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First spike latency has been suggested as a source of the information required for fast discrimination tasks. However, the accuracy of such
a mechanism has not been analyzed rigorously. Here, we investigate the utility of first spike latency for encoding information about the
location of a sound source, based on the responses of inferior colliculus (IC) neurons in the guinea pig to interaural phase differences
(IPDs). First spike latencies of many cells in the guinea pig IC show unimodal tuning to stimulus IPD. We investigated the discrimination
accuracy of a simple latency code that estimates stimulus IPD from the preferred IPD of the single cell that fired first. Surprisingly, despite
being based on only a single spike, the accuracy of the latency code is comparable to that of a conventional rate code computed over the
entire response. We show that spontaneous firing limits the capacity of the latency code to accumulate information from large neural
populations. This detrimental effect can be overcome by generalizing the latency code to estimate the stimulus IPD from the preferred
IPDs of the population of cells that fired the first n spikes. In addition, we show that a good estimate of the neural response time to
the stimulus, which can be obtained from the responses of the cells whose response latency is invariant to stimulus identity, limits
the detrimental effect of spontaneous firing. Thus, a latency code may provide great improvement in response speed at a small cost

to the accuracy of the decision.

Introduction

Sensory information may be encoded in the CNS in a variety of
forms: as a spike rate in a single neuron, as the topographic loca-
tion of the maximally firing neuron, or, as in this paper, of the
identity (in a population) of the neuron that fires first, the tem-
poral winner take all (tWTA) (Shamir, 2009). Spike rate codes
have been very successful in accounting for a wide range of per-
ceptual phenomena. Yet, temporal codes have also been studied
in the visual and somatosensory systems (Thorpe et al., 1996;
Peterson and Diamond, 2000; Van Rullen and Thorpe, 2001; Van
Rullen et al., 2005; Petersen, 2007; Gollisch and Meister, 2008) as
well as the auditory system (Middlebrooks et al., 1994; Egger-
mont, 1998; Reale et al., 2003; Heil, 2004; Nelken et al., 2005;
Chase and Young, 2007).

Precise temporal information is important in audition, so un-
surprisingly, the information content in the timing of spikes in
the auditory system has received much attention. For example,
the representation of the pitch of sounds (Cariani, 1999; Wang
and Bendor, 2010) and the envelope modulation of sounds is
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represented in the temporal structure of neural responses (Joris et
al., 2004).

At low frequencies, a major cue for sound localization is the
interaural phase difference (IPD), which depends on spike timing
comparisons accurate to within tens of microseconds. Sensitivity
to IPD has been shown at the brainstem by Goldberg and Brown
(1969) and in the inferior colliculus (IC) by Rose et al. (1966) and
elaborated by Yin and Kuwada (2010). However, once the recod-
ing of the IPD from spike timing information has occurred pe-
ripherally, it was generally believed that IPD was encoded by the
identity of the neurons that fired at the highest rate (Jeffress,
1948; Colburn, 1973). An exception is the demonstration by Fu-
rukawa and Middlebrooks (2002) that onset responses in some
cells of auditory cortex vary as sounds are moved around an
animal, providing information about source location.

It has been suggested that the first spike latency is a source of
information required for fast decisions (Thorpe et al., 1996, 2001;
Van Rullen and Thorpe, 2001; Van Rullen et al., 2005; Foffani et
al., 2008; Gollisch and Meister, 2008; Gollisch, 2009), but this has
not been rigorously tested. Recently a fast and simple latency code
readout, which estimates the IPD as the preferred IPD of the cell
that fired the first spike has been suggested, tWTA, and analyzed
(Shamir, 2009). However, this analysis was based on a simplified
theoretical model and was not tested on real neural data. Below,
we address this issue by investigating several variants of the tWTA
classifier at both single-cell and population levels. The data on
which this paper is based have been described in detail by Skottun
et al. (2001) and Shackleton et al. (2003, 2005), and their infor-
mation theoretical properties analyzed by Gordon et al. (2008).
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Materials and Methods

Experimental. The experimental procedure has been reported previously
(Shackleton et al., 2003). In short, single-unit recordings were made
using tungsten-in-glass microelectrodes in the central nucleus of the
right IC of 15 pigmented guinea pigs (eight male, seven female) weighing
335-507 g. Animals were anesthetized with urethane (1.3 g/kg, i.p.) and
Hypnorm (Janssen; 0.2 ml, i.m., on indication by pedal withdrawal re-
flex), premedicated with Atropine sulfate (0.06 mg/kg, s.c.). The animals
were mounted in a stereotaxic frame inside a sound-attenuating room.
Hollow plastic speculae with sealed-in loudspeakers replaced the ear
bars. All experiments were performed in accordance with the United
Kingdom Animals (Scientific Procedures) Act of 1986.

