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Hypothetical and Real Choice Differentially Activate
Common Valuation Areas

Min Jeong Kang,' Antonio Rangel,>* Mickael Camus,? and Colin F. Camerer2>
"Haas School of Business, University of California, Berkeley, California 94720, and Humanities and Social Sciences, and *Computational and Neural
Systems, California Institute of Technology, Pasadena, California 91125

Hypothetical reports of intended behavior are commonly used to draw conclusions about real choices. A fundamental question in
decision neuroscience is whether the same type of valuation and choice computations are performed in hypothetical and real decisions.
We investigated this question using functional magnetic resonance imaging while human subjects made real and hypothetical choices
about purchases of consumer goods. We found that activity in common areas of the orbitofrontal cortex and the ventral striatum
correlated with behavioral measures of the stimulus value of the goods in both types of decision. Furthermore, we found that activity in
these regions was stronger in response to the stimulus value signals in the real choice condition. The findings suggest that the difference
between real and hypothetical choice is primarily attributable to variations in the value computations of the medial orbitofrontal cortex
and the ventral striatum, and not attributable to the use of different valuation systems, or to the computation of stronger stimulus value

signals in the hypothetical condition.

Introduction

Real choices are binding consequential commitments to a course
of action, like buying a house, accepting a job, or casting a vote.
However, scientists and forecasters interested in these real
choices often settle for measuring hypothetical statements about
likely or future choices instead. Hypothetical choices are com-
mon in psychology and neuroscience experiments when imple-
menting real choice is impractical or unethical. The relationship
between the two types of choices is also conceptually important
because complex real choices usually have hypothetical future
plans embedded in them. For example, a student might make a
real binding choice of a university to attend, planning to major in
electrical engineering, but the planned major is itself a hypothet-
ical future choice, at the time of the real university choice.

The reliance on hypothetical choice data presumes that hypo-
thetical choices are usually good forecasts of actual choices. But
saying “We should get married!” is not the same as saying “I do,”
which is a legally binding real choice. Furthermore, many studies
have found a “hypothetical bias”: people overstate hypothetical
valuations (Cummings et al., 1995; Johannesson et al., 1998; List
and Gallet, 2001; Little and Berrens, 2004; Murphy et al., 2005;
Blumenschein et al., 2007) and plans (Ariely and Wertenbroch,
2002; O’Donoghue and Rabin, 2008; Tanner and Carlson, 2009)
compared with carefully matched real choices.
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To explore the neural bases of this phenomenon, we used a
simple functional magnetic resonance imaging (fMRI) task in
which subjects make real and hypothetical purchase decisions for
consumer goods. The experiment was designed to test two hy-
potheses regarding two potential explanations of hypothetical
choice bias. Hypothesis 1 states that the hypothetical choice bias
would be attributable to the deployment of different valuation
systems (with potentially different properties) during real and
hypothetical choice. Indeed, there are conceivable differences be-
tween real and hypothetical choices: real choices are typically
precise, immediate, have higher stakes, and are often more emo-
tionally charged, whereas hypothetical choices, which have no
consequence, might be rapid and mindless, requiring fewer cog-
nitive resources.

However, the alternative hypothesis—the same valuation sys-
tems are recruited for both types of decision—cannot be dis-
missed a priori because previous studies have found that the
certain areas of the brain, including the orbitofrontal cortex, en-
code stimulus values during simple real economic choice (Knut-
son et al., 2007; Plassmann et al., 2007, 2010; Hare et al., 2008)
and during preference rating tasks involving neither commit-
ment nor actual decisions (Erk et al., 2002; Paulus and Frank,
2003). This alternative hypothesis leads to hypothesis 2, which
states that neural activity in the same valuation systems is stron-
ger in hypothetical choice than in real choice. This hypothesis
attributes the explanation for the hypothetical choice bias to ex-
cess responsivity of value areas to appetitiveness of stimuli during
hypothetical trials.

Materials and Methods

Participants. Twenty-four healthy right-handed male subjects partici-
pated in the experiment (mean age, 20.9 = 6.1 years; age range, 17—47).
Seven additional subjects were excluded for the following reasons. Four
subjects were excluded because (during a debriefing) they reported a
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misunderstanding of the instructions for the second part (the real choice
block); we considered this to compromise the internal validity of the
treatment. One subject was omitted since his median willingness to pay
(WTP) was zero. Two subjects were discarded since their choice data
were not reliably related to decision values, and hence their 6 values could
not be estimated—when we estimated a logistic regression model for the
frequency of purchase decision as a function of decision value in each of
real and hypothetical conditions (see Fig. 2 B, top), these subjects showed
a very low pseudo-R” in both of the conditions (pseudo-R* is a
goodness-of-fit measure for logistic models; their pseudo-R* values were
outside 2 SDs of the mean pseudo-R?). Subjects had no history of psy-
chiatric, neurological, or metabolic illnesses; had normal or corrected-
to-normal vision; and were not taking medications that interfere with the
performance of fMRI. Subjects were informed of the experiment and
gave written consent on arrival at the laboratory. The institutional review
board of Caltech approved the study.

