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The Functional Link between Area MT Neural Fluctuations
and Detection of a Brief Motion Stimulus
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Fluctuations of neural firing rates in visual cortex are known to be correlated with variations in perceptual performance. It is important
to know whether these fluctuations are functionally linked to perception in a causal manner or instead reflect non-causal processes that
arise after the perceptual decision is made. We recorded from middle temporal (MT) neurons from monkey subjects while they detected
the random occurrence of a brief 50 ms motion pulse that occurred in either of two (or simultaneously in both) random dot patches
located in the same hemisphere. The receptive field parameters of the motion pulse were matched to that preferred by each MT neuron
under study. This task contained uncertainty in both space and time because, on any given trial, the subjects did not know which patch
would contain the motion pulse or when the motion pulse would occur. Covariations between MT activity and behavior began just before
the motion pulse onset and peaked at the maximum neural response. These neural– behavioral covariations were strongest when only
one patch contained the motion pulse and were still weakly present when a patch did not contain a motion pulse. A feedforward temporal
integration model with two independent detector channels captured both the detection performance and evolution of the neural–
behavior covariations over time and stimulus condition. The results suggest that, when detecting a brief visual stimulus, there is a causal
relationship between fluctuations in neural activity and variations in behavior across trials.

Introduction
How is sensory activity in cortex used by downstream areas to
generate visually guided behavior? Central to answering this
question is that small fluctuations in the activity of visual neurons
have measurable correlations with a subject’s perceptual decision
(for review, see Nienborg and Cumming, 2010). How these neu-
ral fluctuations are functionally linked to behavior remains un-
certain. Are they causal, directly influencing perceptual decisions
(Shadlen et al., 1996)? Or are these fluctuations non-causal, pro-
ducing correlations between sensory neural activity and percep-
tual decisions when in fact there is no functional link between the
two (Nienborg and Cumming, 2009)?

The key distinction between these two hypotheses is whether
fluctuations in sensory activity directly influence behavior but
not necessarily the source of the fluctuations. For example, both
bottom-up sensory noise and top-down attentional modulation
could produce fluctuations in sensory activity that are causally
linked to perceptual decisions if they directly influence the down-
stream decision circuitry. Alternatively, top-down attentional
signals could produce fluctuations in sensory activity that are

correlated, but not causally linked, with behavior. Examples of
this non-causal relationship include attentional modulation of
sensory activity that arises after the perceptual decision is made
(Nienborg and Cumming, 2009) or a sensory area that does not
contribute to the perceptual decision but instead receives modu-
latory inputs from neural circuits that do (Cohen and Newsome,
2009).

Early studies proposed that the stochastic nature of sensory
neurons directly affects the activity of downstream decision areas
(Zohary et al., 1994; Britten et al., 1996; Shadlen et al., 1996). This
causal model accounted for why neural– behavioral covariations
were both weak and proportional to the sensitivity of individual
neurons (Celebrini and Newsome, 1994; Britten et al., 1996). A
complicating factor in this causal interpretation is that fluctua-
tions in neural activity may arise from different sources and at
different times relative to the perceptual decision (Krug et al.,
2004; Uka and DeAngelis, 2004; Nienborg and Cumming, 2007;
Gu et al., 2008; Law and Gold, 2008; Sasaki and Uka, 2009). For
example, neural– behavioral covariations may depend on the
strength of interneuron correlations (Shadlen et al., 1996; Cohen
and Newsome, 2009; Law and Gold, 2009; Nienborg and Cum-
ming, 2010), which can change with task or attentional demands
(Cohen and Newsome, 2008; Cohen and Maunsell, 2009; Law
and Gold, 2009; Mitchell et al., 2009; Churchland et al., 2010).

Nienborg and Cumming (2009) provided a particularly clear
example of the potential non-causal component of neural– be-
havioral correlations by showing that they increase beyond the
likely time a perceptual decision was made. Others have also
suggested that top-down signals produce fluctuations in neural
activity that are correlated with the perceptual decision (Parker et
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al., 2002; Krug, 2004; Herrington and Assad, 2009; Nienborg and
Cumming, 2010).

How can we determine whether fluctuations in sensory neural
responses are causally linked to performance in a visually guided
task? To address this question, we recorded the activity of middle
temporal (MT) neurons while monkeys detected a brief motion
stimulus whose occurrence was uncertain in both time and
space (see Fig. 1 A). A very short stimulus occurring at an
random time and location vastly constrained when and where
sensory information was available and thus minimized non-
causal contributions. We found that a bottom-up, causal model
with two independent pools of stochastic sensory channels repro-
duced all aspects of the behavioral performance as well as the time
course and stimulus dependence of the neural–behavioral covaria-
tions. Our results support the hypothesis that fluctuations in MT
neural responses are functionally linked to the detection of a brief
motion stimulus.

Materials and Methods
Behavioral task. Two male monkeys (Macaca mulatta) were trained to
perform a coherent motion detection task (Fig. 1 A). Stimuli were a pair
of non-overlapping random dot patches (RDP) with location, size, speed
of motion, and direction of motion matched to the overlapping receptive
field (RF) preferences. A trial began with a fixation point and both static
RDPs presented on the visual display. Once the monkeys had fixated and
pressed a lever, the RDPs remained stationary for an additional 200 ms,
after which dots began moving with 0% coherence. A 50 ms pulse of
coherent motion occurred at a random time from 500 to 10,000 ms in

either of the RFs according to an exponential
distribution (flat hazard function). Three pos-
sible stimulus conditions were randomly inter-
leaved from trial to trial: (1) a motion pulse in
RDP 1; (2) a motion pulse in RDP 2; and (3)
simultaneous motion pulses in both RDPs. Af-
ter the coherent motion pulse, the RDPs re-
turned to 0% coherent motion. The monkeys
had to release the lever while maintaining fixa-
tion during a reaction time (RT) window of
200 – 800 ms after pulse onset (correct trials) to
receive a juice reward. The stimulus stopped as
soon as the animal released the lever. If the
monkey held the lever until the end of the re-
action time window (failed trials), then a final
150 ms of 0% coherent motion was shown be-
fore the stimulus stopped and no reward was
given. Trials when the monkey released the le-
ver before the coherent motion pulse (false
alarms) were not rewarded. Trials were aborted
and not used in our analysis if the monkey did
not maintain fixation within 1.5° of the fixa-
tion point.

Before training began, animals were im-
planted with stainless steel posts to stabilize
head position. After training was complete, the
animals were implanted with recording cham-
bers (Crist Instruments), and craniotomies
were performed to allow a dorsal approach to
area MT of visual cortex. Anatomical MRI
scans (1.5 T) were performed to verify chamber
location and orientation. Surgical procedures
were performed in sterile conditions while the
animals were anesthetized. Animals received
daily care and observation from veterinarians
and animal health technicians at the McGill
University Animal Care Center. All procedures
were approved by the McGill University Ani-
mal Care Committee under guidelines set forth
by the Canadian Council on Animal Care.

