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Nucleolar Disruption in Dopaminergic Neurons Leads to
Oxidative Damage and Parkinsonism through Repression of
Mammalian Target of Rapamycin Signaling
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The nucleolus represents an essential stress sensor for the cell. However, the molecular consequences of nucleolar damage and their
possible link with neurodegenerative diseases remain to be elucidated. Here, we show that nucleolar damage is present in both genders in
Parkinson’s disease (PD) and in the pharmacological PD model induced by the neurotoxin 1,2,3,6-tetrahydro-1-methyl-4-phenylpyridine
hydrochloride (MPTP). Mouse mutants with nucleolar disruption restricted to dopaminergic (DA) neurons show phenotypic alterations
that resemble PD, such as progressive and differential loss of DA neurons and locomotor abnormalities. At the molecular level, nucleolar
disruption results in increased p53 levels and downregulation of mammalian target of rapamycin (mTOR) activity, leading to mitochon-
drial dysfunction and increased oxidative stress, similar to PD. In turn, increased oxidative stress induced by MPTP causes mTOR and
ribosomal RNA synthesis inhibition. Collectively, these observations suggest that the interplay between nucleolar dysfunction and
increased oxidative stress, involving p53 and mTOR signaling, may constitute a destructive axis in experimental and sporadic PD.

Introduction

The synthesis of ribosomal RNA (rRNA), the rate-limiting step in
ribosome synthesis, is intricately regulated to be responsive to
metabolism and specific environmental challenges (Grummt,
2003). Therefore, transcription of rRNA genes and their matura-
tion play a central role in the complex network that controls cell
growth and proliferation. Several stress stimuli, like DNA dam-
age, hypoxia, and nutrient deprivation, inhibit rRNA synthesis,
causing nucleolar disruption and release of proteins from the
nucleolus. The aberrant accumulation of nucleolar proteins in
the nucleoplasm interferes with the MDM2—-p53 degradation
complex, leading to elevated p53 levels and apoptosis (Lohrum et
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al., 2003; Kurki et al., 2004; Ofir-Rosenfeld et al., 2008), making
the nucleolus a decisive checkpoint of cellular well being (Rubbi
and Milner, 2003).

The transcriptional control of rRNA genes is mediated by the
transcription initiation factor IA (TIF-IA), which regulates the
activity of RNA polymerase I in response to extracellular signals
such as growth factors, nutrients, and environmental stress like
hypoxia or reactive oxygen species (ROS) (Mayer and Grummt,
2005; Moss et al., 2007). In line with this, genetic ablation of
TIF-IA leads to nucleolar disruption followed by p53-dependent
cell death (Yuan et al., 2005).

Nucleolar malfunction has been reported to contribute to the
pathology of several genetic disorders, such as Werner’s syn-
drome, Bloom’s syndrome, and Treacher Collins’ syndrome.
More recently, decreased rRNA synthesis has been reported in
neurodegenerative diseases like Alzheimer’s disease and Hun-
tington’s disease (Boisvert et al., 2007). However, despite the in-
creasing appreciation of the role of the nucleolus (and rRNA
synthesis) in the regulation of cellular growth and apoptosis, the
molecular mechanisms that link ribosome biosynthesis and nu-
cleolar structure to cell survival and neurodegenerative diseases
are still poorly understood.

We have recently shown that TIF-IA loss in mature neurons
has protracted effects on p53 stability and cell survival, reproduc-
ing the chronic nature of neurodegenerative processes (Parlato et
al., 2008). Here, we show that nucleolar disruption induced by
TIF-IA deletion selectively in dopaminergic (DA) neurons in the
mouse leads to a Parkinson-like state, characterized by increased
oxidative damage and progressive loss of substantia nigra neu-
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rons accompanied by marked deficiencies in motor performance.
In addition, we show that increased oxidative stress in DA neu-
rons, induced by the neurotoxic compound 1,2,3,6-tetrahydro-
1-methyl-4-phenylpyridine hydrochloride (MPTP), leads to
nucleolar dysfunction. Finally, we identify p53 and mamma-
lian target of rapamycin (mTOR) as key players in this destructive
interplay between nucleolar dysfunction and oxidative stress, which
we indicate is operant also in sporadic Parkinson’s disease (PD).

