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Eran Lottem and Rony Azouz
Department of Physiology and Neurobiology, Faculty of Health Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
84105

Rodents use their whiskers to sense their surroundings. As most of the information available to the somatosensory system originates in
whiskers’ primary afferents, it is essential to understand the transformation of whisker motion into neuronal activity. Here, we combined
in vivo recordings in anesthetized rats with mathematical modeling to ascertain the mechanical and electrical characteristics of mecha-
notransduction. We found that only two synergistic processes, which reflect the dynamic interactions between (1) receptor and whisker
and (2) receptor and surrounding tissue, are needed to describe mechanotransduction during passive whiskers deflection. Interactions
between these processes may account for stimulus-dependent changes in the magnitude and temporal pattern of tactile responses on
multiple scales. Thus, we are able to explain complex electromechanical processes underlying sensory transduction using a simple model,
which captures the responses of a wide range of mechanoreceptor types to diverse sensory stimuli. This compact and precise model allows
for a ubiquitous description of how mechanoreceptors encode tactile stimulus.

Introduction
Mechanoreceptors transduce tactile information into neural activity
as animals move their tactile organs to extract information on rele-
vant features of the environment. For rodents, arrays of facial whis-
kers serve as primary tactile organs, which provide the main surface
for localization and discrimination of objects in the animal’s imme-
diate sensory environment (Carvell and Simons, 1990; Brecht et al.,
1997; Krupa et al., 2002; Szwed et al., 2003; Mehta and Kleinfeld,
2004; Arabzadeh et al., 2005; von Heimendahl et al., 2007; Diamond
et al., 2008; Ritt et al., 2008; Wolfe et al., 2008; Lottem and Azouz,
2009). In the whisker somatosensory system, mechanical interac-
tions between each whisker and the environment are sensed by nu-
merous mechanoreceptors located within each follicle–sinus
complex (FSC) (Rice et al., 1986; Ebara et al., 2002), which anchors a
whisker to the skin. These receptors transduce incoming mechanical
information into action potentials that are then transmitted to the
brain via 150–400 first-order neurons in the trigeminal nerve (Lee
and Woolsey, 1975; Lichtenstein et al., 1990; Tracey and Waite,
1995).

Over the years, a great deal of effort has been invested in the
anatomical examination of FSC innervation (Chambers et al., 1972;
Gottschaldt et al., 1973; Rice et al., 1986; Waite and Jacquin, 1992;
Waite and Tracey, 1995; Ebara et al., 2002) and in the study of re-
sponse properties of first-order neurons (Zucker and Welker, 1969;

Hahn, 1971; Gottschaldt et al., 1972, 1973; Dykes, 1975; Gottschaldt
and Vahle-Hinz, 1981; Gibson and Welker 1983a,b; Lichtenstein et
al., 1990; Shoykhet et al., 2000; Szwed et al., 2003; Arabzadeh et al., 2005;
LeiserandMoxon,2006,2007;Stüttgenetal., 2006;Kwegyir-Affuletal.,
2008). These efforts have been motivated by the realization of how crit-
ical it is to understand responses during the transduction stages, since
these responses shape all subsequent somatosensory processing. These
studies have yielded abundant insights into mechanoreceptors’ struc-
ture intheFSC; thestudieshavealso indicatedtheir similarity tomecha-
noreceptors in other systems and animals. Moreover, they have shown
thatfirst-ordertrigeminalganglion(TG)neuronscanbeclassifiedintoa
variety of functionally distinct subgroups, depending on their threshold
sensitivities, theirratesofadaptation(GibsonandWelker1983a,b;Lich-
tenstein et al., 1990; Shoykhet et al., 2000), and their physiological and
behavioral significance (Szwed et al., 2003; Arabzadeh et al., 2005; Lot-
tem and Azouz, 2009).

We understand a great deal about either the anatomical or the
physiological aspects of mechanotransduction, but we lack essen-
tial information linking these two areas of study. For instance, it is
not entirely clear which of the physical characteristics of whisker
vibrations is encoded by primary afferents. Some of these include
whisker kinetic features such as amplitude, velocity, or accelera-
tion (Shoykhet et al., 2000; Jones et al., 2004; Arabzadeh et al.,
2005; Stüttgen et al., 2006; Petersen et al., 2008; Wolfe et al., 2008;
Jadhav et al., 2009). Alternatively, whisker vibrations may be
characterized by the rate of discrete threshold crossing events
(Arabzadeh et al., 2005, 2006; von Heimendahl et al., 2007; Lot-
tem and Azouz, 2008, 2009; Jadhav et al., 2009).

In the present study, we construct a universal, empirically
informed, and compact model of the mechanotransduction pro-
cess to create a quantitative framework for the prediction of tac-
tile responses to any passive stimulus. This model specifies which
kinematic aspects of the world are encoded by these mechanore-
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ceptors and the way they are represented by neuronal activity.
The model can account for the responses of the many types of
mechanoreceptors within the follicle, with very modest changes
to parameters. Moreover, we posit that it can also be used to
account for analogous systems in other animals besides rats.

Materials and Methods
Animals and surgery. Adult male Sprague Dawley rats (250–350 gm) were
used. All experiments were conducted in accordance with international and
institutional standards for the care and use of animals in research. Surgical
anesthesia was induced by urethane (1.5 gm/kg, i.p.) and maintained at a
constant level by monitoring forepaw withdrawal and corneal reflex, with
extra doses (10% of original dose) administered as necessary. Atropine
methyl nitrate (0.3 mg/kg, i.m.) was administered after general anesthesia to
prevent respiratory complications. Body temperature was maintained near
37°C using a servo-controlled heating blanket (Harvard).

After placing subjects in a stereotactic apparatus (TSE), an opening
was made in the skull overlying the TG, and tungsten microelectrodes (2
M�; NanoBio Sensors) were lowered according to known stereotaxic
coordinates of the TG (1.5–3 ML, 0.5–2.5 AP) (Shoykhet et al., 2000;
Leiser and Moxon, 2006) until units drivable by whisker stimulations
were encountered. The recorded signals were amplified (�1000), band-
pass filtered (1 Hz to 10 kHz), digitized (25 kHz) and stored for off-line
spike sorting and analysis. The data were then separated to local field
potentials (1–150 Hz) and isolated single-unit activity (0.5–10 kHz). All
neurons could be driven by manual stimulation of one of the whiskers,
and all had single-whisker receptive fields. Spike extraction and sorting
was accomplished with MClust (by A. D. Redish, University of Minne-
sota, Minneapolis, MN; available from http://redishlab. neuroscience.
umn.edu/MClust/MClust.html), which is a MATLAB-based (MathWorks)
spike-sorting software. The extracted and sorted spikes were stored at a 0.2
ms resolution unless stated otherwise, and peristimulus time histograms
(PSTHs) were computed.

Whisker stimulation. Receptive fields, adaptation profiles, and preferred
directions were initially determined by manually deflecting individual whis-
kers. Whiskers evoking detectable responses were then individually attached
to a computer-controlled Galvanometer stimulator. Each stimulus was pre-
sented for one second and repeated 25 times. A period of 2 s separated each
stimulus from the next. Stimuli were delivered 3 mm from the mystacial pad.
Accordingly, the angle of the whisker was given by � � tan�1(x/3), where x
is whisker displacement in millimeters. Furthermore, individual whiskers
were deflected by several types of stimuli delivered randomly: first, triangular
whisker deflections ranging from amplitudes of 1.9–14° and frequencies of
20, 40, and 80 Hz, resulting in velocities 153–3028°/s; second, sinusoidal whisker
deflectionsofamplitude9.46°andfrequencies20and40Hz; third,colorednoise
waveforms with variance in the range of 2.86° and low-pass filtered at 125 Hz.
Thestimulatorwascalibratedwithanoncontactopticaldisplacementmeasuring
system (resolution, 1 �m; LD1605-2; Micro-Epsilon).