Visual stimulus. Stimuli were presented using a computer monitor
placed 57 cm before the monkeys (120 Hz refresh, 1600 � 1200 resolu-
tion). RDPs consisted of white dots (0.3° wide, density of 10 dots/deg 2)
on a gray background. Dots moved randomly along the preferred-null
axis of the neuron under observation; during 0% coherent motion, dots
had a 0.5 probability of moving in the preferred direction of the neuron
independently of other dots. At 100% coherence, all of the dots moved in
the preferred direction. Speed was set to that preferred by the neuron.
Dots that ran past the edge of the aperture of the RDP were randomly
replotted at the opposite side. This RDP motion design allowed a change
in coherence to occur without a change in the apparent dot density. Thus,
the animals had no other cue, other than the coherence, that the motion
pulse had occurred. Because dots moved in only the preferred and null
direction, most of the motion energy was limited to those two directions
at the preferred speed. During the motion pulse, the fraction of dots
moving coherently was set separately for each RDP to produce threshold
performance (�50% correct) in the single motion pulse condition.

Data collection. Area MT was located based on anatomical location,
electrode depth, and electrophysiological responses. Data were col-
lected from well-isolated MT neurons using pairs of tungsten micro-
electrodes (0.5–1.5 M�). Neural signals were low-pass filtered at 8
kHz and 16-bit digitized at 25 kHz. Electrodes were independently
advanced through separate guide tubes 1–2 mm apart. Single isola-
tions were performed online using two dual-window discriminators
(Bak Electronics) and later verified using custom offline spike sorting
software (Matlab; MathWorks). Many times, it was possible to isolate
one or two other single units offline. To verify isolations, all spike
waveforms were checked by eye. Although tedious, this procedure was
critical for eliminating false spike classifications attributable to slow

Figure 1. Task, stimulus, and subject behavior. A, Motion-detection task. Trials began with the presentation of two static RDPs.
After the monkey fixated and pressed a lever, the RDPs remained static for 200 ms before they began moving with 0% coherent
motion. The task was to release the lever within a 200 – 800 ms RT window after a 50 ms coherent motion pulse that occurred
randomly between 500 and 10,000 ms (flat hazard function). The location of the motion pulse varied randomly on each trial,
occurring in RF 1, RF 2, or simultaneously in both RFs. After the motion pulse occurred, RDPs continued moving with 0% coherent
motion for 950 ms or until the lever was released. Motion speed, direction, and RDP size were matched to that preferred by each
neuron. B, The normalized locations of RF 2 (white circles) with respect to RF 1 (gray circle). C, The relative proportions of correct,
failed, and false-alarm trial outcomes for both the one and two pulse conditions. D, Box and whisker plots showing the median,
lower and upper quartiles, and spread of the RTs for the one- and two-pulse conditions. E, Comparison of the predicted rate of
correct detection (PS�; see Materials and Methods, Eq. 3) to the actual rate of correct detection (PS) on trials with two motion pulses,
assuming probability summation. Predicted performance was computed from the actual performance on trials with one motion
pulse (see Materials and Methods).
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drifts in recording conditions. Overall, 124 single isolated neurons
were collected for analysis.

After isolating a single neuron, its RF location and size were mapped by
hand. Direction, speed, and size tuning were determined for each isolated
unit using the RDP stimulus. The motion detection task was then run as
long as isolations could be maintained (329 –3020 trials, median of
1080). Eye position was sampled at 200 Hz using an infrared tracking
system (ASL 6000; Applied Science Laboratories).

Behavioral model of probability summation. We examined whether the
animal’s performance on trials when the motion pulse simultaneously
occurred in both RFs could be explained by assuming two independent
detectors (i.e., probability summation). If this were the case, then we
should be able to predict the behavioral performance when two motion
pulses occurred from behavioral performance attributable to one motion
pulse. We first had to calculate the probability of a random lever release
occurring in the reaction time window. This was based on the monkey’s
false-alarm rate (or lever releases before the coherent motion pulse). The
probability of a random lever release within the reaction time window
(PFA) was estimated as follows:

PFA � NFA � MSRTW � MSnoise, (1)

where NFA is the number of lever releases that occurred at least 500 ms
after onset of the 0% coherent motion but still before motion pulse onset.
MSRTW is the number of milliseconds in one reaction time window.
MSnoise is the number of milliseconds of 0% coherent noise from 500 ms
after the trial began to either the motion pulse onset or a false-alarm lever
release.

The empirical probability of a lever release within the reaction time
window was measured for our three conditions: motion pulse in patch 1
(P1), motion pulse in patch 2 (P2), and simultaneous pulses in both
patches (PS, in which S is simultaneous). These three probabilities in-
clude the probability of a random lever release during the reaction time
window, leading to accidental correct trials. Thus, the probability of a
true motion pulse detection on trials with one pulse (Pi�), adjusted for
random lever releases, was estimated as follows:

Pi� � (Pi � PFA) � (1 � PFA), i � {1, 2}. (2)

Assuming a probability summation model with two independent de-
tectors, the theoretical probability of a lever release on trials with two
simultaneous pulses (PS�) as predicted from empirical behavioral perfor-
mance on the trials with one pulse, accounting also for false-alarm lever
releases in the reaction time window, was estimated as follows:
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1
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�
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2
�. (3)

The first three terms correspond to the three ways in which a motion
pulse may be correctly reported: both detectors report the pulse, detector
1 alone reports the pulse, detector 2 alone reports the pulse. The last term
corresponds to the remaining possibility: neither detector reports a mo-
tion pulse but a false-alarm occurs. We compared the actual probability
of a lever release (PS) with the derived probability of the summation
model of a lever release (PS�) in Figure 1 E.

Analysis of neural data. All time course analyses were computed using
a sliding 100 ms window aligned at its center. This window size was
chosen because it allowed us to capture the dynamics of the 50 ms motion
pulse while still being long enough to compute meaningful metrics of
neural activity. Standard area under the receiver operating characteristic
curve (aROC) was used to calculate a sensitivity index (which is a mea-
sure of the signaling reliability of a neuron) and detect probability (DP,
which is a measure of the correlation of the neuron with the animal’s
detection of the motion pulse). To calculate the signaling reliability of
neurons responding to the onset of a motion pulse, we computed a
sensitivity index as the aROC that compared the distribution of spike
counts occurring in the window before the coherent motion pulse with
the spike count distribution occurring in the window after the coherent
motion pulse. To calculate DP at time t, we computed the aROC using

the distribution of spike counts for correct trials and the distribution of
spike counts for failed trials occurring in a 100 ms window centered at
time t.

Some analyses compared the instantaneous firing rates using two 200
ms windows, one extending from 199 ms before the motion pulse onset
to the beginning of the motion pulse (see Fig. 3D, gray bar) and the other
extending from 40 to 239 ms after the motion pulse onset (Fig. 3D, black
bar). The longer 200 ms windows were used to obtain better estimates of
firing rates directly before and after motion pulse onset.

Variability is reported as �SEM or 95% confidence intervals (95% CI
[lower, upper]) as noted. Confidence intervals were estimated using the
Matlab bias corrected accelerated bootstrap function (MathWorks).