Materials and Methods

Mice. Mice were maintained in C57BL/6 background on a 12 h light/dark
cycle with water/food ad libitum. TIF-IA P*T™ mice were supplied with
liquid food to extend their life span. TIF-IA PAT“™ and TIF-IA PATCERT2 pjce
were produced by mating homozygous TIF-IA 19/°* mice (Yuan et al.,
2005) with DATCre (Parlato et al., 2006) and DATCre *®"? cloned in
frame with the ATG of the dopamine transporter gene contained in a
bacterial artificial chromosome (BAC). The modified BAC was used
for the injection into pronuclei of C57BL/6 oocytes. Induction of the
inducible Cre recombinase was achieved by injection of 1 mg of ta-
moxifen (Sigma-Aldrich) intraperitoneally, twice daily for 5 consec-
utive days. As control, we used littermates harboring only the floxed
alleles. Recombination pattern of DATCre **"? was assayed by cross-
ing with ROSA26lacZ reporter mice (Soriano, 1999). All experimental
procedures were approved by the Committee on Animal Care and Use
(Regierungsprasidium Karlsruhe) and performed in accordance with
the local Animal Welfare Act and the European Communities Coun-
cil Directive of 24 November 1986 (86/609/EEC). Both male and
female mice were used for the phenotypic analysis.

Pharmacological treatment and behavior. MPTP intoxication was per-
formed by three intraperitoneal injections at 24 h intervals of MPTP
(Sigma-Aldrich; three times 20 mg/kg body weight) and treated mice
were killed 1 d after the last injection as described previously (Schober et
al,, 2007). Treatment of mice with r-3,4-dihydroxyphenylalanine (-
DOPA) was performed as described previously (Szczypka et al.,
2001). Mice were intraperitoneally injected daily with 50 mg/kg
L-DOPA for 3 weeks. For long-term experiments, L-DOPA were im-
planted with the constant release amount of 1 mg/kg (Innovated
Research of America). One week after tamoxifen, TIF-TA PATCreERT2
and control littermates were injected with pifithrin-a (Alexis Bio-
chemicals) (2.2 mg/kg body weight) in PBS for 6 weeks. Motor coor-
dination measurements were done on the rotating drum with
accelerated speed (accelerator: Rotarod; Jones & Roberts; for mice
7650, TSE). After 10 min adaptation at 2.5 rpm, the time the animal
spent on the accelerating rod was recorded.

Immunohistochemistry, in situ hybridization, and cytochrome c oxidase
assay. Mice were killed with CO, and treated as described previously
(Parlato et al., 2006). The following antibodies were used: tyrosine hy-
droxylase (TH) (Millipore), Cre recombinase (Parlato et al., 2006), p53
(Novocastra), nucleophosmin (NPM) (Millipore), phospho-S6 (235—
236) (Cell Signaling), S6 (Cell Signaling), dopamine D, receptor (Sigma-
Aldrich), nitrosylated tyrosine (NITT) (Millipore), neuroketals (NK)
(Millipore), and 8-hydroxydeoxyguanosine (8-OHdG) (Millipore). The
histological assay to test the activity of cytochrome ¢ oxidase (COX) was
performed on unfixed frozen brain sections as previously described
(Kraytsberg et al., 2006). For immunofluorescence, as secondary anti-
bodies anti-sheep Alexa 594 and anti-mouse Alexa 488 (Invitrogen) were
used to detect TH and NPM or S6, respectively. Formalin-fixed, paraffin-
embedded sections of the midbrain autopsies from four PD and four
control cases were obtained from the German Brain Bank “Brain-Net.”
Immunohistochemistry (IHC) was performed as for the mouse samples.
B-Galactosidase (X-gal) staining was performed as previously described
(Parlato et al., 2006).

HPLC-electrochemical detection. For measurements of striatal dopa-
mine content, HPLC—electrochemical detection (HPLC-ED) was per-
formed as described previously (Schober et al., 2007).

RNA expression analyses. Substantia nigra (SN) and ventral tegmental
area (VTA) were punched out of 50-um-thick vibratome sections im-
mersed in RNALater using a puncher with 4 mm diameter. Total RNA
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Figure 1. Nucleolar disruption in PD. 4, B, Analysis of nucleolar integrity by NPM immuno-

staining (brown) in DA neurons (TH positive; blue) in age-matched controls and PD patients. C,
Quantification of visible nucleoli in four PD samples at different pathology progression show a
dramatic decrease of visible nucleoliin TH * neurons compared with controls. Scale bar: 4, B, 20
um. Error bars represent SEM.

was prepared with the RNeasy Mini Kit (QIAGEN). Analysis of gene
expression was performed with quantitative PCR (qPCR) using fluores-
cent TagMan beacons (Applied Biosystems) according to the manufac-
turer’s instructions. Briefly, total RNA was isolated and then reverse
transcribed with TagMan Reverse Transcription kit (Applied Biosys-
tems). The abundance of the following transcripts was measured: YY1,
UCP-2, TH. To verify the equal amount of input cDNA in each reaction,
we have also measured the abundance of two housekeeping gene tran-
scripts, Hprtl and B2m.