To replay whisker movements associated with texture sensing through
head and body movements in anesthetized rats, we placed rotating cyl-
inders covered with textures orthogonal to the whiskers (Lottem and
Azouz, 2009). The cylinders were driven by a DC motor (Farnell). Whis-
ker movements were measured on P120 (125 �m average grain diame-
ter). The textures were mounted on a 30 mm diameter cylinder. The
cylinder surface was oriented so that the whisker rested on it and re-
mained in contact during the entire session, and the surfaces were placed
at �90% of whisker length. For each texture, we recorded 50 revolutions
per texture of the rotating cylinder, each lasting �3 s, and randomly
chose a segment of 1 s. After filtering the signal between 5 and 500 Hz, we
then replayed it 25 times using the galvanometer stimulator.

Data analysis. Statistical significance was evaluated using one-way
ANOVA. When significant differences were indicated, Tukey’s method for
multiple comparisons was used to determine those pairs of measured pa-
rameters that differed significantly ( p�0.01). Averaged data were expressed
as mean�SE. Error bars in all figures indicate the SE unless stated otherwise.

The mechanoreceptor model. Here we describe in detail our formula-
tion of mechanotransduction, from the conversion of whisker trajectory,
measured 3 mm away from the mystacial pad, to the pressing of the

whisker base against the receptor, and terminating with the receptor’s
output spike train. Because stimulus magnitude is relatively small, and
since there is no way of knowing the actual depth of recorded neurons
within the whisker’s follicle, we assume that s, the one-dimensional po-
sition of the whisker on the line connecting it to the receptor, r, is equal to
whisker angle, � (see Fig. 3B) Moreover, to use as few parameters as
possible, we assume that this system is critically damped (Hartmann et
al., 2003; Mitchinson et al., 2004). In line with a previous model
(Mitchinson et al., 2004, 2008), the motion of the receptor element r is
governed by the following second-order equation:

d2r

dt2 � �2�r�dr

dt
� lr

ds

dt� � �r
2	r � lr s
, (1)

where the two term on the right-hand side represent damping and spring
forces, respectively. Equation (1) uses two parameters: �r, the natural
frequency, and lr, the lever constant, which for the sake of simplicity is set
to a value of 1 (as is the receptor’s mass).

The mechanical model’s output is the strain generated in the system
according to the following equation:

U � �s � r�
, (2)

where [.]
 is the positive part function, which allows neurons [or neu-
ronal subunits, in the case of rapidly adapting (RA) neurons] to respond
only to whisker motion in their preferred direction (see Fig. 3D).

During linear (constant velocity) whisker deflection (see Fig. 4), s � vt,
and, noting that lr equals 1, it can be readily shown that receptor strain is
given by the following equation:

U � �s � r�
 � vte��rt, (3)

showing scaling of the model’s output with stimulus velocity.
To convert the strain to input current, we cap neuronal firing rates by

passing the current through a saturating function:

Istim � tanh	�U
, (4)

where Istim is the stimulus current, and � is its gain (see Fig. 3E). This
current is then fed into an integrate-and-fire (I&F) neuron with the
following membrane potential (see Fig. 3F ) between spikes:

�m

d�

dt
� Istim � �m. (5)

The membrane potential after a spike is as follows:

�m
 � 0, (6)

where vm is the membrane potential and �m is the membrane time con-
stant. When the membrane potential crosses a fixed threshold vth, a spike
is emitted, and vm is reset to its resting value of zero (see Fig. 3F ).

To account for a phase delay that occurs in the firing of slowly adapting (SA)
neurons during periodic stimuli, we adjusted the mechanical part of the model
by adding another element, f (follicle), that rectifies the receptor’s motion.

The simple variant of this, which we term the static rectification
model, can be formulated by adjusting Equation 1 as follows:

d2r

dt2 � ��2�r�dr

dt
�

ds

dt� � �r
2	r � s
, s 	 f,

�2�r

dr

dt
� �r

2r otherwise.
(7)

The final variant of our model, which we term the dynamic rectification
model, was constructed by coupling the follicle to the whisker. This can
be formulated thus:

d2r

dt2 � ��2�r�dr

dt
�

ds

dt� � �r
2	r � s
, s 	 f,

�2�r�dr

dt
�

df

dt� � �r
2	r � f 
 otherwise;

(8)
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d2f

dt2 � �2�f�df

dt
� lf

ds

dt� � �f
2	 f � lf s
. (9)

In Equation 9, lf and �f are analogous to lr and �r in Equation 1, with
respect to the follicle.

Finally, two additional currents were needed to capture TG responses:
(1) spike-history-dependent current that leads to neuronal adaptation
and (2) the noise current source that accounts for neuronal variability
and SA tonic responses during step whisker deflections.

The spike-history-dependent current w increases after each spike by a
fixed amount b, and decays exponentially with a time constant �w be-
tween spikes. The current between spikes is as follows:

�m

d�

dt
� Istim � �m � w, (10)

�w

dw

dt
� �w. (11)

The current after a spike is as follows:

�m � 0, (12)

W � w� 
 b. (13)

To account for the small variability of responses as well as responses to
step whisker deflection during the hold period of SA neurons, we added
a noise current source. Thus, the total strain is given by the following:

U � �s � r�
 
 ��s � f�
, (14)

where � is a colored Gaussian noise (low-passed filtered at 250 Hz). This
frequency was chosen as a trade-off between lower cutoff frequencies in
which the model neurons discharged in an unrealistic burst mode during
the hold period, and higher frequencies, which are filtered by the mem-
brane time constant.

Fitting model parameters. All aspects of the model were constructed
under MATLAB. All original software was written in-house, and the
model was simulated using the Dormand–Prince method (Dormand and
Prince, 1980) with a maximal time step of 10 �s (MATLAB’s ode45
solver). The model we have constructed is a general one, aimed at de-
scribing the elementary dynamics of the FSC and the mechanoreceptors.
We did so by choosing parameters that fit global features of receptor
activity, as reflected in the average response properties of the three sub-
populations of neurons. We chose the features used for fitting in such a
way that each feature is determined by as few parameters as possible
(preferably just one) such that fitting could proceed orthogonally. Orig-
inally, our aim was to build a robust model, rather than to look for the
precise parameter values needed to fit individual responses to a given
stimulus. Remarkably, however, we found that our model could be read-
ily used to predict responses to novel, complex stimuli by varying only a
single free parameter (or two, in the case of RA neurons).

Electrical part. For the sake of model simplicity, we chose to repre-
sent the electrical part of the mechanoreceptor model by an I&F
neuron. The electrical parameters of the model were derived from
experimental data to provide realistic values that match actual neu-
rons. Initially, we set vth to a constant value of approximately one-
third (0.325) of the difference between the membrane voltage resting
value (0) and maximal depolarization (1). Next, we relied on the
first-spike latency to a step stimulus to set �m. Since this stimulus
saturates the system, initial responses are independent of the stimulus
current’s gain, �, and all other parameters except for the membrane’s
time constant (Fig. 1 B).