Computer model. We used a simplified, feedforward, hierarchal model
to explain our behavioral and neurophysiological results (see Fig. 4 A).
Based on behavioral data, we assumed two independent detector chan-
nels. The first processing layer of a detector channel was a pool of 200
model neurons, each signaling the same stimulus; these were analogous
to a pool of MT neurons with overlapping RFs and similar feature pref-
erences. The response of each model neuron to a 50 ms signal pulse was
Gaussian shaped over time with a SD of 25 ms that peaked 100 ms after
the signal began; the peak response (Fig. 4 B, arrow) was scaled by a
maximum response term that was applied to all model neurons (Fig. 4 B).
Each model neuron generated Gaussian noise with zero mean and a
variance of one, degrading the reliability of its output. This noise was
correlated between model neurons in the same pool at a constant level of
0.12. The output from a bank of model neurons was then summed to-
gether and integrated over time by convolving the sum using an expo-
nential function with a 60 ms time constant. The integrated signal was
then fed to a threshold detector that was the final processing stage of the
detector channel; when the integrated signal reached a threshold level,
the detector channel produced a response. If either detector channel was
triggered, then the model as a whole produced a response (i.e., output
from the two detector channels was combined by an or function).

Three stimulus conditions were presented to the model to match the
experimental conditions: (1) two 50 ms signals simultaneously occurred
in both detector channels; (2) one signal occurred in the first detector
channel; and (3) one signal occurred in the second detector channel. A
total of 250,000 trials were generated for each condition. Each trial began
with no signal presentation for an initial 1000 ms, which was the empir-
ical median duration of 0% coherent motion before onset of the coherent
motion pulse. Then the 50 ms signal began and the model had to cor-
rectly respond within a reaction time window 50 – 600 ms after signal
onset. Note that the reaction time window of the model starts and ends
earlier than the monkey’s because we did not model a motor system
delay. If the model produced no response, then the trial was a failed
detection, whereas a response before the reaction time window began was
scored as a false alarm.

Model neuron maximum response (Fig. 4 B, arrow) and detection
threshold level (Fig. 4 A, dashed line) were the same for both detector
channels. These two values were the only free parameters of the model,
which we optimized using a nonlinear search algorithm (MathWorks,
Nelder–Mead simplex method) to reproduce the average behavior of
the monkey subjects for the two pulse condition only. Optimization
continued until the model converged to approximately the same pro-
portions of correct, failed, and false-alarm trials as observed experi-
mentally for the two-pulse condition with a coherent motion pulse in
both RFs.

It is important to note that we did not optimize the model to repro-
duce the monkeys’ behavioral performance during the one-pulse condi-
tions or to match RTs, nor did we optimize the model to reproduce the
experimentally observed neural responses. The one-pulse detection per-
formance, RTs, and the neural responses were used to validate the model
after optimization.

Results
Motion detection task and behavior
How do the correlations between sensory activity in visual cortex
and visually guided behavior arise? We examined this question by
recording 89 pairs of MT neurons (composed of 124 separate
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units) from two monkeys performing a motion detection task
(Fig. 1A, see Materials and Methods). Pairs of neurons with non-
overlapping RFs located in the same visual hemifield were simul-
taneously recorded with two microelectrodes separated by �1–2
mm. In this analysis, we focused only on single MT neurons and
will address correlations between neuron pairs in a future study.
Figure 1B shows the location of the second RF (RF 2, open cir-
cles) normalized to the location and size of RF 1 (gray circle).

At the start of a trial, two RDPs, each overlapping one RF, were
presented. The median RDP eccentricity from the fixation point
to RDP center was 9.0°, 95% CI [7.7, 9.9], the median difference
in eccentricity between pairs of RDPs was 6.4°, 95% CI [2.0, 4.3],
and the median distance between RDP centers was 11.9°, 95% CI
[9.4, 14.3]. Trials began when the monkey fixated and pressed the
lever. The dots initially remained stationary for 200 ms and then
began moving randomly (0% coherence). The task was to quickly
release the lever in response to a 50 ms coherent motion pulse that
occurred either in just one RDP or simultaneously in both RDPs
(Fig. 1A). The onset of the coherent motion pulse occurred ran-
domly between 0.5 and 10 s (flat hazard function). Thus, each
neuron experienced three randomly interleaved conditions: two
simultaneous motion pulses in the RFs of both neurons (two
pulses), one motion pulse in its RF only (one pulse), or no motion
pulse in its RF (no pulse).

The location and size of the RDP plus the speed and direction
of our random dot motion was matched to that preferred by each
neuron individually (see Materials and Methods). This was im-
portant for maximizing the chance that the neural activity we
recorded was used by downstream areas during the detection of
the motion pulse. However, it meant that the direction and speed
of the two motion pulses usually differed (average � SEM differ-
ence in direction and speed for our two RDPs was 93.6 � 8.1° and
16.0 � 2.5°/s, respectively).

To ensure that both stimuli contributed equally to behavior,
we adjusted the strength of the coherent motion pulse individu-
ally for each RDP to produce threshold detection performance;
the median one-pulse detection performance was 44% correct of
all correct and failed trials. Because the location and time of the
coherent motion pulse was unpredictable, our task design en-
couraged the animals to maintain a constant level of attention to
both patches. Using only correct and failed trials, behavioral per-
formance improved (median two-pulse detection performance
64% correct, paired-sample Wilcoxon’s signed-rank test, p �
0.001) and RTs decreased (median one-pulse RT 	 419 ms, me-
dian two-pulse RT 	 404 ms, p � 0.001) when the motion pulse
simultaneously occurred in both RFs (Fig. 1C,D). The proportion
of times that the animals released the lever before the motion
pulse (false alarms) was relatively high (�35%) and likely attrib-
utable to the difficulty associated with detecting such a brief,
weak motion stimulus and the fact that the motion pulse oc-
curred on every trial. Because our trials were relatively long, how-
ever, the probability of a correct guess was relatively low (median
of 15%, 95% CI [13, 16]; see Materials and Methods, Eq. 1).

What strategy did the animals adopt to detect the motion
pulse? The probability summation model (Pelli, 1985) suggests
that, in a detection task with two stimuli, subjects simultaneously
monitor two independent sensory pools that each represent a
stimulus. If this model is correct, we should be able to predict the
monkey’s detection performance when motion pulses occurred
in both RDPs from the detection performance when the motion
pulse occurred in only one RDP (see Materials and Methods, Eq.
3). We found that the probability summation model did a rea-
sonably good job of predicting detection performance when two

pulses occurred simultaneously (Fig. 1E, median empirical
detection performance 	 64%, median predicted detection per-
formance 	 62%, median pairwise difference 	 0.9%, paired-
sample Wilcoxon’s signed-rank test, p 	 0.48). This behavioral
result suggests a model of the detection process that combines the
output of two independent motion pulse detectors. Before we
examine the details of such a model, we first report how the
responses of neurons in area MT were correlated with the ani-
mals’ behavioral performance.

Neural correlations with behavior
Figure 2 shows the spike response of an example neuron for each
of our three stimulus conditions, with corresponding moving
average firing rates computed from a sliding 100 ms boxcar win-
dow. Responses are aligned to the onset of the motion pulse. To
be consistent, we used the same 100 ms sliding boxcar window in
all time course analyses; this width is a good compromise between
reducing neural variability and capturing the timescale of the
task. It may also be close to the optimal window for estimating the
neural correlation with behavior (Price and Born, 2010).