Stimuli. Two hundred consumer products (e.g., DVDs, electronics)
(for a complete list, see supplemental Table 1, available at www.jneurosci.
org as supplemental material) were presented to the subjects using color
pictures (72 dpi). Stimulus presentation and response recording was
controlled by E-prime (Psychology Software Tools).

Procedure. Subjects were told that they would earn $60 for completing
the experiment. The experiment consisted of three parts—prescanning,
scanning, and postscanning (Fig. 1A). The scanning part had two
decision-making tasks—one hypothetical and the other real. Initially,
subjects were informed that there were three decision-making parts, but
detailed instructions for each part were not given until each part began.

In the prescanning part, subjects were shown images of the 200 con-
sumer products, one at a time and in random order. They were asked to
state a maximum hypothetical WTP for each item. In each trial, subjects
entered an amount between $0 and $50 using a sliding scale in $1 incre-
ments (Fig. 1B).

Based on each subject’s responses in the prescanning task, 100 prod-
ucts were selected for that subject for the scanning task—50 for hypo-
thetical trials and 50 different products for real trials. The details of the
selections are as follows. On completing the prescanning part, the com-
puter ranked products in a descending order of the subject’s reported
WTPs and then paired up each two adjacent products (i.e., {1st, 2nd},
{3rd, 4th}, ..., {199th, 200th}). Then, among 100 pairs it selected 50
pairs (the 17 pairs with the highest WTP, the 16 pairs with the medium
WTP, and the 17 pairs with the lowest WTP) and randomly chose one
product of each pair and assigned it to the hypothetical trials and the
other to the real trials. This procedure ensured that the distributions of
WTP in both blocks were comparable (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material). The median WTP of the
200 items that were initially valued in the prescanning phase was used
as the constant price for the rest of the experiment (mean price,
$10.42; SD, 5.93).

The scanning part had two blocks of purchase decision-making tasks.
Both blocks were identical except that the first was hypothetical and the
second was real. In each block, subjects were shown the 50 items associ-
ated with that type of task, one at a time, in random order (Fig. 1C). For
each item, they decided whether they wanted to buy the product shown at
a fixed price (the subject-specific constant price described above).

In the hypothetical trials, the decisions were hypothetical and did not
count. In the real trials, subjects learned that one of the 50 trials would be
chosen at random at the end of the experiment, and whatever decision
they had made in the chosen trial would be implemented as real, whether
it be to “buy” or to “not buy.” Note that since only one trial counted as
real, subjects did not have to worry about spreading a budget over the
different items, so they could treat each trial as if it were the only one.

Afterward, subjects did a final postscanner task. The procedure was the
same as in the scanning part except for shortened durations of the inter-
trial screens (500 ms each). The same 50 items that had been presented in
the scanning hypothetical trials were shown again in this postscanning
phase. This time, however, subjects made a real decision on these items.
The subjects were informed that exactly 1 trial of the 100 real trials,
including 50 from the real trials in the scanner and 50 from this “sur-
prise” real phase, would be randomly selected and implemented, based
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Figure 1.  Experimental procedure. A, Timeline of the entire experiment. B, An example
screen for the prescanning trials. C, Time structure of an individual trial in the scanning part. The
structure of the hypothetical and real trials was identical. There was no repetition of a product
between the hypothetical and real trials and subjects were asked to specify their decision (“yes”
or “no”) as well as the confidence level (“strong” or “weak”) in the decision. During the product
image presentation, subjects were asked to press any button as soon as they had reached a
decision. The response time during this phase were used for fMRI analysis. Subjects were given
up to 4 s to submit their decision. Buttons assigned to each decision response were counterbal-
anced across blocks and subjects. Failure to submit a decision was treated as a missed response.

on their decision made in the selected trial. The purpose of this postscan-
ning part was to measure switches from hypothetical to real decisions for
a matched set of items presented once in each condition.