Receptor dynamics and gain. Equation (1) uses a single parameter, �r,
the receptor’s natural frequency, which determines how closely r follows
s over a wide range of velocities. We derived �r by evaluating the initial
200 ms of responses of the three neuronal subtypes to step stimuli. For
this, neuronal responses were first convolved with a Gaussian having a
standard deviation of 5 ms. Then, each PSTH was fit by an exponential
equation using least squares.

y � a � exp�bt 
 c, (15)

where t is the time course of the response, c is the baseline shift, b is the
decay time constant, and a 
 c is the initial firing rate. Figure 8 A
shows the average responses (solid lines) and fits (dashed lines) for all
neurons in each subgroup. Finally, we set �, the gain, to 1, and fit �r

to match the firing duration of until 10% of the exponential for each
neuronal subtype was reached (Fig. 1 A). Once �r was determined, we
found � by fitting the model to the entire curve of first-spike latencies
(Fig. 1C).

Follicle. Equation 9 uses two additional parameters, �f and lf. These
parameters independently control the linear relationship between stim-
ulus offset and response phase (see Fig. 7D1), and were fit accordingly.
We determined the impact of stimulus offset on response phase in the
three neuronal subtypes (Fig. 1G) and set �f and lf in the model (Fig.
1 E, F ) to match the experimental results (Fig. 1G). In RA neurons, this

Figure 1. Fitting the model parameters. A, Responses of the three subtypes of model neurons
(vertical lines) superimposed on the smoothed average PSTHs for the three neuronal subtypes (col-
ored solid lines) and their corresponding exponential fits (dashed lines). We adjusted the �r of the
model neuron until 10% of the initial firing of the PSTHs was reached (dashed horizontal line). The
calibration indicates spikes/bin. The inverse of the decay time constant of the exponential fit for each
of the subtypes are as follows: SAlt, �93.9; SAht, �46.4; RA, �128.6. B, Response latency of the
neuronal subtypes to step stimuli (SAlt, 1.39 � 0.06 ms; SAht, 1.73 � 0.2 ms; RA, 1.22 � 0.08 ms;
*p � 0.01). C, Dependency of latency to first spike on whisker deflection velocity in the
three neuronal types. The colored lines and circles indicate the neuronal data, whereas the
solid black circles indicate the fit of the model. D, Dependency of firing phase on DC offset
in an example SAlt neuron. The horizontal lines show the PSTHs, whereas the diagonal
lines show the corresponding stimuli. E, The impact of �f on the interaction between DC
offset and response phase. F, The impact of lf on the interaction between DC offset and
response phase. G, The impact of DC offset on response phase in the three neuronal
subtypes. The colored lines and circles indicate the neuronal data, whereas the solid black
circles indicate the fit of the model.
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scheme holds for the fitting of �f and lf in the preferred direction. For the
null direction, we initially presented these neurons with a triangular
stimulus ( f � 40 Hz; amplitude, 9.46°) and found that they can be
divided into two general subtypes: neurons responding to deflections in
both directions (n � 6) and neurons responding only to the preferred
direction (n � 6). Since these neurons are not direction selective in
response to step stimuli, we made the conjecture, based on the basic
model, that using sinusoidal stimuli would evoke responses to both di-
rections. This is because of whisker acceleration during sinusoidal stim-
ulus, which leads to broader strain responses compared with triangular
stimuli of the same amplitude and frequency. This will result in increased
stimulus currents and, ultimately, neuronal firing. Thus, using sinusoidal
stimuli, we were able to characterize the responses of these neurons to
deflections in both directions. Although both RA subtypes responded to
both preferred and null directions, in response to sinusoidal stimuli,
direction-selective RA neurons displayed a phase lag, compared with
nonselective RA neurons, in their responses to null directions. Nonselec-
tive RA neurons do not show any phase difference between preferred and
null directions, whereas direction-selective RA neurons show a phase lag
of 0.47 � 0.2 rad in response to null stimuli. This phase lag was used to fit
the �f for the null-direction subunit. Finally, since response phases were
highly variable across the population, each RA neuron was fitted with one
of three possible values for this parameter, as opposed to all other param-
eters in our model, which were fit with a single value for the entire
neuronal subpopulation.

Adaptation. Here we consider two types of adaptation processes. One
of them controls firing during static whisker deflection and is captured by
follicle and receptor dynamics, as described above (Fig. 1 A), and the
other acts progressively to decrease responses to dynamic periodic stim-
uli, either within a single cycle or across multiple cycles. In SA neurons,
where long-term adaptation (across cycles) was virtually absent, spike-
dependent adaptation was fit to match the first interspike interval (ISI)
during constant velocity whisker deflection. We set �w to 2.5 ms and fit b
to the experimental data. In RA neurons, both short- and long-term
spike-dependent adaptations are present, since these neurons show very
brief firings within each stimulus cycle, and a gradual decrease in firing
rates, during prolonged periodic stimuli. Therefore, they were fit to
match the adaptation profile during such stimuli. We set �w to 100 ms
and fit b to the experimental data (see Fig. 8C).

Noise. To account for the variability of responses, as well as responses
to step whisker deflection during the hold period of SA neurons, we
added a noise current source (see Fig. 6). In SA neurons, noise level was
adjusted to match mean firing rates during the final 500 ms of the hold
period of a step stimulus. In RA neurons, which do not fire during the
hold period of a step stimulus but nonetheless show variability in re-
sponses to repeated presentations of the same stimulus, noise level was
adjusted to match firing probability during steady-state responses to
periodic stimuli in the preferred direction.

Model validation. We have constructed and fit the model using simple,
step, and periodic stimuli, and model parameters were then set to match
the average properties of neurons. To determine how well the model can
predict individual neuronal responses, very different, filtered white noise
stimuli and texture were presented to both. First we fit a single free
parameter, the gain �, to maximize the Pearson correlation coefficient
(CC) between the responses of actual and model neurons during ran-
domly selected five 100 ms segments from each stimulus. We then tested
our model’s performance on the remaining five 100 ms segments. The
parameters for the model neurons are shown in Table 1.

Results
The objectives of the present study are (1) to characterize re-
sponse properties of first-order sensory neurons in the rat whis-
ker somatosensory system, (2) to determine the functional
implications of these properties in tactile information coding, (3)
to create a mathematical model of the FSC with its mechanore-
ceptors, and (4) to present the resulting model in a way that can
easily be modified to account for analogous systems. Predicting
as it does neuronal responses to complex whisker stimuli, this

simple model makes it possible to examine the mechanisms un-
derlying the coding of whisker kinematics.

Basic functional properties of TG neurons
We recorded responses to step whisker deflections from 53 TG
neurons obtained from 16 adult rats. As described previously
(Gibson and Welker 1983a,b; Lichtenstein et al., 1990; Shoykhet
et al., 2000), such neurons respond to step stimuli with either a
phasic response, firing only to stimulus onset/offset, or a phasic–
tonic response, firing both at stimulus onset/offset and through-
out the stimulus hold period (Fig. 2A). These firing patterns are
conventionally used to characterize neurons as either rapidly
adapting or slowly adapting, respectively. RA neurons, we found,
display uniform behavior in response to step stimuli. They show
a clear dependence of initial firing rates on whisker velocities (n �
12) (Fig. 2B), they do not show any direction selectivity at higher
stimulus intensities (Fig. 2C) (Shoykhet et al., 2000), and finally,
they do not show any dependence of response latency on whisker
deflection velocity (Fig. 2D). In contrast, within the SA neurons,
we identified two distinct subgroups, defined according to their
velocity threshold for firing: SAlt (low threshold; n � 29) and SAht

(high threshold; n � 6). This is shown in Figure 2D in which the
distinction between SAlt and SAht is obtained by the firing rate of
the two subtypes at the lowest stimulus velocity (170°/s). This
classification may correspond to a previously suggested division
between SA type I and SA type II neurons, respectively (Cham-
bers et al., 1972; Wellnitz et al., 2010). Our two subtypes differ in
several respects: First, SAlt neurons display large phasic responses
followed by stochastic tonic firing, whereas SAht neurons exhibit
slowly decaying periodic responses, followed by stochastic
tonic firing, in response to step whisker deflections (Fig. 2 A).
Second, SAlt neurons respond to low whisker velocities with a
greater number of spikes than SAht (Fig. 2 B, E). And third, SA
neurons display a dependence of response latency on whisker
deflection velocity (100 –56,000°/s) that is expressed differen-
tially in the two subtypes: SAlt neurons show less dependence
of evoked-response latency on whisker velocity than SAht (Fig.
2 D). The two SA subtypes are similar in that all SA neurons
show direction selectivity, as displayed in their responses to
preferred- and null-direction stimuli (Fig. 2C), and both types
show a clear dependence of initial firing rates on whisker ve-
locity (Fig. 2 B).