The population average firing rates for all trials (dashed lines)
are shown in Figure 3A–C for each of our three stimulus condi-

Figure 2. Example MT neural response and neural– behavioral covariation for each stimulus
condition. Neural responses on trials with two motion pulses occurring simultaneously in both
RFs (A), one motion pulse occurring in the RF of the neuron (B), and one motion pulse occurring
in the RF of the other neuron (C). Each panel has three graphs. The topmost graph shows spike
rasters in which each row corresponds to a single trial. Trials were sorted by reaction time and
trial outcome (correct trials: black ticks, above horizontal line; failed trials: red ticks, below
horizontal line). The middle graph shows the average firing rate as a function of time for correct
(black), failed (red), and all (dashed) trials. The bottom graph shows DP (see Materials and
Methods) as a function of time. Average firing rates and DP were computed using a 100 ms
sliding window.
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tions. Neurons typically had an elevated
baseline firing rate in response to the 0%
coherent motion (population mean 	
21.0 spikes/s, 95% CI [19.2, 23.1]). A tran-
sient burst of activity occurred shortly af-
ter the coherent motion pulse (mean
population peak using all trials with mo-
tion pulse in RF 	 30.9 spikes/s, [27.1,
35.4]). Neurons generally had no appre-
ciable response when the motion pulse
did not occur in their RF (population
mean 	 21.6 spikes/s, [17.4, 27.3]).

The spike rasters and population re-
sponses in Figures 2 and 3 are grouped
based on trial outcome (correct, black;
failed, red); note that the shading in Fig-
ure 3 represents SEM. For our example
neuron, there was a larger average firing
rate in response to the coherent motion
pulse for correct versus failed trials (Fig.
2A,B). The average firing rate for this
neuron was relatively unaffected by trial
outcome when no motion pulse occurred
in its RF (Fig. 2C). The same trends are
visible in the mean population firing rates
for each of our three conditions (Fig. 3A–
C); correct trial firing rates (black, all trials
with motion pulse in RF, mean peak 	
33.6 spikes/s, 95% CI [29.5, 38.5]) tended
to be greater than the failed trial firing
rates (red, all trials with motion pulse in
RF, mean peak 	 27.4 spikes/s, [23.9,
31.6]). Thus, the average firing rates of
our MT neurons immediately after the
motion pulse were correlated with the
monkey’s detection of the motion pulse.

There are several interesting aspects of
the firing rate time courses in Figure 3.
The peak firing rate was highest for cor-
rect trials during the one-pulse condition
when a single motion pulse occurred in
the RF of the neuron, whereas 0% motion
was in the RF of the other neuron (Fig.
3A,B, arrows a; population mean pairwise
difference of correct one pulse vs correct
two pulse 	 1.4 spikes/s, 95% CI [0.3,
2.4], paired-sample Wilcoxon’s signed-
rank test, p � 0.001). This difference,
however, was less during failed trials (Fig.
A,B, arrows b; mean pairwise difference 	
0.4 spikes/s, [
0.6, 1.2], paired-sample
Wilcoxon’s signed-rank test, p 	 0.04).
Although not significant, there was a sim-
ilar trend between correct and failed firing
rates when the motion pulse occurred
outside the RF of the neuron (Fig. 3C, ar-
row c; mean pairwise difference 	 1.5
spikes/s, [0.5, 3.8], paired-sample Wilcox-
on’s signed-rank test, p 	 0.20).

The divergence in neuronal responses between correct and
failed trials began before the motion pulse(s) occurred (Fig.
3A,B, arrows d). Although our 100 ms sliding analysis window
exaggerates this effect, it cannot account for this divergence given

the neural latencies of MT neurons (Raiguel et al., 1999). To
better pinpoint when this divergence began, we recomputed the
population average firing rate over time with a sliding 10 ms
boxcar window using all trials with a motion pulse in the RF of the

Figure 3. Population analysis of neural– behavior covariations. The average population firing rate over time for correct (black),
failed (red), and all (dashed) trials for two motion pulses occurring simultaneously in both RFs (A), one motion pulse in the RF (B),
or no motion pulse in the RF (C). Data were computed with a 100 ms sliding window. The inset in B shows the population average
firing rate computed with a 10 ms sliding window combining both the one- and two-pulse conditions. Arrows indicate comparison
time points for one- and two-pulse correct (a) and failed (b) neural responses, no pulse trials (c), and early divergence between
correct and failed responses (d). D, The population average DP over time for two motion pulses occurring simultaneously in both
RFs (black), one motion pulse in the RF (red), or no motion pulse in the RF (blue), computed with a 100 ms sliding window. The inset
shows DP computed with a 10 ms sliding window combining both the one- and two-pulse conditions. E, DP computed from trials
with one motion pulse in the RF versus DP computed from trials with two motion pulses in both RFs. DP was computed using the
200 ms window (black bar) in D. F, Sensitivity index (which measures signaling reliability, see Materials and Methods) computed
from trials with one motion pulse versus the sensitivity index computed from trials with two motion pulses. Sensitivity index was
computed using the two 200 ms windows (gray and black bars) in D. For both E and F, each data point represents one neuron,
marginal histograms show the paired difference between the one- and two-pulse conditions, and triangles show the median
difference. Shaded areas denote SEM.
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neuron (Fig. 3B, inset). Correct and failed firing rates had sepa-
rated by at least 50 ms before the motion pulse began (median
pairwise difference 	 0.86 spikes/s, 95% CI [0.19, 1.45], paired-
sample Wilcoxon’s signed-rank test, p 	 0.005).

At first glance, it might seem that neural fluctuations that are
correlated with the behavioral outcome before a stimulus oc-
curred or when the stimulus was absent would suggest potential
feedback contributions from downstream areas. However, the
time course and stimulus dependency of these neural– behavioral
covariations are readily explained by feedforward mechanisms.
Before we examine such a model, we first quantify the neural–
behavioral covariations and the sensitivity of our recorded neu-
rons using standard ROC metrics.

Detect probability
DP (Cook and Maunsell, 2002), similar to choice probability
(CP) (Britten et al., 1996), is an ROC-based metric for expressing
the covariation between neural responses and the two behavioral
outcomes (correct vs failed) on a trial-by-trial basis. A DP 	 0.5
indicates that neural responses did not vary with the animal’s
behavioral performance. A DP near 1 indicates that more spikes
were produced on correct versus failed trials, whereas a DP near 0
indicates the opposite. Although there was a fair amount of vari-
ability, the DP time course for our example neuron in Figure 2
(calculated with the same sliding 100 ms window) peaked soon
after the motion pulse occurred in its RF. When there was no
motion pulse, this neuron did not appear to predict detection
performance.