Note that the hypothetical-then-real order was deliberately not coun-
terbalanced for the following reasons. First, it is possible that there might
be an ordering effect in which thinking about real choices first would spill
over to affect valuation in hypothetical tasks: identifying such an effect
would require counterbalancing and substantially more subjects. Fur-
thermore, hypothetical trials contaminated by such an ordering effect
would not be very informative about the neural mechanisms solely ded-
icated to hypothetical decision making. In contrast, note that the spill-
over effect is expected to be minimal, if any, in the hypothetical-then-real
order since in the real condition subjects have a strong incentive to
change or adjust any behavior carried over from the previous hypothet-
ical block (i.e., it is in their best interest to make a decision according to
their true preference in the real trials). In addition (despite our con-
cerns), previous studies that used a within-subject design found no evi-
dence for ordering (Cummings et al., 1995; Johannesson et al., 1998).
Second, we also estimated the primary general linear model (GLM 1)
reported below with a trial number included as an additional regressor,
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and then repeated the analysis; there was little difference in the results.
Any plausible model of ordering effects should show a within-block ef-
fect of trials (because of practice effects, for example), so any such effects
are controlled for in this general linear model (GLM) with a trial regres-
sor. Third, hypothetical decision followed by real decision is a natural
order for forecasting purposes. In most applications, hypothetical deci-
sion data are gathered in advance of real decisions (e.g., polls are only
useful before elections). Hence, this particular order of events (hypothet-
ical followed by real decision) is of major interest. Finally, in a separate
behavioral study the opposite “real-then-hypothetical order” was pre-
sented (see the section below for details). This behavioral test for the
potential effects of treatment order shows there is little effect; the hypo-
thetical bias is comparable (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material), although the real-hypothetical
gap is a bit smaller, which might be attributable to session variability.

Behavioral study of ordering effects. The experimental procedure, task,
and stimuli were identical except that the order of the hypothetical and
real blocks in the second part was changed; that is, hypothetical, real, and
then surprise real. Unlike the fMRI experiment, all parts of the behavioral
experiment were conducted outside the scanner and subjects were run in
a batch (multiple subjects at a time). All participants were Caltech stu-
dents (N = 15; all male; mean age, 20.5 & 2.97 years; age range, 17-27).
Four additional subjects initially participated in the experiment, but on
completion of the first part, their price (median WTP) was $0—they
were not asked to continue.

The subjects in this study also showed hypothetical bias. However, the
overall purchase percentage in this study is ~10% lower for all types of
trials than the fMRI study (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). This overall decline might be
attributable to session variability such as the following: (1) the statistical
variance of price was larger for the fMRI subjects (35.21 compared with
12.11 of the behavioral subjects); (2) the behavioral subjects might not
have been from the same subject pool as the fMRI subjects—the subjects
in this experiment might have behavioral characteristics that are different
from the fMRI subjects (such as a risk attitude—some subjects only
participate in behavioral experiments because of a fear of the fMRI tech-
nique); or (3) unlike the fMRI study, multiple subjects (~10) were run
simultaneously.

Behavioral experiment for hypothetical and real WTP. Eleven Caltech
male students participated in the experiment (mean age, 20.55 * 3.42
years; age range, 18-29). Subjects were paid $60 for participation. The
experiment consisted of two parts of 200 trials each. In the first part,
subjects were presented with the same 200 consumer products as in the
prescanning part of the fMRI study and asked to report hypothetical
willingness to pay, ranging $0~$50, for each item. The second part was
identical with the first part except that they were unexpectedly asked to
report real WTP for the same 200 items. Subjects were informed at the
beginning of the second part that one of these trials would count as real.
To elicit real WTP, we used a Becker—DeGroot—Marschak auction mech-
anism (Becker et al., 1964; Plassmann et al., 2007; Hare et al., 2008). The
mechanism worked as follows: Subjects reported WTP for each of the 200
products. At the end of the experiment, one of the 200 trials from the real
WTP part would be randomly selected. The computer generated a ran-
dom integer between 0 and 50 (each integer over the interval was equally
likely) and set it as a price for the item in the chosen trial. If the subject’s
reported WTP was greater than the randomly generated price, say $X,
then she paid $X and got the item. Otherwise, she did not get the
product and paid nothing. The optimal strategy for a subject is to
report exactly what one is willing to pay for the item presented
(Becker et al., 1964).

Data acquisition and preprocessing. fMRI data were acquired on a Sie-
mens 3T Trio MRI scanner (repetition time, 2000 ms; echo time, 30 ms;
field of view, 192 mm; 32 axial slices; 3 X 3 X 3 mm? resolution) in two
separate sessions of ~14 min each. Blood oxygenation level-dependent
(BOLD) contrast was measured with gradient echo T2*-weighted echo-
planar images (EPIs). To optimize functional sensitivity in the orbito-
frontal cortex (OFC), we used a tilted acquisition sequence at 30° to the
anterior commissure—posterior commissure line (Deichmann et al.,
2003) and an eight-channel phased array coil that yields a 40% signal
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increase in this area compared with a standard coil. Slices were col-
lected in an interleaved ascending manner. The first three volumes in
each session were discarded to permit T1 equilibration. A high-
resolution T1-weighted structural scan (1 X 1 X 1 mm?) was ac-
quired from each subject to facilitate localization and coregistration
of functional data.