Mechanoreceptor model
The complex mechanical structure of the FSC and the large number
of receptor types within it make the construction of a realistic elec-
tromechanical model unfeasible; furthermore, even if achieved, such
a model would be too cumbersome for any practical purpose. We

Table 1. Model parameters for the three neuronal subtypes

SAlt SAht RA

�m (s) 0.0035 0.00425 0.003
vth 0.325 0.325 0.325
� 1.5 0.35 10
�r(s �1) 267 133 2000
�f(s �1) 13 4 267/133/13
lf 0.7 0.7 1
�w (s) 0.0025 0.0025 0.1
b 0.5 0.5 0.01
� 0.125 0.125 0.05

Parameters are as follows: �m , membrane time constant; vth , spike threshold; �, gain; �r , receptor natural
frequency; �f , follicle natural frequency; lf , lever constant; �w , adaptation time constant; b, adaptation magnitude;
�, noise level.
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therefore adopted a different approach that allowed us to con-
struct a simple model of mechanoreceptors that proved adequate
for the translation of mechanical strain into spike trains. Rather
than keeping our model anatomically accurate, we concentrated
on a faithful rendering of the system’s functionality. The model
involves a mechanical component that converts whisker move-
ment into strain and a neuronal component that consists of a
standard leaky integrate-and-fire (I&F) (Koch, 1999) compart-
ment. A schematic diagram of the model is shown in Figure 3A.

In its most basic form, the mechanical part of our model con-
tains three elements: (1) the follicle capsule, which is assumed to
be a rigid structure (Ebara et al., 2002); (2) the whisker; and (3)
the receptor (and the tissue connecting the receptor to the whis-
ker; henceforth, for brevity, we shall call both “the receptor”).
Figure 3B shows our concept of the effect of deflection; the base of
the whisker moves in the opposite direction to the tip, pivoting at
the skin and deforming the receptor. For mechanoelectric trans-
duction to occur in the receptor, it must respond to this defor-
mation: the input to a cell model is the strain in the receptor,
which is represented mechanically as a damped spring.

To develop an empirically informed model of these neurons,
response properties were probed, using, for the most part,
constant-velocity step and triangular periodic stimuli, since these
allow for independent control over stimulus amplitude and ve-
locity, compared with the more commonly used sinusoidal stim-
uli. In response to constant velocity whisker stimuli, the receptor

follows the whisker (receptor and whisker positions relative to
their resting positions are denoted by r and s, respectively) with a
certain time delay depending on �r, the receptor’s natural fre-
quency (Fig. 3C). Under these conditions, the mechanical mod-
el’s output scales with stimulus velocity, and for a given velocity,
�r, the receptor’s natural frequency, controls the shape (ampli-
tude and duration) of the transient increase in receptor strain
([s � r]
) (Fig. 4) (Eq. 3), which in turn determines the number
of spikes, ISIs, and first-spike latency (Fig. 3). In our model,
following Mitchinson et al., (2004), the mechanical model’s out-
put is the strain generated in the system, which is the difference
between the positions of the whisker and the receptor (s � r,
receptor strain) (Fig. 3D). The strain is subsequently converted
into current, which is then fed into an I&F neuron (Fig. 3F) (for
a full mathematical description of the model, see Materials and
Methods).

A major difference between SA and RA neurons is that SA
neurons are more direction selective than RA neurons, as they do
not respond to stimuli in the null direction, whereas RA neurons do.
A simple implementation of this property into the model is the use of
positive strains for SA neurons ([s � r]
) and absolute strain values
of for RA neurons (�s � r�). However, we found that in RA neurons
responses to the two directions seem different in many respects, such

Figure 2. TG neurons are divided into SAlt (red), SAht (green), and RA (blue) types. A, Responses of
the three types of neurons to step stimuli. B, Dependence of firing rates on whisker deflection velocity
in the three neuronal types (stimuli in inset). C, Direction selectivity as measured by the neurons’
responses to preferred and null step whisker deflections (stimuli in inset). D, Dependence of latency to
first spike on whisker deflection velocity in the three neuronal types. E, Differentiation between SAlt

and SAht according to firing rate at the lowest stimulus velocity (170°/s).

Figure 3. Mechanoreceptor model. A, Schematic diagram of the receptor model. Whisker deflec-
tion is transduced into mechanical strain which in turn is transformed into current that drives an I&F
model. B, Simplified FSC anatomy and its corresponding mechanical element composed of a spring
and a damper. C, Triangular whisker deflections at two velocities (757 and 1123°/s at 20 Hz). D, The
strain generated by whisker deflection is velocity dependent. E, Normalized current to the I&F neuron.
F, Membrane potential responses of the model neuron. G, Model output spike train. The firing rate is
dependent on whisker velocity. H, An example PSTH of an SAlt neuron. Note the phase difference in
thesecondresponsebetweenthemodelandtheneuron.I,Responselatencyandnumberofspikesare
dependent on whisker velocity in the model neuron.
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as firing rates and timing of firing relative to stimulus (Fig. 1, 2)
(see Materials and Methods). Therefore, we chose to model these
neurons as having two independent subunits, both mechanically
and electrically, each responding to a different direction. The
final output of an RA neuron is simply the sum of outputs from
both these independent compartments.

According to the model, firing in TG neurons is restricted to
very well-defined events in which the whisker presses against the
receptor (s � r), thus generating positive strain in the tissue.
Accordingly, the magnitude and duration of these events will
determine the latency to the first spike (Fig. 3I), the ISIs, and the
number of spikes within each event (Fig. 3G). Therefore, we may
view these events as discrete features that underlie the coding of
whisker kinematics. Together, these results indicate that with a
very simple model, we are able to capture many of the essential
properties of TG neurons.

Mechanical rectification in SA neurons
One limitation of the basic model is shown in Figure 3H. Starting
at the second cycle, a large phase delay occurs in neuronal firing
compared with model output, suggesting that the receptor ele-
ment in SA neurons does not follow the stimulus throughout its
motion. This conjecture challenges our initial supposition that
firing occurs at events in which the whisker presses against the
receptor (Figs. 3D, 5A3). We chose to account for this phenom-
enon in our model by assuming that the receptor dissociates from
the whisker when it moves away in the null direction, beyond a
certain fixed point. This was implemented in the model by adding
an anchor point f (for follicle) connected to the receptor with a
rope-like structure, which exerts force only when it is fully
stretched, and has no effect otherwise. Namely, when the distance
between whisker and follicle is smaller than its resting value (s �
f) (Fig. 5B2), the original model, in which the receptor element
follows the stimulus, applies (Fig. 5B4, top). However, when the
distance between the two is larger than its resting value (s � f)
(Fig. 5B2), then the rope-like structure connecting the receptor to
the follicle prevents the receptor from moving beyond this point.
Instead, the receptor detaches and stops tracking the whisker
(Fig. 5B4, bottom). At this point, changing whisker direction will
not result in immediate neuronal discharge (as in the original
model), but rather, discharge is delayed until the receptor is re-
attached to the returning whisker (Fig. 5B1). Thus, we rectify the
motion of the receptor at a static point (Fig. 5B4, dashed line).
This second model, which we term the static rectification model,
is shown in Equation 7 in Materials and Methods.