The average DP time course for our population of neurons is
shown for each stimulus condition in Figure 3D. When the mo-
tion pulse occurred in the RF, DP tended to peak around the same
time as the maximum average firing rate. Thus, the spikes carry-
ing critical information about the motion pulse best predicted
detection performance. As suggested by the average firing rates,
DP was strongest when the coherent motion appeared in only one
RF (Fig. 3D, red, population mean DP 100 ms after pulse onset 	
0.58, 95% CI [0.56, 0.60]) as opposed to when the motion pulse
occurred in both RFs (black, mean DP 	 0.57, [0.56, 0.58]). A
pairwise analysis for each neuron reveals a significant increase in
DP for the one-pulse versus two-pulse conditions (population
median DP pairwise difference 	 0.013, [0.007, 0.024], paired-
sample Wilcoxon’s signed-rank test, p 	 0.015).

To better quantify this difference, DP was recomputed over a
larger 200 ms span after motion pulse onset (Fig. 3D, black bar).
The scatter plot of DP values computed over this longer window
(Fig. 3E) showed the same tendency to be larger on trials with
motion in one RF (median DP 	 0.58, 95% CI [0.57, 0.60])
compared with both RFs (median DP 	 0.56, [0.55, 0.57], pair-
wise median difference 	 0.017, [0.006, 0.045], paired-sample
Wilcoxon’s signed-rank test, p 	 0.007). When there was no
coherent motion pulse in the RF of the neuron, DP was slightly
greater than chance during this 200 ms window (Fig. 3D, blue,
median DP 	 0.51, [0.50, 0.52], one-sample Wilcoxon’s signed-
rank test, p � 0.001).

The trend for correct and failed firing rates to separate before
the motion pulse onset (arrows d) is also reflected in the DP time
course. For example, at 
20 ms, DP is significantly greater than
chance (pulse in both RFs median 	 0.51, pulse in one RF me-
dian 	 0.53, p � 0.001, one-sample Wilcoxon’s signed-rank test).
Recomputing the population average DP using a 10 ms sliding
window including all trials with a motion pulse in the RF of the
neuron revealed an increase in DP before the motion pulse began

(Fig. 3D, inset, mean DP at 
50 ms 	 0.503, 95% CI [0.501,
0.506], one-sample Wilcoxon’s signed-rank test, p � 0.001).

Our stimulus had two simultaneous RDPs displayed on every
trial (Fig. 1B). Thus, there was the possibility that the differences
in DP across our three conditions could be attributable to sur-
round interactions that extended beyond the classic RFs. Because
the strength of these effects, such as surround suppression, scale
with spatial distance (Born, 2000; Yao and Li, 2002), we examined
whether the distance between the two RFs was correlated with
changes in DP. We found that there was no significant correlation
between RF distance and the change in DP between the two-pulse
and one-pulse conditions (Spearman’s correlation 	 0.05, p 	
0.61), nor was there any appreciable significant correlation
between RF distance and DP on trials with two motion pulses
(Spearman’s correlation 	 0.02, p 	 0.83), one pulse in the RF
(Spearman’s correlation 	 0.06, p 	 0.49), or no pulse in the
RF (Spearman’s correlation 	 0.17, p 	 0.062). Hence, surround
effects that extend beyond the classical RFs did not appear to system-
atically affect our DP estimates.

It is important to point out that, although we used a relatively
short motion stimulus, our DP scores are comparable with, if not
larger than, similar measurements from many other MT studies.
For example, approximate average DP and CP scores from pre-
vious studies are as follows: CP 	 0.55, Britten et al., 1996; CP 	
0.67, Dodd et al., 2001 and Krug et al., 2004; DP 	 0.60, Cook and
Maunsell, 2002; CP 	 0.59, Uka and DeAngelis, 2004; CP 	 0.55,
Purushothaman and Bradley, 2005; CP 	 0.55, Law and Gold,
2008; CP 	 0.54, Cohen and Newsome, 2009; DP 	 0.59, Her-
rington and Assad, 2009; CP 	 0.55, Price and Born, 2010.

Neural sensitivity
The sensitivity of a visual neuron in the dorsal stream has been
shown to be proportional to its neural– behavioral correlations
(Celebrini and Newsome, 1994; Britten et al., 1996; Shadlen et al.,
1996; Cook and Maunsell, 2002; Parker et al., 2002; Uka and
DeAngelis, 2004; Purushothaman and Bradley, 2005; Gu et al.,
2008; Law and Gold, 2008; Ghose and Harrison, 2009; Law and
Gold, 2009; Price and Born, 2010). In other words, the most
reliable neurons at signaling the behaviorally relevant stimulus
also tend to be the neurons that best predict behavioral perfor-
mance. We quantified sensitivity of our neurons by computing
an ROC-based sensitivity index, which is similar to the neuro-
metric index used previously in other studies (Newsome et al.,
1989).

Given the neural responses of an MT neuron, our sensitivity
index describes how well an ideal observer could identify the
coherent motion pulse on a trial-by-trial basis. In this analysis, we
compared the neural responses in the 200 ms period before the
motion pulse (Fig. 3D, gray bar) with the responses in the 200 ms
period after the motion pulse (black bar), combining correct and
failed trials. A sensitivity index score of 0.5 indicates that the
neuron conveyed no information about the coherent motion
pulse, whereas values near 0 or 1 suggest high sensitivity. Our exam-
ple neuron in Figure 2 had reasonably good sensitivity when the
motion pulse occurred in its RF (sensitivity index 	 0.76, 0.72, and
0.52 for two motion pulses, one motion pulse, and no motion pulse,
respectively). The average sensitivity index across our population for
the same three conditions was 0.61, 0.62, and 0.51, respectively.

Our population of MT neurons had a strong correlation be-
tween the sensitivity index and DP scores when a motion pulse
was in its RF for both the two- and one-pulse conditions (Spear-
man’s correlation 	 0.71 and 0.69, respectively, p � 0.001).
Importantly, neural sensitivity was not significantly different be-
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tween these two stimulus conditions (Fig. 3F, paired-sample Wil-
coxon’s signed-rank test, p 	 0.25). Thus, unlike DP, the
sensitivity of a neuron when signaling the coherent motion pulse
was not appreciably affected by what occurred in the RF of the
other neuron. This result provides additional support that RF
surround effects did not systematically modulate neural re-
sponses in our experiment. Our MT neurons provided no infor-
mation about the stimulus when the motion pulse occurred
outside the RF (population median sensitivity index 	 0.50, 95%
CI [0.49, 0.51]), but, as reported above, they still had a weak yet
significant DP �0.5.

A feedforward model reproduces neural– behavioral
correlations
So far, we have presented results showing that our different stim-
ulus conditions affected both behavioral performance and neural
responses. Although the behavioral data suggest that our animal
subjects monitored two independent sensory pools, it is not clear
what components are necessary for such a model to capture the
numerous aspects of the neural activity time course. In particular,
we wanted to know whether a causal model with no detection-
related feedback modulation from downstream areas could ac-
count for the changes in neural activity and its relationship to
behavioral performance, as illustrated in Figure 3.

We created a computational model that simulated two inde-
pendent detector channels, each containing a pool of noisy model
neurons. These corresponded to the pools of MT neurons acti-
vated by each RDP (Fig. 4A, see Materials and Methods). The
structure of each detector channel was similar to that of past
models that simulated a single pool of MT neurons in a motion
discrimination task (Shadlen et al., 1996; Law and Gold, 2009).
The summated output of the pool of model neurons of each
detector channel was integrated in time to detect a 50 ms motion
signal that could occur in either both pools simultaneously or just
one pool.