fMRI data analysis was performed by using SPM5 (Wellcome Depart-
ment of Imaging Neuroscience, London, UK). Images were corrected for
slice acquisition time within each volume, motion corrected with align-
ment to the first volume, spatially normalized to the standard Montreal
Neurological Institute EPI template, and spatially smoothed using a
Gaussian kernel with full width at half-maximum of 8 mm. Intensity
normalization and high-pass temporal filtering (filter width, 128 s) were
also applied to the data. The structural T1 images were coregistered to the
mean functional EPI images for each subject and normalized using pa-
rameters derived from the EPI images. All regression models included six
regressors indexing residual motion and two regressors for session base-
line as regressors of no interest.

GLM 1. We estimated two different GLMs of BOLD activity to test the
two hypotheses. The first GLM assumed first-order autoregression and
included the following regressors that capture the main events in our
experiment: H1, an indicator function denoting product image pre-
sentation in the hypothetical trial; H2, HI modulated by modified
decision value (mDV) (for a definition of mDV, see Results); H3, H1
modulated by an indicator function denoting yes decision in the given
trial; H4, an indicator function denoting a first button press during
product image presentation in the hypothetical trials; H5, an indica-
tor function denoting response phase (between the onset and the
offset of the response screen) in the hypothetical trials; R1, an indi-
cator function denoting product image presentation in the real trial;
R2, R1 modulated by mDV; R3, R1 modulated by an indicator func-
tion denoting yes decision in the given trial; R4, an indicator function
denoting a first button press during product image presentation in
the real trials; R5, an indicator function denoting response phase in
the real trials.

The regressors H1-H3, H5, and R1-R3, R5 were modeled using boxcar
functions with subjects’ response time as a duration. The regressors H4
and R4 were modeled using stick functions. We orthogonalized H4 and
R4 with respect to H1 and R1, respectively. Each of the regressors was
convolved with a canonical hemodynamic response function.

We then calculated the following first-level single-subject contrasts:
(1) the real versus the hypothetical trial during image presentation (R1-
H1), (2) image presentation in the hypothetical trials modulated by mDV
(H2, or hypothetical*mDV hereafter), (3) image presentation in the real
trials modulated by mDV (R2, or real*mDV), and (4) the real versus the
hypothetical trials during image presentation modulated by mDV [R2-
H2, or (real*mDV — hypothetical*mDV)].

Finally, we calculated second-level group contrasts using a one-sample
t test. All statistical inferences regarding the fMRI data were performed at
a level of p < 0.001, uncorrected, with an extent threshold of 5 voxels
unless noted otherwise. Anatomical localizations were then performed
by overlaying the ¢t maps on a normalized structural image averaged
across subjects, and with reference to an anatomical atlas (Duvernoy,
1999).

GLM 2. The second GLM was identical with the first one except that
activity at the time of real and hypothetical decisions was modulated by
DV, instead of mDV (see Results for a precise definition).

Psychophysiological interactions model. The goal of psychophysiologi-
cal interaction (PPI) analysis was to investigate whether functional con-
nectivity between areas of the anterior cingulate cortex (ACC) and the
medial orbitofrontal cortex (mOFC) identified in GLM 1 differed be-
tween real and hypothetical trials (Friston et al., 1997). The analyses
proceeded in three steps.

First, we extracted individual average time-series of BOLD activity
within a region of interest (ROI). The ROI was defined as a 4 mm sphere
surrounding each individual’s peak activation voxel within the func-
tional mask of the ACC shown in Figure 4C (in orange, right panel).
Individual subject peaks within the ACC mask were identified based
on the areas having the highest Z values in the (real*mDV —
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hypothetical*mDV) contrast. Variance associ-
ated with the motion regressors was removed 25
from the extracted time series. The time course

was then deconvolved, using the canonical he- 20
modynamic response (HDR), to estimate the
underlying neuronal activity in the ACC
(Gitelman et al., 2003).

Second, we estimated a GLM with the fol-
lowing regressors: PPI-R1, an interaction be-
tween neural activity in the seed region and an 5
indicator function for real trials (real trials
coded as 1; hypothetical trials as —1); PPI-R2, 0
an indicator function for the real trials; PPI-R3,
the original BOLD eigenvariate (within the 4
mm sphere). C

These regressors were convolved with a ca-
nonical HDR. The model also included motion
parameters as regressors of no interest. Note
that the first regressor identifies areas that ex-
hibit task-related functional connectivity with
the ACC; specifically, it identifies areas in
which the correlation in BOLD activity with
the ACC increases differentially during real tri-
als (compared with hypothetical trials).