Although the results of this version of the model are closer to
experimental data, they are still lacking in the temporal domain
(see the phase lag between the model and experimental responses
in Fig. 5B3, bottom two panels). To overcome this discrepancy,
we developed a third version of the model, called the dynamic

rectification model, in which the location
of the follicle element f changes. This vari-
ation in f is mediated by a connection be-
tween the follicle and the whisker through
a damped spring (Fig. 5C4). In this
model, the follicle follows the whisker at a
slow pace (Fig. 5C1, left, C2) (Minnery
and Simons, 2003; Fraser et al., 2006).
This motion continuously acts to change
the point at which the whisker would start
pressing against the receptor to elicit neu-
ronal discharge. Thus, whisker motion in
the null direction moves this point, lead-

ing to an earlier firing event compared with the static rectification
(second) model, in agreement with experimental data (Fig.
5C1,C2). The rectification of r means that it follows the stimulus
s only as long as the whisker presses against the follicle element
(s � f). This third model is shown in Equations 8 and 9.

In conclusion, two concurrent processes underlie neuronal
discharge: The rapid one is a function of the mechanical rela-
tion between receptor and whisker, and accounts for firing in
response to fast changes in whisker velocity and direction. The
slower one is a function of the relation between follicle and
whisker, and modulates firing at slower time scales by a mech-
anism that dynamically determines the interplay between
whisker and receptor. The interaction between these two pro-
cesses leads to stimulus time-course- and kinetics-dependent
changes in both the temporal pattern and magnitude of neu-
ronal responses.

Response attenuation and adaptation
TG neurons fire several spikes in response to constant velocity
deflections (Fig. 3H). Subsequent spikes in such bursts show in-
creasing ISIs, decreasing firing probability, and increasing jitter.
Although some aspects of this adaptation may be accounted for
by the mechanical part of the model, as the tissue’s elasticity
causes input currents to vanish soon after stimulus onset (Figs.
3E, 4), in effect two types of spike-dependent adaptation pro-
cesses are needed to account for the experimental data: a rapid
one that attenuates firing only within transient bursts of firing in
SA neurons, and a second, slower process that both diminishes
firing transients and progressively acts to decrease responses in
longer time scales, across multiple cycles of periodic stimuli, and
is found only in RA neurons. Spike-dependent adaptation is
shown in Equations 10 –13.

Response variability and noise
To account for the variability of responses, small as it may be, as
well as for responses to step whisker deflection during the hold
period of SA neurons, we added a noise current source. Since TG
neurons do not display spontaneous firing, noise must be stimu-
lus dependent (Stüttgen et al., 2006). Making matters even more
complicated is the fact that responses to step stimuli persist for
extended periods of time, well after all the mechanical elements
reach their fixed, steady-state positions. Therefore, we had to
look for a quantity that is both stimulus dependent and does not
vanish even for arbitrarily long hold periods. A simple solution is
to multiply the strain generated between whisker and follicle (the
follicle strain, s � f), which does not vanish during the hold
period, by a noise source factor. This nonvanishing property is
valid only if the follicle’s lever constant is smaller than 1, which is
the case in SA but not RA neurons (see Materials and Methods).

Figure 4. The influence of �r on amplitude and duration of receptor strain ([s � r]
). Plots of [s � r]
 for a wide range of
velocities and (750 –3000°/s) and three different values of �r are shown.
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The contribution of the noise to the neu-
ronal current is shown in Equation 14.

The components involved in neuronal
current generation in response to step
stimuli and in the resultant membrane
potential are shown in Figure 6, A and B,
for a single stimulus presentation. The
current injected to the neuron is deter-
mined by the interplay between receptor
and follicle strains. Initially, the current is
saturated by higher values of receptor
strain, which decays rapidly leaving only
the sustained, noisy current that is deter-
mined by the follicle strain and its resul-
tant noise.

Our results show that noise affects re-
sponses primarily during low-frequency
whisker movements such as continuous
static whisker bending (hold) during a
step stimulus. In this case, the multiplica-
tive nature of the noise current and the
magnitude of the follicle’s lever constant
(see above) guarantee linear relations be-
tween input and output, i.e., between hold
amplitude and firing rates. Thus, during
slow changes in whisker movement, the
stimulus (receptor strain) current van-
ishes because of its high-pass characteris-
tics (Fig. 4) (�r and lever constant equal to
1), leaving only the noise current as a
source for neuronal firing. During behav-
iorally relevant dynamic stimuli, which
have timescales closer to �r (which is at
least an order of magnitude faster than
�f), the contribution of the noise current
is negligible. This is in accord with our
data and the literature, which show that
TG neurons are very reliable in their
responses to high-frequency stimuli.
Therefore, the mechanical part (and con-
sequently the response) operates in two regimes (time scales),
and noise is most relevant only in the slower of the two.

Qualitative model predictions
Although the dynamic rectification model agrees well with our
data for SA neurons, we nevertheless strove to further validate the
accuracy of this model, all the more so given its added complexity
compared with the other two models (the basic and static recti-
fication models) by obtaining several other, nontrivial experi-
mental results and comparing the performances of the three
models in predicting them. In the first set of experiments, we mod-
ified the slow mechanical component ( f, the follicle) by superimpos-
ing triangular stimuli on positive and negative DC whisker offsets
(Fig. 7, row 1, three lines show positive, null, and negative off-
sets). The first model predicts no influence of whisker offsets on
response phase (Fig. 7A). The second model predicts, because of
static rectification, a large shift in response phase resulting from
the occurrence of firing events at fixed whisker positions, regard-
less of offset magnitude or direction (Fig. 7B). The third model,
because of its dynamic rectification, predicts a moderate phase
shift (Fig. 7C). The latter model was found to fit well with the
single-neuron data shown in Figure 7D and with all SAlt neurons
examined (n � 29) (Fig. 7E) (for a detailed analysis of these data,

see Materials and Methods). This result argues strongly against
the first model, somewhat less so against the second one, and in
favor of the third.

To further tease apart the second model from the third, we ran
an additional series of experiments. In the first set of experiments,
we examined the temporal evolution of response phase during
triangular stimuli superimposed on positive DC whisker offsets
(Fig. 7, row 2). The first and second models predict a constant
response phase during the course of the stimulus (Fig. 7A,B, row
2), whereas the third model predicts a slow, gradual change in
response phase, reaching the steady state as in row 1 (Fig. 7C, row
2). The latter model replicates the experimental data accurately.
An example of our findings is shown in Figure 7D, row 2, in which
the PSTH of a single neuron showed a gradual cycle-by-cycle
change in response phase. This was consistent for all SAlt neurons
(n � 29) (Fig. 7E, row 2). In the second set, a small triangular
stimulus was superimposed on a negative DC offset (Fig. 7A, row
3) such that whisker position remained below its resting value
throughout the stimulus. The first model predicts no influence of
whisker offset on response phase (Fig. 7A), the second model
predicts that neurons would not respond at all to this stimulus
(Fig. 7B), and the third model predicts a slow, gradual increase in
neuronal firing, as the follicle “catches up” with the whisker (Fig.