Model neurons were statistically identical to each other and
were represented as a continuous signal with additive Gaussian
noise (Fig. 4B). This approximately corresponded to the firing
rate of each neuron and represented the noisy encoding of sen-
sory information. The sum of model neurons from the same
detector channel was integrated in time using a leaky integrator
with a time constant of 60 ms and exponential decay. The inte-
gration time constant was based on past estimates of integration
in a temporal summation task using random dot motion (Masse
and Cook, 2010). The integrated signal from each pool was fed to
a detector that triggered a response if the signal reached a fixed
threshold (Fig. 4A, dashed line). Thus, each detector channel had
three stages: (1) a pool of model neurons whose stimulus re-
sponses fed into (2) a temporal integrator, which in turn fed into
(3) a threshold detector. Detection of the motion pulse was ini-
tiated by the first detector channel to reach threshold. The tem-
poral evolution of our model responses was an important feature
because it allowed the model to mimic the false-alarm responses
before the motion pulse occurred.

Nearby neurons in a sensory pool tend to have weak correla-
tions in their activity (Zohary et al., 1994; Cohen and Newsome,
2008; but see Ecker et al., 2010). Shadlen et al. (1996) showed that
these interneuron correlations reduced the ability of a sensory
pool to average out noise and placed upper limits on the number
of neurons per pool. In addition, weak interneuron correlations
contribute to neural– behavioral metrics such as DP (Cohen and
Newsome, 2009; Nienborg and Cumming, 2010). We included a
similar correlation (Pearson’s correlation 	 0.12) between model

neurons in the same pool and set the number of neurons per pool
to 200, because increasing the pool size had no qualitative effect
on the performance of the model. There was no correlation be-
tween model neurons in separate detector channels.

Our model only had two free parameters, the maximum re-
sponse for the model neurons (Fig. 4B, arrow) and the threshold
level of the final stage of the detector channel (Fig. 4A, dashed
lines). These two parameters were optimized until the model
replicated the average portion of correct, failed, and false-alarm
trials produced by the monkeys in the two-pulse condition. The
optimal parameters were then used to generate 250,000 trials for
each stimulus condition.

We first examined how well the model predicted the behav-
ioral performance in the one-pulse condition (compare Figs. 1C,
4C). The detection performance of the model was reduced when
shown only one motion pulse (two pulses percentage correct 	
64.9%, 95% CI [64.7, 65.2], one-pulse percentage correct 	

Figure 4. The computational model and its detection performance. A, Schematic of the
causal, feedforward detection model. Two identical independent detector channels integrated
sensory information from a pool of 200 noisy model neurons. Model neurons in each pool were
continuous random variables with correlated Gaussian noise (Pearson’s correlation 	 0.12).
There was no correlation between model neurons in separate detector channels. Each sensory
pool was summed and temporally integrated using an exponential function with a time con-
stant of 60 ms. If the integrated signal reached a threshold level (dashed line), then the detector
channel triggered a behavioral response from the model. The output of the two detectors was
combined using an or function so that either channel could trigger the model to respond. B,
Example of the response of a single model neuron. Gaussian noise (0 mean, variance of 1) was
added to the motion pulse response (signal). The model was optimized to mimic the monkeys’
two-pulse detection performance (Fig. 1C) by varying two free parameters: threshold level
(dashed line in A) and model neuron maximum response (arrow in B). C, The behavioral per-
formance of the optimized model for the one- and two-pulse conditions averaged over 250,000
trials. D, Box and whisker plots (median, upper/lower quartiles, and spread) of the detection
times of the optimized model.
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47.4%, [47.2, 47.7], of all correct and failed trials) and was very
similar to the average detection performance of the monkeys. In
agreement with the behavioral observations, the model also
detected the motion pulse sooner on two-pulse trials versus on-
pulse trials (two-pulse median 	 117 ms, one-pulse median 	
125 ms, Wilcoxon’s rank-sum test, p � 0.001), although the
monkey’s RT distributions were not well represented by the
model (compare box and whisker plots in Figs. 1D, 4D). This is
because the RTs of the model are actually detection times and do
not include a presumed motor delay (i.e., a non-decision time)
and its associated variability.

The model also did a reasonably good job of capturing the
salient features of the neural activity. Because all model neurons
used the same parameters, we will focus on the time course of the
activity of a single model neuron and its relationship to the de-
tection performance of the model (Fig. 5A–C). The activity of this
model neuron was averaged over time with the same sliding 100
ms window used to analyze the MT firing rates. Our representa-
tive model neuron produced a transient surge of activity in re-
sponse to the presentation of the motion pulse (Fig. 5A,B, dashed
line) but did not respond when there was no motion pulse (Fig.
5C, dashed line). As would be expected and in agreement with the
neural data, the response of the model neuron in the one- and
two-pulse conditions (dashed lines) was identical for all trials
(two-sample t test, p 	 0.44).

The response of the model neuron mimicked the behavioral-
dependent trends in the average MT firing rate. Comparing Fig-
ures 3A–C and 5A–C, responses for correct trials (black) were
larger than responses to failed (red) trials (the differences in peak
response between correct and failed trials for our representa-
tive model neuron was significant for all three conditions,
two-sample t test, p � 0.001).

The divergence before the motion pulse onset between correct
versus failed responses was also captured by the model. For ex-

ample, at 40 ms before pulse onset (Fig. 5A,B, arrows), the model
neuron responses had already significantly separated between
correct and failed trials for both the one- and two-pulse condi-
tions (two-sample t test, p � 0.001). Also in agreement with the
experimental recordings, our representative model neuron activ-
ity was not appreciably different for failed trials between the one-
and two-pulse conditions (Fig. 5A,B, red lines, two-sample t test,
p 	 0.13). However, activity for this single model neuron was
appreciably greater for correct trials on the one-pulse versus
two-pulse condition (Fig. 5 A, B, black lines, two-sample t test,
p � 0.001).

The time course of the DP for this model neuron (Fig. 5D)
qualitatively reproduced the time course of the population DP
computed from MT activity (Fig. 3D). Both modeled and re-
corded DP peaked around the same time as the mean transient
response. Importantly, our representative model neuron
showed the same qualitative differences in DP for the three
different stimulus conditions (compare Figs. 3D, 5D); model
neuron peak DP was highest when only one detector channel
contained the motion pulse (red line, DP 	 0.60, 95% CI
[0.597, 0.603]), model neuron peak DP was slightly weaker
when both detector channels contained the motion pulse
(black, DP 	 0.58, [0.573, 0.579]), and model neuron peak DP
was very weak but above chance (blue, DP 	 0.51, [0.509,
0.516]) when no motion pulse occurred in the detector chan-
nel. Note, however, that the increase in DP of the model with
a single motion pulse versus two motion pulses was larger than
that observed in the recorded MT activity.