Third, a second-level analysis was per-
formed by calculating a one-sample t test on
the single-subject contrast coefficients.
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Results

Behavioral differences between real and
hypothetical decisions

The distribution of the WTPs for pre-
sented products was matched across both
conditions (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material). As a result, in the absence of a hypo-
thetical bias, subjects should have purchased at the same rate in
both conditions. However, as was found in previous studies, sub-
jects exhibited a significant pro-purchase bias during hypotheti-
cal decisions: they indicated an intention to purchase in 53%
(SEM, 1.74%) of the hypothetical trials, but only in 38% (SEM,
3.10%) and 40% (SEM, 3.15%) of the real and surprise real trials
(p<0.0001 and p < 0.0008, respectively, within-subject paired-
sample ¢ tests) (Fig. 2A).

Figure 2 B provides additional evidence for the hypothetical
bias. The top panel plots the estimated mixed-effects logistic fit
for the frequency of purchase as a function of the decision value
(DV), which equals the subject’s hypothetical WTP for the item
minus the constant price at which it was sold (i.e., DV = WTP —
price). In the hypothetical case, the fitted curve crosses 50% pur-
chase probability line approximately at the zero DV point, indi-
cating that at this DV subjects were indifferent between buying
and not buying, as implied by the definition of DV and rational
stochastic choice. In contrast, in the real case the curve crosses at
$6.25 (p < 0.0001) (supplemental Table 2, available at www.
jneurosci.org as supplemental material). That is, for goods with
stated values $6.25 above the price, in the real condition subjects
are equally torn between purchasing and not, which suggests that
the hypothetical valuations were overstated by approximately
$6.25 (compared with implicit decision values revealed by real
choices).

This gap suggests that the WTP, which was initially stated
before scanning, is not a perfect measure of the ultimate stimulus
value that was used to make the real choices during scanning,
which is sometimes called decision utility (Kahneman et al,,
1997). The reason for this inference is that the probability of

SY, strong yes. n.s., Not significant. *p << 0.005. B, Correction of biases in DV. The curves show fitted probability of “yes” purchase
decisions before correction (top) and after correction (bottom). ¢, Median estimated 6 for hypothetical and real trials. Signed-rank
test, **p << 0.0003. Error bars indicate SEs. D, Average decision time in hypothetical and real trials by sign of mDV. Paired
two-sample t test, ***p << 0.008. Error bars indicate SEs.

buying an item with a DV of zero (based on the initial stated
WTP) should be 50% in the real condition, if the initial WTP is
being used to compute decision utility, but choice probabilities
are actually <50% during real choice. Furthermore, we con-
ducted a separate behavioral study that directly compared hypo-
thetical and real WTP for the same product (see Materials and
Methods). Subjects in that study tended to report hypothetical
WTPs that were then reduced by >50% when real WTP was
elicited (supplemental Fig. 3, Table 3, available at www.jneurosci.
org as supplemental material).

For some of the fMRI analyses performed below, it is useful to
construct a behavioral measure of stimulus values that is consis-
tent with the actual choices observed in each condition. We con-
structed such a measure by using observed decisions to infer how
the WTPs need to be adjusted in the hypothetical and real condi-
tions to generate a good measure of trial-by-trial decision values;
that is, a common metric independent of condition. To do so, a
discount factor in the real condition, 8%, is estimated for each
subject in the real condition, which creates a modified DV
(mDV) of 8% - WTP — price. The value of % was estimated for
each subject by imposing the requirement that the fitted proba-
bility of purchase at the estimated mDV of zero be 50% in real
trials. For comparability, discount factors in the hypothetical
condition, 8™, were also estimated using the same procedure.
That is, subject-specific 8" was estimated with the requirement
that the fitted purchase probability at the estimated mDV
(=0 - WTP — price) of zero be 50% in hypothetical trials. More
specifically, the algorithm used to estimate 0 values is as follows:
(1) Let P(x) be a fitted probability of “yes” purchase decision at x.
(2) Then P(mDV) = 1/(1 + e~ (« * BmDV)y yhere mDV =
0+ WTP — price; a and S are estimated coefficients of a logistic
regression model whose dependent variable is purchase decision
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(yes = 1; no = 0) and independent variable is mDV(=
6 - WTP — price) (asin Fig. 2B). (3) Find 0% where P(0) = 0.5 (or
a = 0) in the real trials; find ™ where P(0) = 0.5 (or & = 0) in the
hypothetical trials.

Figure 2 B, bottom, shows the smoothed choice probability
curves using the mDV. Median 6" (=1.03) for hypothetical trials
is not significantly different from 1, but the median ® (=0.60)
for real trials is significantly less than one (signed-rank test,
p > 0.5 and p < 0.0015, respectively) (Fig. 2C). The median
difference between 0™ and 6® is also significantly different
from zero (Fig. 2C).