The signals were tone bursts (of 50 ms) at the neuron’s best frequency
(BF) and at 20 dB above rate threshold. All stimuli were digitally synthe-
sized at a 100 kHz sampling rate and were output through a waveform
reconstruction filter set at 25 kHz. Extracellular action potentials were
recorded with tungsten electrodes (Bullock et al., 1988). IPD functions
were obtained by delaying or advancing the fine structure of the signal to
the right ear while keeping the signal to the left ear fixed. Signals were
gated on and off simultaneously in the two ears with rise/fall times of 2
ms. Initial estimations of IPD functions were obtained over *£1.5 cycles
of BF in 0.1 cycle steps by using 50 repeats (data not shown) (but see
Skottun et al., 2001; Shackleton et al., 2003). A fine-grained analysis (of
either 0.01 or 0.02 cycle steps) was performed from the trough to the peak
of the slope through zero IPD with 200-500 repeats. A single repeat
consisted of the full range of IPDs presented in pseudorandom order.
The BFs of cells reported were approximately evenly distributed between
72 and 1185 Hz. No attempt was made to determine IPD sensitivity if the
BF was much above 1000 Hz, because past experience strongly indicates
that this would be unlikely to succeed.

Data analysis. Spike times were binned into 1 ms time bins. The prob-
ability for the nth spike to occur at time bin ¢ (i.e., during the time
interval (t — 1,t)) for a given IPD of 0, f,(¢ | §), was estimated directly
from the data. Similarly, the cumulative first spike time distribution,
F,(t| 0) = Pr(nth spike time = t|stimulus §) = Si_if,(t'| 0), i.e.,
the probability for the nth spike to occur up to and including time bin ¢
for a given IPD of 6, was computed. The relation between the instanta-
neous mean firing rate and the first spike time distributions is given by
PSTH (¢] 0) = Smif,(¢| 0) [with the above choice of units peristimu-
lus time histogram (PSTH) is given in spikes per millisecond]. The mean
number of spikes fired by the cell for a given IPD 0 is (the tuning curve)
r(0) = SPSTH (¢| 6), where we use T = 100 ms to capture the entire
neural response to the stimulus (see Fig. 3, PSTHs). The probability of
firing exactly m spikes up to and including time bin ¢ can be given by the
relation p(m, t| 0) = F, (t]| 0) — F,, , ,(t] 0).

It is common to measure the sensitivity with which listeners can dis-
criminate changes in localization with a two-interval two-alternative
forced-choice paradigm. In a psychophysical experiment, the difference
in IPD between a reference stimulus 6, and a comparison 6, would be
reduced until the listener could only just discriminate between them. This is
termed the just-noticeable difference (JND). The data used in this paper
were analyzed previously in these terms for comparison with psychophysical
experiments using a rate code (Skottun et al., 2001; Shackleton et al., 2003;
Gordon et al., 2008), so it is natural to use a similar analysis for determining
the accuracy of a latency code. We first describe how performance using a
rate code can be recast using the terminology of this paper, and then describe
the various versions of the latency code model.

In essence, the difference in response of a neuron to IPDs 6, and 6, is
compared to the variability in response to repeated presentations of 6,,.
This can be conceptualized either as comparison within the same neuron
to sequential presentations or as a competition between the cell and a
neighbor, where the second cell responds to stimulus 6, with the same
statistics as the original cell responds to 6, and responds to 6, with the
same statistics as the original responds to 6. If 6, is varied parametrically,
then plotting percentage correct discriminations (P.) as a function of 6,
yields a neural analog of the psychometric function: the neurometric
function (Britten et al., 1992; Skottun et al., 2001; Shackleton et al., 2003).
Hence, the analysis offers a convenient measure for the information

J. Neurosci., June 22, 2011 - 31(25):9192-9204 « 9193

content of the response, and other methods are not expected to give
qualitatively different results.

Based on the firing rate during the trial, the probability of correct
discrimination is given by

Mimax

P.(rate) = >, p(m,T| 6,)(1 — F,(T| 6,))

m=1

Mmax

+5 2 pm T | 6)p(m,T | 6),

m=1

where m,_ is the maximal number of spikes fired by the cell in a single
trial. There are two contributions to P(c),,,.. The first term on the right-
hand side is the probability that the cell fires more spikes when the
stimulus is at its preferred IPD, 6, than at IPD 6,. The second term is the
contribution of the trials where both stimuli yielded the same number of
spikes. In those trials the rate code readout decides randomly with equal
probabilities for both alternatives. The calculation of the JND was done
by fitting the logistic function P.(¢) = % + %ﬁ to the neuro-
metric curve and computing the IPD difference 6, — 6, for which the fit
reached the threshold value of P,;, = 0.75.

