott (2005) have detected
XOR-like gating in the ongoing activity
of a large-scale recurrent network
model by specifically searching for a cir-
cuit motif in which two input layers
drive excitatory and inhibitory neurons,
with inhibitory neurons synapsing onto
excitatory neurons in the hidden layer.
This study emphasizes the role of inhib-
itory interneurons in creating XOR
gates. Our computational model indi-
cated that AND-like CAl neurons
tended to be more directly activated (i.e., bisynaptically) by
DG inputs than XOR neurons, whereas XOR neurons received
more inhibitory inputs via feedforward and feedback path-
ways. These inhibitory inputs may prevent the firing of XOR
neurons when stim A and stim B were coapplied.

stimA&B
4

stimA&B

P=024

.

=—1

before after

Simple recurrent networks

Previous studies on synaptic modifications have primarily fo-
cused on synapses that are made by a stimulated neuron. The
present work was oriented toward more mesoscopic behaviors
that are exhibited by neuron populations and designed to fo-
cus on the input-output relationship in hippocampal polysyn-
aptic pathways that have been intercalated by a hidden CA3
layer. Because the CA3 layer is an auto-associative circuit, our
preparations conceptually resemble artificial “simple recurrent
networks” (McClelland and Rumelhart, 1989), such as an Elman-
type network, a three-layer network in which a middle (hidden)
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recurrent layer is inserted between an input layer and output
layer in a feedforward manner (Elman, 1990; Maass et al., 2002).
The performance and capability of the Elman network has been
exclusively addressed in silico. Thus, our work may be the first to
provide biological evidence for this type of network.

We discovered that hippocampal circuits can discriminate
the time difference between two inputs with a temporal reso-
lution on the order of milliseconds by altering AND/XOR
ratios. This is consistent with the ability of the Elman network
to respond to a specific input sequence with a particular spa-
tiotemporal output pattern. Hippocampal networks responded
to two inputs with larger time differences with more XOR
outputs, suggesting that temporally separated patterns are
converted into more distinct patterns. Our cell-attached re-
cordings indicated that CA3 spiking involved monosynaptic as
well as delayed polysynaptic responses, suggesting that poly-
synaptic recurrent activation engages “unstimulated” CA3
PCs that are not directly innervated by stimulated DG neu-
rons. This recurrent activity can serve as a memory trace of
immediately preceding inputs and can be intermingled into
subsequent inputs. This contributes to the temporal associa-
tion of two inputs.

We also demonstrated activity-dependent modifications of
the AND/XOR responses. Our computer simulation suggests
that the central process that is responsible for transforming
the logical operations is synaptic plasticity in the CA3 recur-
rent network, which causes a persistent change in the respon-
siveness of unstimulated CA3 PCs. After two different inputs
were repeatedly presented with similar timings (0 ms pairing),
the circuit shifted to produce more similar output patterns,
whereas after two inputs were repeated at more different tim-
ings (10 ms paring), the resultant responses involved more
dissimilar patterns, in addition to more similar patterns. This
disparity in the “similar-get-more-similar” and “dissimilar-
get-more-dissimilar” regimes helps adaptively increase con-
trast and sharpness in neural responses. Importantly, this
adaptation autonomously occurred without any teacher or
reinforcement. It resembles the ability of the Elman network
to learn and predict temporal sequences in an unsupervised
fashion (Elman, 1990).

The DG-CA3 network has been shown to mediate a dynamic
competition between two complementary processes of associa-
tive memory networks (Hopfield, 1982), i.e., pattern completion
(or association) and pattern separation (Guzowski et al., 2004;
Lee et al., 2004; Leutgeb et al., 2004; Vazdarjanova and Guzowski,
2004; Leutgeb and Leutgeb, 2007). Pattern completion is the abil-
ity of a network to respond to a degraded input pattern with the
previously memorized pattern. Pattern separation is the ability to
make the stored representations of two input patterns more dis-
similar to reduce errors in memory recall. Therefore, a network
that is suitable for pattern completion tends to generate similar
outputs to different input patterns, whereas a network that is
suitable for pattern separation tends to produce dissimilar out-
puts to similar input patterns. Our findings on plasticity-induced
changes in hippocampal output suggest that the temporal re-
lationship between stimuli may be crucial for regulating the
function of the DG-CA3 network between the two competing
processes.

Ex vivo networks as an experimental model

Our findings were derived from experimentally designed ex
vivo systems that used artificial stimulation and should be
extrapolated to in vivo systems with caution because cultured
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networks may be subject to aberrant axonal regeneration and
circuit reorganization during cultivation. Nonetheless, our
findings are still valuable for outlining generic computational
properties that could spontaneously emerge through self-
organization. We believe that our ex vivo networks that consist
of thousands of neurons provide a basic platform to address
how microscopic synaptic properties bring about the meso-
scopic dynamics of complex neuronal networks. Thus, this
work presents an experimental framework to address such
questions under more realistic conditions.
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