This weighting pattern suggests that people act as if they are
approximately using the originally hypothetically stated WTP
when later making hypothetical purchase decisions, but that the
values that they placed on objects are ~40% lower when making
real purchase decisions. This numerical adjustment is a measure
of the degree of the purchase bias, and it creates condition-
specific measures of mDV that are comparable in their decision
implications across the hypothetical and real conditions.

Note that another conceivable way to modify the DV is to keep
WTP fixed, but adjust prices by multiplying price by a corrective
factor 0 (reflecting the possibility that subjects weight prices more
highly during the real condition). However, given the additional
behavioral evidence discussed above about how WTP decreases
between hypothetical and real conditions, it is unlikely that all of
the hypothetical bias can be attributed to an underweighting of
the prices.

Test of hypothesis 1: Are there different areas involved in the
computation of stimulus values in hypothetical and real
choice trials?
We tested hypothesis 1 using two different types of analyses.
The first analysis, based on GLM 1, looks for areas that corre-
lated with the mDV measure in each of the two types of trials. The
basic idea of this analysis is to identify areas that correlate with a
measure of stimulus value that is consistent with observed
choices in both conditions, which are candidates for putative
valuation systems, and to test whether the same or different areas
are active in real and hypothetical conditions. Note that since the
price of the items is constant across trials, the correlation with the

Neural activity modulated by mDV and DV in real versus hypothetical decisions. 4, €, The brain encodes mDV and DV
in the same areas in real and hypothetical trials. Overlay of contrasts real*mDV and hypothetical*mDV contrasts (A) and real*DV
and hypothetical*DV contrasts (C). The “real” areas are a superset of the “hypothetical” areas. p << 0.001, uncorrected. B, D,
Conjunction analysis of real*mDV and hypothetical*mDV contrasts (B) and real*DV and hypothetical*DV contrasts (D) was per-
formed to test the conjunction null hypothesis at a threshold p << 0.001, uncorrected. The mOFC and VStr show conjointly
significant activations modulated by mDV and DV in both real and hypothetical decision making.
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mDV variable is only driven by differ-
ences in adjusted item values. Thus, any
correlation with mDV is driven by the
modified WTP variable. We found that
similar regions, including the mOFC and
the ventral striatum (VStr), correlated with
the value of the goods that is consistent with
observed choices in both hypothetical and
real trials (Fig. 3A; supplemental Tables 4, 5,
available at www.jneurosci.org as supple-
mental material). We tested this further us-
ing a conjunction analysis (Nichols et al.,
2005), which confirmed that the mOFC and
the VStr are jointly active in both real and
hypothetical trials in response to mDV (Fig.
3B; supplemental Table 6, available at www.
jneurosci.org as supplemental material).

The second analysis, based on GLM 2,
looks for areas that correlated with the DV
measure in each of the two types of trials.
The basic idea of this analysis is to identify
areas that correlate with a measure of
stimulus values that is exactly the same
across conditions. This alternative analysis is motivated by the
possibility that the difference between real and hypothetical
choices might be driven by differences in how the prices are
weighted, or the net decision values compared with making a
choice, instead of being driven by how the stimulus values are
computed. Our results are similar to the results of the first anal-
ysis using mDV. We found that similar regions of the mOFC and
the VStr correlated with the value of the goods in both types of
trials (Fig. 3C; supplemental Tables 7, 8, available at www.
jneurosci.org as supplemental material). A conjunction analysis
again confirmed that the mOFC and the VStr are jointly active in
both real and hypothetical trials in response to DV (Fig. 3D;
supplemental Table 9, available at www.jneurosci.org as supple-
mental material).

In addition, to rule out any potential confound, we repeated
all the fMRI analysis using the difference between the market
retail price and the price offered to the subject, to see whether
valuation regions were sensitive to the “deal” subjects were get-
ting. However, this price differential regressor did not correlate
with activity in any of the regions, including OFC, VStr, and
ACC, which respond to the mDV regressor.

Test of hypothesis 2: Are the value signals computed in
common valuation areas stronger in the hypothetical case?
We tested hypothesis 2 using three different types of analyses.

First, we looked for difference in average activation between
the real and hypothetical conditions. Note that this question can
be addressed equivalently by looking at the regressors indicating
decision phase (not modulated by either of mDV of GLM 1 or DV
of GLM 2). We found stronger activation in the decision phase
for real than for hypothetical choice in ventromedial prefrontal
regions, including the mOFC and subgenual cingulate (Fig. 4A;
supplemental Table 10, available at www.jneurosci.org as supple-
mental material). In contrast, no areas exhibited the opposite
pattern of activation (stronger activity for hypothetical than for
real) at the omnibus threshold.