Similarly, the probability correct for both the first cell to fire (tWTA or
1-tWTA) and the first cell to fire n times (n-tWTA) can be determined
from the same equations:

T 1L
P(n-tWTA) = Do(t] 0)(1 = Fo(e] 0) + 521t 00 £t 0)

+ X;

n=1 n=1
X = E—o E_Oamo,mn,n p(mO’T| 60) P(ml)T| 91)§

:2n m02m1127k< k*l )

= n—my,—1 )
The term X is the contribution of trials where no alternative has reached
the decision threshold of n spikes up to time T. In those cases, we as-
sumed that the cell continues to fire at a spontaneous rate that is equal for
both alternatives until the decision threshold is reached. Note that the
spontaneous rate itself will affect the time of the decision but not the
value of X, since it is equal for both alternatives.

To study the effect of population size, N, on n-tWTA accuracy, we
performed a pseudopopulation analysis. For each cell, the accuracy of
n-tWTA was computed in a competition between two homogeneous
populations of N cells. Response statistics of the cells in each population
were taken to be identical and independently distributed and followed
the cell’s statistics. For the tWTA (i.e., n = 1), the result is relatively

simple:
N
(V) el

PN =20 2 -
(1= Fel o)) e 00 = e 0

Aing,min

=1 L) 1

1
+ E(l - FI(T| 90))N(1 - FI(T| 01))N'

In cases where both populations fired the first spike at the same time, the
choice in the above equation is determined by choosing randomly the
preferred direction of one of the cells from the group of cells that fired
first, with equal probabilities for choosing each cell. For n > 1, the for-
mulation becomes more cumbersome, and we estimated Pc(N) by aver-
aging n-tWTA accuracy over 10000 realizations for the neural responses
of the N cells in each population. The responses of the N cells in the
pseudopopulation were taken from the responses of a single cell by ran-
domly choosing the responses in N trials with the same IPD with equal
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Figure1. Rasterand tuning curve example. A, The raster plot of an IC neuron. The abscissa is
time relative to stimulus onset (at time 0). In each row, the spike times of the cellin a single trial
are plotted as a dot. The trials are arranged along the ordinate according to the IPD of the
stimulus. For every IPD —0.2, —0.18, - - =, 0.2 cycles, 50 trials are shown. B, The tuning curve.
The mean firing rate of the cell is plotted as a function of the IPD. The tuning curves of IC cells can
be typically characterized by a bell shape curve and peaks at the cell’s preferred IPD, which is
denote by 6, throughout the paper.

probabilities for each trial and without repetitions, i.e., not selecting the
same trial more than once.

Results

Response latency tuning to IPD

Response strength of many cells in the IC is known to be tuned to
the IPD (Shackleton et al., 2003). Figure 1 A shows the responses
of an IC neuron to short tone bursts of different IPDs. The trials
are arranged along the ordinate according to stimulus IPD.
Clearly, the mean number of spikes per trial is modulated by the
IPD, but additionally latency of first spike firing is also tuned to
the IPD. The rate tuning of IC cells (Fig. 1 B) is typically charac-
terized by a bell shape curve that peaks at the cell’s preferred IPD,
which we will denote by 6, throughout the paper. Figure 2 shows
similar raster plots of four typical cells that also illustrate similar
behavior of latency tuning to the stimulus. The response statistics
of these four cells is shown in Figure 3, each in a different column.
The top row plots the conventional rate-tuning curve of each cell,
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Figure 2.  Raster plots of four typical IC cells: I, I, Ill, and IV. Each panel presents the

raster plot of asingle cell. The abscissa is time relative to stimulus onset (at time 0). In each
row, the spike times of the cell in a single trial are plotted as a dot. The trials are arranged
along the ordinate according to the IPD of the stimulus. For every IPD that was presented
during the recordings, 20 trials are shown, separated by a horizontal dashed line.

which is characterized by a single peak at the preferred IPD of
each cell [in this experiment (Skottun et al., 2001; Shackleton et
al., 2003), only the section of the tuning curve that traverses the
ethologically relevant range of IPDs was measured]. The second
row shows the PSTHs of the cells for the different IPDs in differ-
ent colors. The fact that different IPDs result in PSTHs with
different shapes implies that information about IPD is encoded
by the dynamic structure of the neural response to the stimulus.
To investigate the information content of first spike latency, we
calculated the probability density, f(t, 6), and the cumulative dis-
tribution, F(¢, ), of the first spike time (Fig. 3, third and fourth
rows, respectively) for each IPD condition 6. To better view the
tuning of first spike latency to stimulus IPD, we present a color
plot of F(¢, 6) in the bottom row of Figure 3. Note that although
our measurements were obtained using simultaneous gating of
the auditory stimulus to both ears (see Materials and Methods),
we expect that the effect of time shifting of the entire waveform
will be small relative to the latency tuning we observe. For exam-
ple, the best frequencies of all the cells in Figure 3 are >240 Hz.
Hence, an IPD of 0.2 cycles at their best frequency will result in a
time shift of <1 ms, which isless than typical latency shifts in cells
whose latency is tuned to IPD (Fig. 3, cells I, III).