Figure 5. Comparison of the responses of the three models to triangular stimuli. A, Basic model. B, Static rectification model. C,
Dynamic rectification model. Triangular whisker stimuli with corresponding receptor (r) and follicle (f) movements (1); [s � f], the
gray line above the dashed horizontal line indicates positive values (2); and [s � r]
, model membrane potential, model output
spike train, and an example PSTH of a SAlt neuron (3) are shown. Only the third model captures the phase shift of the response
(vertical dotted line). A schematic diagram of the three models is shown (4) (see Mechanical rectification in SA neurons section).
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7C, row 3). As expected, the latter model replicated experimental
data more accurately than the other two models. An example of
our findings is shown in Figure 7D, in which the PSTH of a single
neuron showed a gradual increase in firing rate. This was consis-
tent for all SAlt neurons (n � 29) (Fig. 7E, row 3).

Finally, to examine the influence of stimulus frequency on
response phase, we used two triangular stimuli with different
amplitudes and frequencies, adjusted so that their velocities were
similar (Fig. 7A, row 4) (40 Hz, amplitude, 9.5° peak to peak;
velocity, 1514°/s; 20 Hz, amplitude, 14° peak to peak; velocity,
1123°/s). The first and second models predict no influence of
whisker velocity on response phase (Fig. 7A,B, row 4). The third
model predicts a counterintuitive advance in response phase at
higher frequencies (Fig. 7C, row 4). As with the previous findings,
the PSTH of a single neuron illustrates that the latter model faith-
fully captures this aspect of the responses (Fig. 7D, row 4). This
applies to all SAlt neurons in the sample (Fig. 7E, row 4).

Parameter fitting and model predictive capabilities
Thus far, we have constructed the model to account for as well as
predict responses in a qualitative manner. However, for the
model to predict responses at single-spike submillisecond reso-
lution, we had to assign numerical values to all model parameters

for individual neurons. Our strategy was as follows: we first fit
parameters to the three neuronal subpopulations described
above, based on average response profiles, and then adjusted as
few parameters as possible to predict the responses of single neu-
rons to novel stimuli (a full account of this procedure is found in
Materials and Methods).

An important consequence of this process is that it allows for
a better understanding of the roles played by different parameters
in shaping neuronal responses and demonstrates how changing
the values assigned to parameters affects response profiles. This is
exemplified by the role of �r, the receptor’s natural frequency, in
determining these neurons’ response properties. We have shown
above that TG neurons are divided into RA and two distinct
subtypes of SA neurons (Fig. 2A), and mentioned that these neu-
ronal types are traditionally differentiated by their characteristic
responses to step whisker deflections. Here we show that the
distinction between the three types in the initial response to step
stimuli can be accounted for by a change in the receptor’s natural
frequency, �r. Increasing the value of this parameter decreases
the time interval during which receptor strain is highest, leading
to a shorter duration discharge (Fig. 8B). In contrast, slower r
dynamics (lower values for �r) prolong the decay of receptor
strain, which in turn results in a longer period of depolarization
(Fig. 8B) and ultimately, because of the properties of I&F model
neurons, to decaying periodic discharges (Fig. 8C). Accordingly,
SAht neurons were fitted with low �r, reflecting prolonged initial
responses and periodic discharge, SAht were fitted with an inter-
mediate value, and RA neurons, with their very brief initial re-
sponses, were fitted with a high value of �r.

The value assigned for �r, the natural frequency, has an effect on
the accuracy with which the receptor follows the whisker during
more complex stimuli, thus providing us with an independent vali-
dation to our model, or more concretely, to our fitting procedure.
Specifically, we predict that a difference in �r will have an effect on
the response phase of neurons to periodic stimuli such that lower
values of �r (slower dynamics) will lead to delayed responses, and
vice versa. And indeed, our results indicate that SAht neurons, which
were fitted with lower �r values (in an independent set of step deflec-
tion experiments, as described above) show a phase lag in their re-
sponses (Fig. 8C,D) compared with SAlt neurons, and that this effect
can be explained by the different values assigned to each subpopula-
tion’s �r value (Fig. 8E).

Along the same lines, we can make an analogous prediction re-
garding the effect of the follicle’s lever constant, lf. As a part of our
fitting procedure, this parameter is determined using offset periodic
stimuli according to the slope of the linear fit between offset magni-
tude and phase of response (see Materials and Methods) (Fig. 1F).
As it turned out, the values that fit both subtypes of SA neurons were
lower than 1 (in fact, 0.7), whereas RA neurons’ lever constant was
found to equal to 1, since the response phase of this subpopulation
was independent of stimulus offset. However, the value of this pa-
rameter is crucial for shaping the responses to step stimuli during the
hold period, as explained in the response variability and noise sec-
tion above. Specifically, a value of 1 means that neurons do not fire
during the hold period, because follicle strain vanishes. Therefore,
our model predicts, based on responses to offset triangular stimuli,
that RA neurons are indeed rapidly adapting.

Accurate model predictions of responses to complex stimuli
Following the process of fitting our model, we sought to deter-
mine how well model neurons could predict neuronal responses
to very different white noise and texture stimuli (see Materials
and Methods). Since not all neurons, even within the same sub-
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group, respond in exactly the same way to the same stimulus,
some additional, individual fitting was required. Remarkably, we
were able to achieve excellent predictions by adjusting only a
single parameter: the gain of stimulus current. To evaluate model
performance, we smoothed the data and the corresponding
model with a Gaussian function. We then used the Pearson cor-
relation coefficient between model neurons’ responses and actual
neuronal data. Figure 9A shows a segment of the responses to
white noise stimuli by one neuron out of each of the three neu-
ronal subtypes, and by three corresponding model neurons. All
responses were captured very well: the results show a high corre-
lation between the smoothed PSTHs of the data and the corre-
sponding model (Gaussian SD, 1 ms) (Fig. 9B), as well as an
excellent match between the raster plots. For the three neurons
used, the correlations between data and model are 0.86 for SAlt,
0.81 for SAht, and 0.74 for RA. Similar correlations were calcu-
lated for all the neurons in the study. The distribution of the
correlation coefficients for the three types of neurons, as shown in
Figure 9C, illustrates the excellent performance of the model neu-

rons in capturing the responses of actual neurons (SAlt, 0.81 �
0.08, n � 29; SAht, 0.73 � 0.1, n � 6; RA, 0.71 � 0.03, n � 12). To
ascertain the temporal precision of the model, we varied the SD of
the Gaussian that was used to smooth the PSTHs. We found that
even at submillisecond resolutions, model neuron responses
were highly correlated with experimental data (Fig. 9D). The dif-
ferences of CCs between the neuronal subpopulations are not the
result of the model’s quality, but rather of the response charac-
teristics. Hence, the CCs of less active SAht and RA null-direction
units are much more susceptible to unitary mismatches between
model and data compared with the more active SAlt neurons.