Second, we looked for areas exhibiting differential sensitivity
to the mDV regressor in real and hypothetical conditions using
GLM 1. The mOFC, ACC, caudate, and inferior frontal gyrus
were more responsive to mDV in real than in hypothetical trials
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(Fig. 4 B; supplemental Table 11, available at www.jneurosci.org
as supplemental material). No areas were more sensitive to mDV
in hypothetical trials at our omnibus threshold.

To further examine the difference in the strength of the re-
sponse to mDV, we conducted an independent ROI analysis in
the OFC. Figure 4C shows parameter estimates (3 values) for the
real*mDV and hypothetical*mDV regressors that were extracted
within the area of the mOFC activated in both conditions, aver-
aged across all voxels in that region for each subject, and then
averaged across subjects. To guard against overfitting, mOFC
ROIs for each subject were defined based on the second-level
contrasts, real*mDV and hypothetical*rmDV, which were inde-
pendently generated using data from the rest of the subjects (N —
1 subjects). The plot shows that the common area of mOFC is
more responsive to the adjusted value of items during real
decisions.

Third, we looked for areas exhibiting differential sensitivity to
the DV regressor in real and hypothetical conditions using GLM
2. As shown in Figure 5, A and B (and supplemental Table 12,
available at www.jneurosci.org as supplemental material), we
found similar, albeit weaker, results in this condition.

Task-dependent functional connectivity between the dorsal
ACC and the mOFC

The comparisons reported so far show substantial overlap in val-
uation areas during hypothetical and real choice, and stronger
activity during real choice. This raises the question of which areas
might be involved in generating the hypothetical bias. We used a
PPI analysis to carry out a post hoc test of the role of the dorsal
ACC. We focused on this area because, although it has not been
previously involved in the valuation process, it correlated with
mDV in real trials but not in hypothetical trials. This suggested
that this area might be involved in either adjusting the values
signals differently in the two conditions, or in implementing a
value comparison process that is more active in real trials. Con-
sistent with this hypothesis, the dorsal

ACC area exhibited stronger functional
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Figure4. Valuesignals stronger in the valuation systems during real choice. 4, The mOFCis
more actively engaged when real decisions are being made, compared with hypothetical deci-
sions (contrast without decision value modulator: real vs hypothetical; k = 5 voxels; orange:
p < 0.001, uncorrected; red: p << 0.005, uncorrected). B, Significantly active areas in the
(real*mDV — hypothetical*mDV) contrast. The mDV modulates mOFC and VStr activations in
hypothetical decision making to a lesser extent. k = 5 voxels; orange: p << 0.001, uncorrected;
red: p << 0.005, uncorrected. C, Subjects exhibited higher responsivity to mDV in real trials
compared with hypothetical trials (mean B = SEM).

connectivity with mOFC in real trials than A B
in hypothetice}l trials (supplemental Flg 4, p<0.001 Il p<0.005 (uncorr.) 0.04 pm0.157
Table 13, available at www.jneurosci.org o —_—
as supplemental material). g
[+1]

. . 0.02
Discussion
The goal of the current study was to use 0.01
fMRI to test the validity of two potential

explanations of the hypothetical bias ef-
fect. The first class of theories attributes
the effect to the use of substantially differ-
ent valuation circuitries, with potentially
different properties, in real and hypothet-
ical choice. The second class of theories
attributes the effect to the computation
of stronger value signals during hypo-
thetical choice in a common set of valu-
ation circuits.

Contrary to the first hypothesis, we found that a common set
of areas encompassing mOFC and VStr were active in both types
of trials and correlated with the decision value of goods at the
time of purchase decisions. This finding is particularly interesting
because several studies of real choice have found that the activity
in the area of mOFC identified here correlates with the value of
receiving food, pleasant smells, attractive faces, and abstract re-
wards such as money or avoiding an aversive outcome

Figure5.

Paired two-sample  test.

Hypothetical Real

Differential modulation of DV in real versus hypothetical decisions. A, Regions showing differential sensitivity to DV in
real trials compared with hypothetical trials. (real*DV — hypothetical*DV) contrast. Orange: p << 0.001; red: p << 0.005, uncor-
rected; k = 5. B, Average (3 values from hypothetical*DV and real*DV contrasts, respectively, within the mOFC regions activated
in both contrasts. As in Figure 4, to avoid overfitting, the mOFC ROIs for each subject were defined based on the second-level
real*DV and hypothetical*DV contrasts, which were independently generated using data from the rest of the N — 1 subjects.

(O’Dobherty et al., 2001, 2003; Small et al., 2001; Anderson et al.,
2003; Gottfried et al., 2003; Kim et al., 2006), and also with the
value of stimuli during real simple choices (Plassmann et al.,
2007; Hare et al., 2008).