Quantitative analysis of DA neurons. The total number of TH-positive
neurons in SN and VTA, identified according to established anatomical
landmarks, were counted on vibratome sections, immunostained with a
specific TH antibody. For the oxidative damage, every fourth paraffin
section was used for cell counting, spanning the entire midbrain region
containing dopaminergic neurons. For each experimental group, four to
eight mice were used. The Image] program (http://rsb.info.nih.gov/ij/)
was used to determine the optical density of TH immunoreactivity in the
striata of control and mutant mice. Statistical analysis was performed by
using the GraphPad Prism program (GraphPad). Statistical significance
was assessed by Student’s ¢ test or one-way ANOVA. Values of p are
expressed compared with respective control (*p < 0.05; **p < 0.01;
***p < 0.001). Nucleolar integrity in TH-positive neurons was quanti-
fied on postmortem midbrain paraffin sections from age-matched con-
trol (n = 7), progressive supranuclear palsy (PSP) (n = 4), and PD
patients (n = 4) immunostained with anti-NPM (1:1000; Millipore
MAB4500) and anti-TH (1:500; Millipore AB1542) antibodies. For each
subject, the number of TH-positive neurons with clearly visible or dis-
rupted nucleoli was counted on four midbrain sections by the investiga-
tor, blind to the experimental conditions. Statistical significance was
calculated by one-way ANOVA followed by Tukey’s post hoc test using
GraphPad Prism software (GraphPad).

Results

Nucleolar damage leads to progressive loss of DA neurons
and parkinsonism

To analyze whether nucleolar damage is present in PD, we exam-
ined in postmortem human brain sections from four different PD
patients and matched controls (supplemental Table 1 A, available
at www.jneurosci.org as supplemental material) the distribution
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control embryonic day 18.5 (E18.5) em-
bryos, the nucleoli were visible as distinct
punctuate structures immunolabeled by
NPM-specific antibodies. In TIF-TIA™;
DATCre mutants (TIF-IAPATC™) mice,
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NPM was mainly nucleoplasmatic, conse-
quently to nucleolar disruption (supple-
mental Fig. 1, available at www.jneurosci.
org as supplemental material). At the
same stage, we observed increased p53
protein level and apoptotic cell death
(supplemental Fig. 1, available at www.
jneurosci.org as supplemental material).
Until day 15, TIF-1A PATC™ mice were
indistinguishable from control litter-
mates. Thereafter, they showed a progres-
sive reduction in weight gain (Fig. 2A). At
4 weeks, mutant mice exhibited abnormal
behavior, starting with slowness of move-
ments, gait and posture disturbances, and
finally culminating in twitching similar to

F 2000+ - H L-DOPA PD tremor (supplemental Movie S1, avail-
- i 1—;—#“5‘5“ able at www.jneurosci.org as supplemental
£ 15001 @ 22 material). By IHC with TH-specific anti-
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Figure2.  Ablation of TIF-IAin DA neurons leads to parkinsonism in mice. A, Weight curves show growth differences between 1, available at www.jneurosci.org as supple-

mutantand control littermates starting at P15 (n = 8). B, Loss of DA neurons in mutant mice at P30, visualized by immunostaining
using antibodies against TH. ¢, D, Quantification of DA neurons at different postnatal stages (P0, P15, P40, and P90), normalized to
control littermates and plotted as a histogram for each time point (n = 5), revealed that mutant and control mice did not show any
significant differencesin number of DA neurons at birth, whereas they are progressively lost at later stages. SN neurons (€) are more
susceptible to the loss of TIF-IA than VTA neurons (D). E, Levels of TH immunoreactivity in striata at P7, P15, and P30 were
normalized to control littermates and plotted as a histogram for each time point (n = 4). F, The striatal dopamine content
measured by HPLC-ED shows a 95% reduction compared with the control group at P40 (n = 5). G, Locomotor deficits of TIF-
mice determined by the accelerating rotarod assay. At P30, mutants show a locomotor deficit of 55% and at P60 of 76%
compared with control mice (n = 5). H, Rescue of TIF-IA AT mice by L-DOPA injection. Mutant mice (>7 weeks of age) treated
by daily injecting L-DOPA for 3 weeks gained weight similarly to control mice, whereas untreated mutant mice died without
gaining weight despite supplementation with liquid food (n = 4). Scale bar, 150 m. *p << 0.05; **p << 0.01;***p << 0.001. Error
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bars represent SEM.

of NPM in DA neurons, by IHC with TH and NPM (Fig. 1 A, B).
Interestingly, we found a significant decrease of nucleolar integ-
rity in DA neurons from these PD patients (Fig. 1C). To assess
whether nucleolar damage is also present in other parkinsonian
disorder, we analyzed brain sections from patients affected by
PSP (supplemental Fig. 1, supplemental Table 1B, available at
www.jneurosci.org as supplemental material). Also, for this dis-
ease there is a significant higher level of nucleolar disruption than
in age-matched controls. Although these findings do not prove
that the nucleolar damage initiates the neurodegenerative pro-
cess, they indicate that nucleolar integrity is lost during neurode-
generation in PD and may be a contributing factor to the cell
death.