Finally, to examine the performance of the model under nat-
uralistic conditions, we replayed texture-induced vibrations to
the whiskers using a galvanometer stimulator and recorded the
activity of TG neurons. We then fed the model with identical
stimuli and calculated the correlation between model and actual
neuron responses during passive whisker movements across sur-
faces (see Materials and Methods) (Fig. 9E). The correlation co-
efficient was 0.61. This was consistent in all study neurons

Figure 7. Predictions of the three models and their relationships with the experimental data. A, Basic model. B, Static rectification model. C, Dynamic rectification model. The top row (1) shows the impact
of DC whisker offsets (�7.59°) on response phase (18.9° peak to peak; the three lines show positive, null, and negative offsets of triangular stimuli). The colored circles indicate approximate model firing, the
green line is f, and the dashed line indicates response phase as a function of DC offset. D, The impact of DC offset on the discharge probability as a function of stimulus cycle in a SAlt neuron (same as Fig. 1 D). The
colors in the PSTHs corresponds to the different DC offsets. E, Quantification of the dependence of phase shift on DC offset in all SAlt neurons (solid black line; n�29). Dashed diagonal and horizontal lines show
the expected influences of static rectification and no rectification, respectively, on response phase in model neurons. The second row (2) shows the time course of the response phase in response to triangular
stimuli (18.9° peak to peak) superimposed on DC whisker offset (7.59°), the impact of DC offset on the response phase as a function of stimulus cycle in a SAlt neuron (D), and quantification of the dependence of
phase shift on cycle number in all SAlt neurons (E). The third row (3) shows the impact of DC whisker offset (�3.8°) on neuronal discharge in response to small triangular stimuli (3.8° peak to peak; red circles
indicate model firing; green line is f ), the impact of DC offset on the discharge probability as a function of stimulus cycle in a SAlt neuron (D), and quantification of the dependence of response probability on
stimulus cycle in all SAlt neurons (E). The bottom row (4) shows a counterintuitive increase in response phase with increased stimulus frequency, which indeed occurred in actual neurons (D) and quantification
of the dependence of phase shift on stimulus frequency in all SAlt neurons (E).
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(0.63 � 0.03; n � 3). It should be noted that the lower CCs
compared with those obtained during Gaussian noise stimuli
may reflect response sparseness (Jadhav et al., 2009; Lottem and
Azouz, 2009) rather than differences in model accuracy. To-
gether, these results show that the dynamic rectification model
can and does capture the responses of a variety of mechanorecep-
tors to complex stimuli.

Discussion
The rodent whisker somatosensory system naturally encoun-
ters a wide variety of mechanical stimuli such as texture, shape,
vibration, and pressure. This variety of stimuli necessitates a diverse
array of FSC-embedded mechanoreceptors, which shape all subse-
quent somatosensory processing. The complex mechanical struc-
ture of the FSC and the technical difficulty in assigning recorded TG

neurons to one of the numerous receptor
types within it (Chambers et al., 1972;
Gottschaldt et al., 1973; Rice et al., 1986;
Waite and Jacquin, 1992; Waite and
Tracey, 1995; Ebara et al., 2002) make the
formulation of a realistic electromechani-
cal model undesirable, even if it were fea-
sible. The aim of this study was to
characterize neuronal response properties
of mechanoreceptors and to develop a
versatile yet simple model that can accu-
rately predict their responses to complex
time-varying passive stimuli. This ap-
proach enabled us to infer the mecha-
nisms underlying these responses from
detailed examination of the statistical
properties of their impulse trains and to
test a large variety of hypotheses that in-
sights that were not available using tradi-
tional techniques. Given the simplicity of
the model, we can find out what tactile
features are encoded by the mechanore-
ceptors and transmitted to subsequent
processing stages simply by inspecting
how the model accomplishes this.

Methodological considerations
Before discussing the implications of our
findings, it is important to consider the set
of assumptions on which the interpreta-
tions are based. Rodents use their whis-
kers to locate and distinguish among
objects of different textures and shapes.
They do so by moving their whiskers ac-
tively as well as passively, namely, through
body and head movements (Welker, 1964;
Carvell and Simons, 1990; Brecht et al.,
1997; Sachdev et al., 2001; Krupa et al.,
2002). During passive whisker deflection,
the whisker and follicle move against
static muscles. In this mode, the activation
of mechanoreceptors is determined in
head-centered coordinates. In contrast, a
second form of sensory signaling occurs
during active motor-driven whisking
(Rice et al., 1986; Szwed et al., 2003). Dur-
ing active whisking, the follicle moves
because of muscular activation. Thus,
mechanoreceptor activation is determined

in an accelerating, follicle-centered coordinate system with inertial
forces, exerted within the follicle, shaping responses. Moreover, ex-
ternal forces of follicle compression and distortion by the surround-
ing tissue may lead to changes in the viscoelastic properties of the
tissue (Fee et al., 1997; Szwed et al., 2003; Ganguly and Kleinfeld,
2004). Because of the nature of the stimulus used in the current
study, our model can explain neuronal responses during the first
mode of activation. Its applicability during motor-driven whisking
in behaving animals remains to be tested.

Mechanisms of mechanotransduction within the FSC
Our results suggest that using a single parameter that defines the
time course of the interaction between whisker and receptor, we
are able to capture the neuronal responses to any number of

Figure 8. Changes in the time course of r can account for the initial responses of the different neuronal types to step stimulus
and phase precession during periodic stimulus. A, Whisker step stimuli with corresponding receptor and follicle movement (1) and
[s � r]
 and [s � f]
 (2). B, PSTH recorded from the three types of TG neurons (gray) and corresponding model neurons (black)
in response to 25 presentations of each stimulus. C, Triangular whisker deflections in the different neuronal subtypes showing the
impact of �r on response phase. Comparison of response phase in the model (1) and comparison of response phase in three
corresponding example neurons (2) are shown. D, Response phase in SAlt (n � 29), SAht (n � 6), and RA (n � 12) neurons. E, The
impact of �r on response phase in the model.
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complex tactile stimuli (Fig. 3, 7, 9). The
mechanoreceptors convert whisker
movement into strain, which is then con-
verted into neuronal discharge. Stimulus-
dependent mechanoreceptor responses
reflect the viscoelastic mechanical proper-
ties of the structure surrounding the re-
ceptor (Loewenstein and Skalak, 1966;
Bell and Holmes, 1992). Firing occurs at
very well-defined events when the whisker
presses against the receptor. Accordingly,
the magnitude and duration of these
events determine the latency to first
spike, interspike intervals, and the num-
ber of spikes within each event. Concur-
rently, a second process modulates
firing at slower time scales by a mecha-
nism that dynamically determines the
interplay between whisker and receptor
(Fig. 5). By using the interaction be-
tween these two processes, we were able
to capture critical aspects of mechano-
receptor response: velocity-dependent
response latencies, ISIs, and firing rates
(Fig. 3); direction selectivity of the dif-
ferent cell types; differential discharge pat-
terns in response to constant stimuli (Fig. 8);
phase precession in neuronal responses to
periodic stimuli (Fig. 8); and velocity- and
DC-offset-dependent phase shift in neuro-
nal responses (Fig. 7).

Several studies have shown that the
whisker FSC contains numerous mechano-
receptors (Rice et al., 1986; Ebara et al.,
2002) and that they are distributed all over
the FSC. Yet, it is common practice to use
the somewhat arbitrary classification of pri-
mary afferent neurons as either SA or RA,
based on whether or not they maintain neu-
ronal discharge throughout a sustained
stimulus (Shoykhet et al., 2000). Here we
show that the large morphological vari-
ability of mechanoreceptors in the follicle
can be reduced to three basic types of re-
sponses. Two plausible explanations can
account for this convergence. Mechano-
receptors’ response diversity may be stim-
ulus dependent. Specifically, it is plausible that the functional
diversity of mechanoreceptors will pop out during motor-
driven whisking. Alternatively, if indeed only three types of
“information channels” are used by downstream elements,
then mechanoreceptors’ morphological heterogeneity may
serve to compensate for the complexity and heterogeneity
within the follicle, so that neurons that innervate different
parts of the follicle, but nonetheless belong to the same func-
tional group, may display similar responses because of their
having different morphologies.