We tried several variants of our model to confirm the validity
of our results. First, we explored the effect of changing the level of
correlation between model neurons in the same detector channel.
Changing the levels of within-pool correlation between 0 and 0.2
did not have a qualitative effect on how DP varied between stim-
ulus conditions (data not shown). In general, varying correla-
tions had the same effect on model neuron DP as changing the
number of independent neurons per pool, although the detection
behavior of the model continued to mimic the real data. A second
variant changed the way that the neurons were modeled. Al-
though choosing to represent model neurons as Gaussian ran-
dom variables with a time-variant mean simplified both the
mathematics and implementation, it also allowed our model
neurons to produce responses with unrealistic statistics. In an
attempt to increase the realism of the model, we produced a
variant using rate-driven Poisson neurons while preserving all
other aspects of the architecture of the base model. This Poisson
variant produced all of the same qualitative results as our Gauss-
ian model in terms of detection performance and the way that
model neuron DP varied with stimulus condition (data not
shown).

Although it is striking just how well the feedforward model
accounted for both the behavior and neural activity in our
two-pulse motion experiment, its main utility is its ability to
provide explanations for the experimentally observed behavioral-
dependent changes in neural activity. Foremost is that the
effect of noise in each detector channel provides a causal
mechanism for behavior-dependent differences in neural ac-
tivity. For example, in both the recorded and modeled neu-
rons, activity during correct trials was higher in the one-pulse
versus two-pulse conditions. DP was also higher in the one-
pulse versus two-pulse conditions. The model provides a
straightforward explanation of why this was the case. In the
two-pulse condition, each detector channel in the model con-
tributed equally to detection and triggered the response on

Figure 5. The neural– behavior covariations of the computational model mimicked MT neu-
ral recordings. A–C, Response of a single model neuron (arbitrary units) for each stimulus
condition averaged over 250,000 trials. The average responses were computed and arranged
the same way as the MT responses shown in Figure 3A–C. Arrows indicate comparison time
point for early divergence between correct and failed responses. D, The DP of a single model
neuron as a function of time. DP was computed and arranged the same way as the MT DP shown
in Figure 3D.
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50% of the correct trials. In contrast, during the one-pulse
condition, the output of the detector channel representing the
motion pulse crossed threshold on 85% of correct trials,
whereas due to random noise the detector channel with no
pulse crossed threshold attributable to random noise on 15%
of correct trials. Thus, DP increased with only a single motion
pulse in the RF because that detector channel contributed
more often to the correct detection. This also suggests that the
reason for the slight increase in DP above chance for both the
neurons and model when no motion pulse occurred in the RF
was attributable to the chance contribution of noise producing
a threshold crossing of the detector.

The model further provides a simple explanation as to why
neural responses for correct and failed trials diverged before the
motion pulse. The leaky integrator allowed neural activity before
the motion pulse to be carried forward in time. For example,
those trials in which neurons happened to fire more than average
right before the motion pulse required less activation later on to
produce a threshold crossing and so had a higher probability of
leading to a correct detection. Conversely, those trials in which
the neurons happened to fire less than average before the onset of
the motion pulse required a slightly stronger activation later on to
produce a threshold detection. Thus, temporal integration can
produce correlations between perceptual decisions and neural
fluctuations that occur before the stimulus.

The sensitivity of individual MT neurons was not affected by a
motion pulse occurring in the other pool (Fig. 3F). This feature
was obviously captured by the two independent detector chan-
nels of the model. Although we optimized the maximum re-
sponse of the model neurons to reproduce the behavioral results,
we did not try to match the sensitivity index values of the model
to the neuronal data. Nevertheless, the sensitivity of individual
model neurons was the same as that of the real neurons (average
sensitivity index 	 0.62 for both the MT neurons and the model
neurons, averaged across the one- and two-pulse conditions).
Thus, from the model, we conclude that a purely feedforward
flow of noisy sensory information provides a good account of
both the behavioral performance and time course of behaviorally
dependent MT activity when a subject is detecting a brief visual
stimulus.

Discussion
We examined the link between activity in area MT and perfor-
mance in a two RDP motion detection task. By using a very brief
signal that occurred randomly in time and space, we isolated
neural– behavior covariations that were well accounted for by a
causal, feedforward pooling model. Although behavioral perfor-
mance was best when two motion pulses occurred, neurons were
better correlated with performance when only one motion pulse
occurred in the RF. Thus, the DP of a neuron was modulated by
the information available to the other sensory pool. Furthermore,
the time course showed neural– behavioral covariations that be-
gan just before the motion pulse and were weakly present even
when no motion pulse occurred in the RF. In comparison, neural
sensitivity was unaffected by the location of the motion pulse. A
causal feedforward model with two independent detector chan-
nels accounted for the time course, stimulus dependence, and
behavioral correlations of neural fluctuations in area MT.

The model was surprisingly robust given that it was optimized
using only two free parameters. The architecture was a hybrid of
probability summation (Pelli, 1985), pooling (Shadlen et al.,
1996), and leaky accumulator-threshold (Smith and Ratcliff,

2004; Gold and Shadlen, 2007) models. The independent detec-
tor channels of the probability summation combined with the
temporal aspects of leaky accumulation together reproduced
both variable detection times and the right proportions of trial
outcomes, with more correct detections occurring sooner when
two motion pulses were presented. Pooling sensory signals to-
ward a threshold linked stochastic sensory activity to the detec-
tion performance of a model and emulated the time course of MT
neural– behavioral covariations. Similar models have also linked
neural activity with RT in motion detection and attention-
switching tasks (Cook and Maunsell, 2002; Herrington and
Assad, 2009). Although the model did a good job capturing the
behavioral performance and mean RTs in all stimulus conditions,
it did not fully capture RT distributions as well as other threshold
models (Carpenter and Williams, 1995; Hanes and Schall, 1996;
Carpenter, 2004; Smith and Ratcliff, 2004; Ratcliff et al., 2007).
However, we do not think that adding free parameters to better
account for non-decision or motor delays would have affected
the functional link between the model neurons and the motion
detection performance of the model.

Why did neural– behavioral covariations increase for both
MT and model neurons during a single motion pulse trial? Be-
cause the location of the motion pulse was random, the monkeys
could not have allocated more attention to the RF containing the
motion pulse beforehand. As suggested by the sensitivity index
analysis, neural responses were invariant to the occurrence of mo-
tion in the other RF. This was reflected by the mean firing rates,
which were the same for the two- and one-pulse conditions over all
trials. This means that the chance of an MT pool reaching threshold
was the same for the one- and two-pulse conditions. However, a
pool receiving the single motion pulse produced most of the correct
trials during the one-pulse condition. Thus, a pool had a stronger
link with behavior on one-pulse trials with a correspondingly higher
DP. Although measurements such as DP may be inflated by in-
terneuron correlations (Shadlen et al., 1996; Cohen and Newsome,
2009; Nienborg and Cumming, 2010), they can still capture the rel-
ative contribution a sensory pool has to behavior.