To analyze the consequences of nucleolar impairment in DA
neurons, we ablated the TIF-IA gene using the Cre/loxP system in
DA neurons by crossing TIF-TA™ mice, homozygous for the
TIE-IA floxed allele (Yuan et al., 2005) with transgenic mice ex-
pressing the Cre recombinase exclusively in DA neurons (DAT-
Cre) (Parlato etal., 2006). In TH-immunoreactive DA neurons of

mental material).

TH immunoreactivity in DA terminals
in the striatum was decreased already at
postnatal day 0 (P0) (Fig. 2E), before any
loss of DA neurons (Fig. 2C,D). Measure-
ment of the dopamine content by HPLC
in TIF-IAPAT“" mice at 5 weeks of age
showed a 95% reduction of dopamine lev-
els compared with control mice (Fig. 2 F).
At 4 weeks of age, we observed a ~55%
reduction in motor performance of mu-
tant mice on the accelerating rotarod.
This decrease reached a ~76% decline at 8 weeks of age (Fig. 2G).
To establish the responsiveness to the dopamine precursor
L-DOPA, we gave L-DOPA (50 mg/kg, i.p.) to mice that already
showed a rather severe phenotype. Whereas mutants without
treatment died within 1 week, the treated mice survived and
gained weight during the 3 weeks analyzed (Fig. 2 H). Moreover,
increased growth of TIF-IAPAT™ mice was achieved 6 weeks
after continuous treatment by subcutaneous L-DOPA pellets
(supplemental Fig. 3, available at www.jneurosci.org as supple-
mental material). Together, these analyses demonstrate that ab-
lation of TIF-IA leads to progressive and differential loss of DA
neurons in the SN and VTA, reduction of the striatal dopamine
content, and severe impairment of motor performance.

Inducible ablation of TIF-IA in adult DA neurons

To dissect the sequence of events that link TIF-IA ablation with
loss of DA neurons and avoid possible developmental effects in
TIE-IAPATC™ mutants, we generated mice in which loss of
TIF-IA is induced in adulthood using an inducible Cre recombi-
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Figure3. Generation of the inducible DATCre *'* transgenic mouse line. 4, B, Brain sections
of the transgenic reporter line ROSA26 expressing the inducible Cre-recombinase injected with
either oil or tamoxifen. Whereas in mice injected only with oil, no activity of the reporter gene is
detected (4), mice injected with tamoxifen show specific activity of the reporter in the mesen-
cephalic region (B). C, D, The activity of the Cre recombinase is restricted to DA neurons, as
determined by X-gal staining (blue) in combination with TH immunohistochemistry (brown).
Theinset (D) shows a higher magnification of double-stained neurons (arrows). Scale bars: 4, B,
150 wm; €, 50 um.

nase under the control of the dopamine transporter gene
(Engblom et al., 2008). To this end, we used a modified Cre-
recombinase (CreX"?) that is inactive under normal conditions
but can be activated by applying tamoxifen. The line expressing
the Cre™® "2, referred to as DATCre™ "2, was crossed with the
ROSA26 reporter line (Soriano, 1999) to monitor recombinase
activity. DATCre "™ activity was induced in SN and VTA on
tamoxifen treatment (Fig. 3A,B) and recombination was re-
stricted to DA neurons as shown by colocalization of LacZ activ-
ity (blue) and TH immunoreactivity (brown) (Fig. 3C).

TIF-IAYY, DATCre ™™ mice (TIF-TAPATCrERT2) yyere gen-
erated, and at the age of 2 months, mutant and control litter-
mates were injected with tamoxifen and analyzed after 7 weeks
(Fig. 4A,B), 13 weeks (Fig. 4C,D), and 21 weeks (Fig. 4E, F).
Interestingly, Cre-induced inactivation of TIF-IA in adult
mice leads to a similar spatiotemporal sequence of the neuro-
degenerative process as observed in TIF-IAPAT<™ mice, in-
cluding early decline of TH immunoreactivity and dopamine
content in the striatum (Fig. 4G,J) followed by progressive
differential loss of DA neurons in SN and VTA (Fig. 4 H,I) and
motor dysfunction (Fig. 4K).

Together, these analyses demonstrate that ablation of TIF-IA
in adult mice leads to similar PD-like characteristics as shown for
the TIF-IA """ mutant.