Contrary to the second hypothesis, we found that activity in
valuation and cognitive control areas (mOFC, ACC, caudate, in-
ferior frontal gyrus) was more responsive to various behavioral
measures of stimulus values in real than in hypothetical choice.
This result is interesting because it rules out a natural explanation
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of the hypothetical bias—namely, that apparent overvaluation of
stimuli during hypothetical choice—is attributable to increased
activity in the valuation circuitry of the brain.

Since the analysis shows that there is evidence for stronger
neural activity during real choice, we can speculate about the
behavioral effects of that enhanced activity. ACC activity is more
strongly associated with decision value in real choices than in
hypothetical choices and is functionally connected (as shown by
PPI) to mOFC more strongly in real choice. One possibility is that
the ACC is involved in switching context-dependent valuation
from one context (hypothetical choice, which is closer to the
prescanner product valuation task) to a different and therefore
more cognitively demanding context (real choice). Another pos-
sible explanation is that the ACC activity in real choice, and
stronger activity in mOFC and VStr during real choice, reflect
implementation of a more careful comparison process between
products and prices in real choice than in hypothetical choice.
This latter hypothesis of enhanced comparison during real choice
is also consistent with two other behavioral facts: (1) decision
times were substantially faster for real choices than for hypothet-
ical choices when mDV was positive (Fig. 2D), and (2) choice
probabilities were more sensitive to mDV for real choices than for
hypothetical choices (i.e., the psychometric decision curves in
Fig. 2 B are more inflected) (supplemental Table 14, available at
www.jneurosci.org as supplemental material). However, addi-
tional research is certainly necessary to distinguish these two hy-
potheses by more precisely investigating the role of these regions.

Although not explored in the current study, there is another
possible explanation for the observed neural and behavioral dif-
ference between real and hypothetical choice. Attention might
have been differently allocated to the prices, during the two types
of decision making. We cannot test and hence rule out this idea
since the prices were not manipulated in the current study. How-
ever, this would be an interesting extension of the present study
and should be addressed in a future study with varying prices and
more direct measures of attention.

There are two potential practical implications of these results.
First, our study has a reassuring methodological conclusion for
scientific inference. In many experiments in psychology and neu-
roscience, it is common to elicit hypothetical choices or ask hy-
pothetical questions that cannot be actually implemented for
practical reasons. Typical examples include experiments for very
high stakes, payments with long delays, unusual highly controlled
social events, or morally charged consequences (Greene et al.,
2001, 2004; Delgado etal., 2005; Hariri et al., 2006; Monterosso et
al., 2007; Takahashi et al., 2009). Generalizing claims about neu-
ral processing in these hypothetical choice tasks to real choice
rests heavily on the assumption that neural processes engaged in
the two kinds of decisions are highly overlapping. If this assump-
tion is incorrect, the conclusions about neural mechanisms in
virtually all studies with hypothetical tasks are suspect.

Fortunately, our study shows that this overlap is mostly
present, in the domain of consumer goods purchase. Thus, an
important methodological conclusion of our study is an optimis-
tic one: conclusions about neural circuitry drawn from hypothet-
ical choice could generalize to real choice (in at least cases like
ours). This is welcome news since collecting hypothetical choice
data is all we can do for many phenomena in natural and social
sciences, even though the goal of collecting those data is to un-
derstand and predict real choices.

The second implication is more speculative. As noted briefly
in the Introduction, there is a substantial amount of data suggest-
ing systematic biases between what people say they would do,
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hypothetically, and what they actually do. One example is voting:
polls typically overestimate intention to vote (as do recollections)
and sometimes misforecast the direction of voting (Crespi, 1989;
Keeter and Samaranayake, 2007; Hopkins, 2009). In both com-
mercial and academic marketing research, self-reported inten-
tions to buy goods are widely used to plan the launch of new
products and forecast sales (Silk and Urban, 1978; Urban et al.,
1983; Infosino, 1986; Jamieson and Bass, 1989; Chandon et al.,
2004), but these intentions are often upward-biased. Surveys are
also routinely used to measure the value of nontraded public
goods (e.g., for cost—benefit analyses as inputs to environmental
protection, or to assess legal damages). These survey responses
are often thought to reflect imprecision and sometimes an up-
ward bias (Diamond and Hausman, 1994; Carson et al., 1996;
Mortimer and Segal, 2008). Since there is substantial overlap in
neural activity between hypothetical and real choices, but there
are also some apparent differences (e.g., the ACC activity, differ-
ential responsivity in the valuation areas), future studies could
potentially use neural data collected during hypothetical choice
to improve the forecasting of real choice from hypothetical data
with techniques such as neural decoding.
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