We must emphasize that our analysis does not directly rule
out non-causal explanations of the neural– behavioral covaria-
tions in our experiment. However, our model is by far the most
parsimonious compared with alternatives that require non-
causal, top-down modulation of the neural activity. In fact, a
causal model makes sense when detecting a brief stimulus be-
cause there is not enough time for downstream networks to mod-
ulate sensory activity after the perceptual decision has occurred
(Stanford et al., 2010). This constraint is lifted when perceptual
decisions are based on long-duration stimuli. For example, using
a 2 s stimulus duration, Nienborg and Cumming (2009) found
that, although the contribution of sensory evidence to a discrimina-
tion decision was strongest soon after the start of a trial, the neural–
behavior covariations of visual neurons peaked much later.

The source of neural fluctuations that are correlated with
perception
Although our results support the hypothesis that fluctuations in
MT neural activity have a causal effect on the perception of a brief
motion stimulus, the source of these fluctuations is unclear. Were
they strictly bottom-up sensory noise as suggested by the model
or were they attributable to top-down processes? Despite the
brevity and uncertainty of our stimulus, there still could have
been contributions from top-down processes attributable to dif-
ferences in attentional state, bias, arousal, or motivation that var-
ied within or between trials.
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There are several aspects of the time course of the neural–
behavioral covariations that suggest the contribution of slowly
varying top-down processes was minimal. Until just before the
motion pulse, there were no neural– behavioral covariations (Fig.
3), suggesting that if top-down modulation was present, it did not
vary from one trial to the next. Previous studies using discrimi-
nation tasks found similar results (Britten et al., 1996; Uka and
DeAngelis, 2004). To examine whether a top-down modulation
varied slowly within a trial, we computed the correlation between
firing rates using 200 ms windows just before (Fig. 3D, gray bar)
and after (black bar) the motion pulse onset for each neuron. The
population median correlation was weakly positive (median
Spearman’s correlation 	 0.11, one-sample Wilcoxon’s signed-
rank test, p � 0.001), revealing a slow neuromodulatory signal
that varied within a trial and could have contributed to our DP.
However, these correlations in activity before and after the mo-
tion pulse were not appreciably related to the DP of each neuron
(Spearman’s correlation 	 0.15, p 	 0.10), suggesting that these
slow neural fluctuations within a trial were not a major contrib-
utor to the strong neural– behavior covariations that occurred
after the motion pulse.

Nevertheless, we cannot rule out the possibility of very fast atten-
tional shifts. For example, either continuous rapid shifts of attention
between our two RDPs during a trial or a fast attentional shift im-
mediately after the motion pulse occurred would produce neural–
behavior covariations consistent with our experimental results. It is
unclear, however, whether such fast attentional reallocations are
possible (Herrington and Assad, 2009; Moro et al., 2010). Although
Cohen and Maunsell (2010) found electrophysiological evidence
that attention varies on a timescale of a few hundred milliseconds,
their multielectrode recordings also highlighted the limitation of
single-neuron estimates of attentional state on a single trial. Thus,
the slow, weak modulation in the activity of single neurons we ob-
served within a trial may in fact reflect stronger attentional processes
in the population of MT neurons.

In many studies, shifts in attention have a strong association
with the covariance of sensory neural fluctuations and behavioral
performance (Dodd et al., 2001; Krug et al., 2004; Herrington and
Assad, 2009; Cohen and Maunsell, 2010). Using both the pre-
ferred and null motion directions, previous studies examining
CP in discrimination tasks have been able to discount the contri-
bution of spatial attention, but not feature-based attention, as the
source of neural– behavioral covariations in area MT (Britten et
al., 1996; Uka and DeAngelis, 2004). In comparison, our results
are based on only preferred motion responses and thus we cannot
distinguish the effects of spatial from feature-based attentional
modulation, should either be present. Also, switching feature-
based attention in our task would have produced the same effect
as switching spatial attention because our two RDPs often dif-
fered in direction, speed, diameter, and coherence level.

In summary, it is difficult to identify the source(s) of the MT
neural fluctuations that were correlated with detection of the
motion pulse. Regardless of their source (e.g., sensory noise, slow
changes in arousal or choice bias, reallocations of spatial- or
feature-based attention, or motor system noise as examined, for
instance, by Herrington et al., 2009), they could affect behavior in
a bottom-up, causal manner if they subsequently impacted the
downstream decision circuits before the perception of the mo-
tion pulse occurred. Thus, when detecting the 50 ms motion
pulse in our experiment, neural– behavior covariations attribut-
able to dynamic pooling (Krug et al., 2004; Cohen and Newsome
2008; Gu et al., 2008; Sasaki and Uka, 2009), task strategy (Uka
and DeAngelis, 2004; Nienborg and Cumming, 2007), and atten-

tion (Herrington and Assad, 2009; Nienborg and Cumming,
2009) could all have a feedforward and therefore causal effect on
behavior.

Differences between detection versus discrimination tasks
Most studies reporting neural– behavioral covariations have used
discrimination tasks with long stimulus presentation times (but
see Cook and Maunsell, 2002; Ghose and Harrison, 2009; Her-
rington and Assad, 2009). Although our brief stimulus was de-
signed to minimize non-causal contributions, our DP scores were
similar, if not larger, than most reported choice probability scores
(Celebrini and Newsome, 1994; Britten et al., 1996; Parker and
Newsome, 1998; Dodd et al., 2001; Parker et al., 2002; Williams et
al., 2003; Krug, 2004; Krug et al., 2004; Uka and DeAngelis, 2004;
Liu and Newsome, 2005; Purushothaman and Bradley, 2005;
Nienborg and Cumming, 2006, 2007, 2009; Gu et al., 2008; Law
and Gold, 2008; Cohen and Newsome, 2009; Sasaki and Uka,
2009; Price and Born, 2010). The likely reason is that the concen-
trated burst of firing in response to the motion pulse contained
the only available information for successfully performing the
task. Thus, noise in the transient MT response, regardless of its
origin, may have had a much larger impact on detection perfor-
mance compared with experiments with long stimulus presenta-
tion times. The fact that DP peaked at the same time as the neural
response further suggests that, once the sensory representation of
the motion pulse was over, the link between MT activity and
detection performance rapidly diminished.

Could sensory signals be processed differently for detection
versus discrimination tasks? Most discrimination models share a
similar architecture to the model used in this study: noisy sensory
activity is integrated over time toward a decision criterion
(Shadlen et al., 1996; Beck et al., 2008; Furman and Wang, 2008).
In both threshold detection and discrimination tasks, down-
stream networks are required to pick out a weak signal buried in
a background of noise. When there is substantial temporal un-
certainty, such as in our task, these downstream networks are
forced to classify the sensory input as either noise or signal at
every moment in time. Because there is no requirement to iden-
tify the signal, it is possible that many sensory channels could be
independently monitored during a detection task. However, this
would drastically increase the probability of a false alarm and
potentially exceed limits on how many sensory channels can be
simultaneously monitored. As in discrimination tasks, interneu-
ral correlations restrict the benefit of increasing pool size (Zohary
et al., 1994; Shadlen et al., 1996). Thus, in both discrimination
and detection tasks, it is advantageous to monitor only the sen-
sory channels that are most likely to carry the behaviorally rele-
vant signal. This hypothesis is supported by results suggesting
that DP in area MT is reduced when a subject knows that a par-
ticular neuron is less likely to represent the behaviorally relevant
signal (Bosking and Maunsell, 2004).
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