Nucleolar disruption induced by TIF-IA loss leads to elevation
of p53 levels and p53-dependent apoptosis (Yuan et al., 2005;
Parlato et al., 2008), raising the possibility to prevent neuronal
degeneration by blocking p53 function. We therefore used
pifithrin-c, a chemical inhibitor of p53 (Komarov et al., 1999).
One week after tamoxifen induction, TIF-IAPATCERT2 e
were given pifithrin-a once daily for 6 weeks intraperitoneally.
Mock-injected TIF-IA PATCERT2 mice showed a 25% reduction
of DA neurons, but this was prevented by pifithrin-a treatment
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(supplemental Fig. 2, available at www.jneurosci.org as supple-
mental material). These data are also supported by the genetic
ablation of p53 in DA neurons on nucleolar damage analyzed 7
weeks after induction of the mutation by tamoxifen injection
(Fig. 4L).

Mitochondrial dysfunction inhibits mTOR and nucleolar
activity in DA neurons

DA neurons are known to suffer from higher oxidative stress
most likely because of their high rate of oxygen metabolism, low
levels of antioxidants, and high iron content (Abou-Sleiman et
al., 2006). Increased oxidative stress has been shown to reduce
rRNA synthesis (Mayer et al., 2004). To investigate whether nu-
cleolar activity is affected by increased oxidative stress in DA
neurons, we injected the neurotoxin MPTP (20 mg/kg body
weight) for 3 d into wild-type mice and analyzed them 1 d after
the last injection. Whereas in animals treated with NaCl, the pro-
tein NPM is mostly localized in the nucleoli (Fig. 5A), NPM in
DA neurons shows a more than threefold higher release into the
nucleoplasm after injection of MPTP (Fig. 5B) (5.33 = 1.38 vs
17 * 1.41%; p < 0.01). In situ hybridization using a probe for the
5'-external transcribed spacer (ETS) to detect pre-rRNA synthe-
sis revealed a strong reduction of transcriptional activity in DA
neurons of mice treated with MPTP (Fig. 5D, E) (74.54 * 5.76 vs
46.98 = 3.74%; p < 0.01). No significant change of pre-rRNA
synthesis was observed in the hippocampus that is not targeted by
the toxin (supplemental Fig. 3, available at www.jneurosci.org as
supplemental material). These analyses show that increased oxi-
dative stress leads to reduced nucleolar activity in DA neurons.

A major regulator of cell growth and metabolism in response
to environmental cues by promoting rRNA and protein synthesis
is the mTOR (Wullschleger et al., 2006). To determine whether
nucleolar dysfunction might be triggered by a stress-induced re-
duction in mTOR activity, we analyzed the effects of MPTP on
the phosphorylation level of the ribosomal protein S6 (p-S6), a
major target of mTOR (Gingras et al., 2001) (Fig. 5E, F). We saw
a significant decrease of p-S6-positive DA cells after MPTP treat-
ment (4.29 = 1.63 vs 31.33 £ 3.03%; p < 0.01). Although we
cannot exclude other mechanisms independent of mTOR, the
fact that mTOR is a major regulator of TIF-IA activity and rRNA
synthesis (Mayer et al., 2004) and its activity is strongly down-
regulated on MPTP treatment suggest that decreased rRNA syn-
thesis in the MPTP model could be ascribed to decreased mTOR
activity.

To elucidate whether nucleolar disruption makes DA neurons
more vulnerable to the mitochondrial damage induced by MPTP,
we treated TIE-IAPAT"ERT2 and control mice with MPTP 2
weeks after tamoxifen. As expected, at this stage TIF-TA PATEERT2
tants treated with NaCl showed no significant difference in the
number of TH ™ neurons compared with control mice. More-
over, whereas control mice show a 15% reduction in the number
of TH * neurons, TIF-TA PATCFRT2 mice treated with MPTP dis-
played a considerably higher loss of DA neurons (~40%) (Fig.
5@G). This analysis shows that DA neurons are more vulnerable to
the oxidative damage induced by MPTP if this insult is combined
with nucleolar damage.

Because increased p53 levels are an early consequence of nu-
cleolar damage, and p53 may set a negative feedback on mTOR
signaling (Ellisen et al., 2002; Budanov and Karin, 2008; De-
Young et al., 2008), we asked whether mTOR signaling itself is
impaired in TIF-TA PATCFRT2 mice, Indeed, we observed a signifi-
cant decrease in p-S6-positive DA neurons of TIF-IAPATCreERT2
mutant mice (Fig. 5H; supplemental Fig. 2, available at
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Figure4. Progressive loss of DA neurons in TIF-IA PAT*ERT2 ault mice. A~F, Loss of THimmunoreactivity in striata is visible in