The apparent complexity of firing patterns for different cell types
may be reduced to numerical variants within a single unifying frame-
work characterized by a specific set of model parameters, each play-
ing a specific role in creating the characteristic spiking patterns.
Thus, the model can describe the responses of many types of mecha-
noreceptors and may be generalized into a universal model of

mechanotransduction. Its general properties notwithstanding, the
basic elements of our model do highly correspond with FSC struc-
ture and the mechanotransduction processes occurring within it.
For instance, its time-dependent mechanical responses reflect vis-
coelastic properties of the FSC (Loewenstein and Skalak, 1966; Dorfl,
1985; Bell and Holmes, 1992).

Coding tactile features
Our results also suggest that the encoding of whisker motion as
spike trains of TG neurons is fully determined by two processes:
(1) a series of brief, isolated events in which the whisker presses
against the receptor, which in turn responds with a burst of action
potentials; and (2) in SA neurons, noisy firing that results from
the strain exerted by the whisker on the follicle, even when the
whisker is not moving. However, the low response variability and
the high reliability during dynamic stimuli suggest that transient

Figure 9. The model neurons accurately predict neuronal responses to complex stimuli. A, Individual whiskers were presented
with filtered noise stimuli applied in each neuron’s preferred direction. Upward deflections are in the preferred direction, and
downward deflections in the null direction. B, PSTHs (top) and rasters (bottom) recorded from the three types of TG neurons (gray)
and corresponding model neurons (black) in response to 25 presentations of each stimulus. In the RA model neuron, the green and
red dots in the bottom right indicate the responses of the two subunits. C, Histograms of the correlation coefficients between model
and actual data in the three types of neurons. D, The impact of response resolution on the correlations between model and actual
data. E, PSTHs (top) and rasters (bottom) recorded from an SA neuron (gray) and corresponding model neurons (black) in response
to a replay of texture-dependent whisker vibrations.
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responses to whisker deflections are the basic elements repre-
sented by TG neurons, and that these discrete, nearly indepen-
dent firing events are the substrate for subsequent information
processing throughout the whisker-to-barrel system. These con-
clusions mesh well with the current behavioral evidence suggest-
ing that the whisker system is fine-tuned to the processing of very
brief, high-velocity, transient whisker deflections, such as contact
events during object localization (Szwed et al., 2003) and stick-
slip events, which are thought to underlie texture perception
(Mehta and Kleinfeld, 2004; Arabzadeh et al., 2005; Diamond et
al., 2008; Ritt et al., 2008; Wolfe et al., 2008; Jadhav et al., 2009;
Lottem and Azouz, 2009). According to this view, the mere oc-
currence of neuronal firing, perhaps within a large population of
neurons, signals the occurrence of a relevant tactile event. De-
pending on the behavioral context in which the animal is cur-
rently operating, the fine-scale structure of the response (e.g.,
number of spikes, ISIs, etc.) provides the details that characterize
that event.

Mechanoreceptor characterization
Over the years, several approaches have been used to examine and
model the encoding of sensory information at the receptor level.
Prominent among these is system identification, which is the best
understood and is most widely used in various sensory systems
(Keat et al., 2001; Pillow et al., 2005; Wu et al., 2006; Kim et al.,
2010). Although these models are flexible and powerful enough
to fit observed data with high temporal precision, some of them
are too complex to interpret and are somewhat agnostic about the
underlying anatomy and physiology of the system. Additionally,
a common feature of these models is that they are time invariant;
that is, neurons’ temporal filters are assumed to remain constant
over extended periods of time and over a wide range of stimulus
statistics. Our model and data, on the other hand, argue against
this assumption, which was also shown not to hold in the barrel
cortex (Maravall et al., 2007). For example, SA responses to a
noise stimulus riding on top of a null-direction DC whisker offset
are likely to be very low during the first few tens of milliseconds
after stimulus onset, building up gradually until a steady state is
reached (Fig. 7C). Furthermore, even during steady state, the
phase, rather than magnitude of responses, is likely to differ between
offset and control stimuli, because it differs during responses to
much simpler, offset triangular stimuli (Fig. 7A,B). Such nonlinear
effects in neuronal input–output functions are hard to resolve using
system identification techniques, especially those effects involving
changes in the precise temporal pattern of responses, as opposed to
coarser firing rate modulation. In contrast, such effects emerge di-
rectly from the dynamic structure of our model.

An additional feature of system identification models based
on reverse correlation analysis is that they aim at characterizing
neurons according to a particular, meaningful stimulus feature
for which they are sensitive (such as whisker kinetic features)
(Petersen et al., 2008; Kim et al., 2010). This can also be achieved
by our model as one of its emergent properties. We argue that the
neuronal coding of whisker kinetics originates in the TG and may
be explained mechanistically by our model. For example, in re-
sponse to a noise stimulus, a direction-selective neuron, having
slow follicle dynamics (such as an SAht neuron), will discharge
almost exclusively when the whisker is in a positive position (Fig.
9). Reverse analysis of such a neuron will characterize it as a
position-coding neuron. Alternatively, a direction-nonselective
neuron, with fast follicle and receptor dynamics (such as an RA
neuron), will discharge only at instances during which the whis-

ker changes its direction of motion (Fig. 9), making it an
acceleration-coding neuron.

Related studies
Several studies over the years have encountered complex aspects of
TG neuronal behavior. However, in the absence of a unifying frame-
work, they had to do with ad hoc explanations, and in some cases
were even ignored. The current study, on the other hand, proposes a
framework within which previous complex findings fit easily. One
such aspect is the apparent phase preference of neurons in response
to periodic stimuli. This property, which is also exhibited in the
brainstem and up through to the thalamus (Deschênes et al., 2003)
and the cortex (Ewert et al., 2008), is easily explained by our model.
Indeed, the phase of firing within one cycle (or one half of a cycle, in
the case of direction-nonselective cells) is determined by mechanical
rectification that limits the range of possible neuronal phase prefer-
ence for a wide range of stimulus frequencies. Another observation is
the gradual change in response magnitude and phase that takes place
during offset repetitive whisker deflections (Fraser et al., 2006; Gerd-
jikov et al., 2010). This observation has been extensively analyzed in
the current study, playing a major role in the construction of the
dynamic rectification model.

Although our approach is similar to other efforts to describe
mechanotransduction in the FSC (Mitchinson et al., 2004, 2008),
the proposed model, we believe, constitutes a further step toward
the understanding of mechanotransduction in a simple modular
framework, which accounts for all known properties of primary
afferents in the FSC, as far as passive whisker deflection is con-
cerned. The model was designed so that it can easily be converted
for application to analogous systems in other animals, most likely
to the closely related and much studied primate glabrous skin
somatosensory system. Although some aspects of the model, such
as neuronal adaptation, are commonly being used in the model-
ing of sensory as well as other systems, other aspects, which may
be of relevance to other systems and modalities, are presented
here for the first time. One such aspect is the reduction of the
complex biomechanical and molecular processes underlying
mechanotransduction to a simpler form consisting of a single
viscoelastic element. In this framework, the element’s character-
istics, which as we show here can be described by only a single
parameter (the elements natural frequency), determine most if
not all of the features of somatosensory coding. Another gener-
alization may be drawn from our use of multiplicative noise to
describe the magnitude and temporal structure of sustained
slowly adapting responses, which is one of the fundamental func-
tional characteristics of somatosensory as well as other sensory
neurons, the presence or absence of which is commonly used to
classify them. Other, more subtle aspects of our model, such as
dynamic rectification, are more likely to reflect more specific
adaptation processes, but nonetheless should provide insight into
somatosensory information processing.
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