TIF-IAPATCeERT2 1y tants (B) 7 weeks after tamoxifen injection compared with control (4), whereas TH ™ neurons in SN/VTA are

minimally affected. Thirteen weeks after injection, TH ™ fibers in striata disappear almost completely (D), and severe loss of DA in
SN is visible accompanied by partial loss of VTA TH ™ neurons. Loss of DA fibers and neurons further advances 21 weeks after
induction with tamoxifen (F). No changes are visible in the respective controls at 7, 13, and 21 weeks (4, C, E). G, Quantification of
the TH ™ immunoreactivity in TIF-IAPATERT2 mice in the striatum compared with respective control mice (n = 5). H, I, Percent-
age of remaining DA neurons in SN (H) and VTA (1) of TIF-IAPATER™2 mutants compared with control littermates (n = 4). J,
Measurement of the dopamine content in striata by HPLC-ED reveals in TIF-IAPAT" "2 mice 7 weeks after tamoxifen a ~45%
reduction, reaching ~80% 30 weeks after tamoxifen (n = 5). K, Locomotor deficits of TIF-IAPAT“*ERT2 mice determined by the
accelerating rotarod assay are detected 13 weeks after induction and worsen over time (n = 5). L, Analysis of TH * neurons in
control and TIF-IA; p53 "AT"*ER12 mice 7 weeks after tamoxifen injection in control (n = 7) and double mutants (DM) (n = 7). Error
bars represent SEM. Scale bars: A—F, top panels, 400 pum; bottom panels, 150 wm. *p << 0.05; **p << 0.01; ***p << 0.001.

www.jneurosci.org as supplemental material). This observation
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qPCR on RNA isolated from SN/VTA at
early stages after tamoxifen injection. We
found ~40% reduction of YY1 transcripts
in TIF-TA PATCrERT2 already 2 weeks after
TIF-IA ablation (Fig. 6A). Among the
genes transcriptionally regulated by
YY1, the uncoupling protein 2 (UCP-2)
transcripts were downregulated in TIF-
[A PATCreERT2 mice (Fig. 6 B).

To assay mitochondrial function in tis-
sue sections, we measured COX activity
by histochemical staining and densito-
metric analysis (Ekstrand et al., 2007). A
decrease of COX activity by ~40% was
observed 2 weeks after tamoxifen treat-
ment in TIE-IA PATCERTZ mytants (Fig,
6C), indicating that the mitochondrial
damage represents an early consequence
of the nucleolar damage. A profound ef-
fect on mitochondrial activity is also
present in the constitutive mutants as
early as E19 (supplemental Fig. 3, available
at www.jneurosci.org as supplemental ma-
terial). The impairment of mitochondrial
activity increases ROS levels and causes ox-
idative damage to proteins, lipids, and DNA
(Finkel, 2005). To monitor the oxidative
damage in TIF-IAPATERT2 mytants, we
determined the number of TH™ neurons
positive for markers of oxidative stress, like
nitrosylated proteins (NITT), NK, and
8-OHdG. Significantly higher levels of
NK (Fig. 6D,E), NITT (Fig. 6F,G), and
8-OHdG (Fig. 6 H,I) were found within
DA neurons of TIF-IAPATCTERT2 mjce 4
weeks after tamoxifen injection (Fig. 6]).
Together, these data identify nucleolar
disruption as a potent trigger of oxidative
stress and thus indicate a novel role for the
nucleolus in neurodegeneration.

Discussion

We have recently shown that, in contrast
to dividing neural progenitor cells, the
consequences of nucleolar damage trig-
gered by ablation of TIF-IA in differenti-
ated neurons are protracted over time and
involve the activation of an endogenous

not only suggests a positive-feedback loop active on mTOR after
nucleolar damage, probably p53 dependent, but also that other
mTOR-dependent functions might be influenced by the loss of
TIF-IA.

TIF-IA ablation leads to increased oxidative stress in DA
neurons

The mTOR pathway regulates not only cell growth by controlling
protein synthesis and stress responses (Wullschleger et al., 2006)
but also energy metabolism by controlling mitochondrial func-
tion (Schieke et al., 2006). The transcription factor yin-yang 1
(YY1) increases mitochondrial gene transcription in response to
mTOR activity (Cunningham et al., 2007). To further character-
ize the impact of mTOR downregulation observed in TIF-
A PATCreERT2 1y utant mice, we analyzed the expression of YY1 by

suicide response (Parlato et al., 2008). Here, we have exploited
the possibility to use this mutation to study the impact of nucle-
olar damage and its molecular consequences for neurodegenera-
tive diseases. In particular, we have restricted the nucleolar
damage to DA neurons. Thus, we were able to reproduce essential
characteristics of PD at a functional and molecular level, as sum-
marized in Figure 6 K. We found that nucleolar damage leads to
p53 increase and mTOR inhibition followed by mitochondrial
damage and increased oxidative stress. The decreased striatal do-
pamine precedes the loss of DA neurons, whereas a significant
motor impairment is evident at later stages. Increased oxidative
damage, before cell death—certainly one of the most relevant
aspects of parkinsonism—provides a novel mechanism for neu-
rodegeneration triggered by nucleolar damage. Animal models
based on genetic mutations found in familial forms of PD (i.e.,
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Figure 5.  Oxidative stress after MPTP treatment affects nucleolar function. 4, B, Analysis of

nucleolar integrity in DA neurons by immunohistochemistry using antibodies against NPM
(brown) and TH (green) in 2-month-old wild-type mice injected for 3 d with either MPTP or NaCl
and analyzed 1 d after the last injection (n = 5). C, D, Effect on 475 pre-rRNA synthesis in DA
neurons after NaCl (€) or MPTP injection (D) analyzed by in situ hybridization with a riboprobe
for the 5'-ETS of the 475 pre-rRNA (blue) in combination with TH immunohistochemistry
(brown) to identify DA neurons. E, F, IHC using antibodies against p-S6 (brown) and TH (light
blue) shows a decrease of phosho-S6 (p-56) in MPTP-treated wild-type mice. G, Effect of treat-
ment with the neurotoxin MPTP on the number of TH * neurons in control and TIF-1A PATCreERT2
mutant mice 2 weeks after tamoxifen (n = 5). Control mice show moderate loss of DA neurons
on MPTP treatment, whereas TIF-IA°AT“®ERT2 muytants treated with the neurotoxin show a
more severe reduction of TH * neurons. H, Quantification of the number of p-S6-positive DA
neurons in TIF-IAPAT"*ERT2and control littermates 4 weeks after tamoxifen. Scale bars: 4, B, 20
um; D, 25 wm; E, F, 50 wm. *p << 0.05; **p << 0.01. Error bars represent SEM.

PARK1-7) have not been able to reproduce all features of the
disease, such as the preferential loss of substantia nigra DA neu-
rons (Farrer, 2006). The observation made in TIF-IA mutants,
which show such differential vulnerability, reveals an intriguing
specificity for the effects of nucleolar disruption in DA neuron
survival, indicating a possible differential role of nucleolar-
dependent functions in both DA neuron subtypes.

Although our study does not prove that the nucleolar damage
is a primary cause of neurodegeneration, it shows that the im-
paired nucleolus is an essential alarm bell for DA neurons with
consequences extending to other organelles, such as the mito-
chondria. Moreover, the molecular consequences of TIF-IA loss
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share similarities with critical signaling for growth and survival
involved in neurodegenerative diseases. Attenuation of mTOR
signaling has been reported in several neurodegenerative dis-
eases, including Parkinson’s disease (Inoki et al., 2005). Neuro-
toxins, such as 6-OHDA, MPTP, and rotenone, block the
activation of mTOR signaling in neuronal cultures and in animals
(Malagelada et al., 2006). In fact, we show here that mitochon-
drial damage induced by MPTP treatment results in a significant
decrease of mTOR activity and inhibition of rRNA transcription.
mTOR signaling is also decreased in TIF-IA mutants, although
we cannot exclude that this is attributable to decreased mTOR
protein levels. mTOR is one of the main regulators of TIF-IA
activity and rRNA synthesis (Mayer et al., 2004; Grewal et al.,
2007). In combination with previous data, our findings could be
fit into the following model, integrating nucleolar disruption and
oxidative stress and indicating mechanistic similarities between
TIF-IA and MPTP models (Fig. 6L). In the pharmacological
MPTP model based on induction of mitochondrial impairment
and ROS accumulation, we found severe nucleolar damage,
probably mediated by inhibition of mTOR function and conse-
quent downregulation of TIF-IA and rRNA synthesis (Mayer et
al., 2004; Grewal et al., 2007). In TIF-IA mutants, one of the
earliest events triggered by nucleolar damage is the increased
stabilization of the transcription factor p53, and we show that
inhibition of p53 abrogated the cellular loss. Interestingly, the
importance of p53 for neurodegeneration has been shown in
Huntington’s, Alzheimer’s, and Parkinson’s diseases (Bae et al.,
2005; Alves da Costa et al., 2006; Nair et al., 2006). The question
remains how p53 can relay its devastating function in neurons. In
this context, it has been shown that in the presence of stress
signals such as low levels of ribosome biogenesis, hypoxia, or
DNA damage, p53 may set a negative feedback on mTOR signal-
ing by activating AMP-activated protein kinase and/or by the
synthesis of the protein REDD1 (Ellisen et al., 2002; Budanov and
Karin, 2008; DeYoung et al., 2008). TIF-IA PATCFRT2 mytants
are characterized by both increased p53 levels and mTOR down-
regulation leading to increased oxidative stress and final neuronal
demise. We assume that the stabilization of p53 after TIF-IA loss
causes the negative feedback on mTOR (Levine et al., 2006).
mTOR inhibition may in turn cause mitochondrial impairment
and oxidative damage by deregulation of the mitochondrial me-
tabolism via interaction with YY1 and PCG-1 (Schieke et al.,
2006; Cunningham et al., 2007).

Here, we could show that TIF-IA ablation leads to a strong
reduction of the transcription factor YY1, responsible for the
transcription of mitochondrial genes, like UCP-2. Together,
these observations suggest that interplay between nucleolar dys-
function and increased oxidative stress, involving p53 and mTOR
signaling, leads to a destructive axis in TIF-IA mutants as well as
in PD models (Fig. 6L).

Although pifithrin-a inhibits p53 transcriptional activity,
based on the experiments presented here, we cannot exclude that
other mechanisms may also contribute to the oxidative damage
in TIE-TAPATCERTZ mytants [e.g., p53 may interfere directly
with mitochondrial function (Vaseva and Moll, 2009)]. Upregu-
lation of p53 can lead to translocation of Bax to mitochondria
(Yuan et al., 2005) followed by permeabilization of the mito-
chondrial membrane, release of cytochrome ¢, and activation of
the apoptotic program (Chipuk and Green, 2006). To assess the
specific contribution of nontranscriptional p53 activity to cell
survival, specific inhibition of p53 interaction with mitochon-
drial proteins by using the pharmacological inhibitor pifithrin-u
(Strom et al., 2006) would be a valid approach.
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Figure 6.  Perturbation of rRNA synthesis leads to mitochondrial impairment followed by increased oxidative stress. 4, The bars
represent abundance of YY1 transcripts by qPCR normalized to HPRT in control and TIF-IA PATCERT2 mice 2 weeks after tamoxifen
(n = 3). B, The graph shows UCP-2 gene expression by qPCR. The bars represent abundance of UCP-2 transcripts normalized to the
levels HPRT 2 and 3 weeks after tamoxifen treatment (n = 3). €, Two weeks after tamoxifen injection, reduced COX activity in
TIF-IAPATEreERT2 myitants is measured as optical density compared with control mice (n = 3). D1, Brain sections through the
ventral midbrain were analyzed for neuroketals (D, E) as marker for ROS-induced lipid damage (brown), for nitrosylated proteins
(NITT) (F, G), for 8-hydroxydeoxyguanosine (8-OHdG) (H, I), as marker for ROS-induced DNA damage (brown), in combination
with TH staining (light blue) to identify DA. The insets show higher magnification of immunostained cells. Scale bars, 50 wm. J,
Quantification of DA neurons positive for oxidative stress markers NITT, neuroketals, and 8-OHdG in control and mutant mice 2 and
4 weeks after injection with tamoxifen. Differences are expressed as fold change compared with the mean of the controls at
different stages. Higher levels of oxidative stress markers were observed in the mutants (n = 4). *p << 0.05; **p << 0.01. Error bars
represent SEM. K, Diagram showing the sequence of events triggered by nucleolar damage. The decrease and increase of the
parameters indicated (left) are depicted in green or red, respectively. The bars indicate the time points (weeks) analyzed after
injection of tamoxifen to induce TIF-IA loss in adult mice. L, Schematic representation showing the molecular mechanisms shared
between TIF-IA mutation and MPTP pharmacological models. Nucleolar damage as a consequence of TIF-IA mutation induces p53
and inhibits mTOR, causing mitochondrial dysfunction and increased oxidative damage. In the pharmacological model, mitochon-
drial dysfunction caused by MPTP leads to increased oxidative stress. This increase inhibits mTOR and rRNA synthesis, probably by
downregulation of TIF-1A activity, causing nucleolar damage and additional consequences on cell survival.

Another possibility involves imbalanced synthesis of mtDNA-
encoded proteins leading to ROS accumulation (Bonawitz et al.,
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by Tfam have to be considered, in light of
the observation that p53 physically inter-
acts with Tfam (Yoshida et al., 2003).

The observation that nucleolar dam-
age is present in PD and PSP patients and
after MPTP treatment encourages the
next series of studies to unravel in which
precise way structural and functional per-
turbations of the nucleolus are involved in
the development of PD and other neuro-
degenerative disorders. As of yet, only a
relatively small group of these diseases
can be ascribed to simple genetic defects
and it is likely that environmental factors
influence their onset and progression.
Enormous efforts are invested in the iden-
tification of the molecular mechanisms
behind PD (Lesage and Brice, 2009). Fu-
ture studies addressing these mechanisms
will be important to develop procedures
aiming to alleviate the consequences of
this and possibly other neurodegenerative
diseases. The present study indicates that
cross talk between nucleolar dysfunction
and oxidative stress is an interesting
mechanism in this context.
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