As can be seen from Figure 3, stimulus IPD modulates the
response strength (top row), the “pure” latency (i.e., the temporal
delay in the response) (fourth and fifth rows), and the shape of
the entire temporal structure of the neural response (second
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Figure3. Response statistics of four typical IC cells: -1V (shown in each column from left to right, respectively). Top, We present
the conventional rate-tuning curve of each cell, which is characterized by a single peak at the preferred IPD of each cell. The rate was
computed by averaging the number of spike fired by the cell during the 100 ms after stimulus onset. Second row, Tuning of the
temporal structure of the response to the IPD. PSTHs of each of the four cells are plotted for the different IPDs in different colors.
Third row, First spike time probability density, f(t, 6), is plotted as a function of time from stimulus onset, ¢, for different values of
thePD, 6, in different colors. Fourth row, First spike time cumulative probability distribution, F(t, ), is plotted as a function of time
from stimulus onset, ¢, for different values of the IPD, 6, in different colors. Bottom row, First spike time cumulative probability
distribution, F(t, 6), is shown in a color plot as a function of time and IPD. The best frequencies of cells I-IV are 282, 242, 349, and
1132 Hz, respectively.

row). There exist various definitions for neural response latency.
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mulative) distribution to the stimulus (Fig.
3, fourth and fifth rows). Thus, one may
think of curves of equal (cumulative) distri-
bution of first spike latency, F(t, 6) = const
(Fig. 3, bottom row, contours of equal
color), as the generalization of traditional
rate-tuning curves. The utility of first spike
time distribution results from the fact that
it incorporates both first spike time and
the probability of firing. Figure 3 illus-
trates the finding that response latency, in
terms of first spike time distribution (e.g.,
bottom row), similar to response strength, is
tuned to IPD. Neuron IV (Fig. 3, right col-
umn), for example, responds to all IPDs
with the same delay, but with a different
probability of firing. Hence, the tuning of
the response latency of cell IV results from
the tuning of its response strength. On the
other hand, the tuning of response latency
of cells I and III (Fig. 3, first and third
columns from the left), is affected by both
the response strength as well as stimulus-
dependent modifications of the temporal
structure of the response, which include a
time shift in the response (delay) and
changes to the shape of the PSTH. Al-
though in this paper we will not consider
the contributions of the different compo-
nents to the tuning of response latency, it
is interesting to examine the relationship
between the firing rate and response la-
tency for a given IPD for the four cells
of Figure 3 (Fig. 4A). Response latency
monotonically decreases as mean firing
rate increases but asymptotes to a finite
value at high firing rates. For comparison,
we present in Figure 5 the mean nth spike
time (top row) and probability of firing
the nth spike (bottom row) for the four
cells in Figure 3. Since the nth spike time is
averaged only over the trials in which the
nth spike was fired, it is possible that the
mean time of the fourth spike for example
will be shorter than the mean time to first
spike, especially when the probability of
firing a fourth spike is very low. Thus,
mean spike times may provide a distorted
description of the neural response.

The tuning of response latency, in
terms of the first spike time distribution
(Fig. 3, fourth row), is unimodal and can
be characterized by a preferred IPD, to
which the cell responds fastest. Specifi-
cally, we defined the latency preferred IPD
as the IPD in which the cumulative first
spike time distribution, F(t, 6), crossed a
threshold value for the first time (in re-
sults presented here we used a threshold

However, since we are interested in the accuracy of a first spike  value of 0.8; however, similar results were obtained with other
latency code readout, such as the tWTA, which is governed by  values as well). Response latency increases as the phase difference
first spike time distribution, we study the tuning of the neural ~ from the cell’s preferred IPD to the stimulus IPD is increased.
response latency in terms of the tuning of the first spike time (cu- ~ Figure 4 B compares the difference between the IPD that evoked
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the largest rate (rate best IPD) and the IPD that gave rise to the
shortest latencies (latency best IPD). Typically, rate best IPDs are
very close to latency best IPDs. The outliers of the best IPD dis-
tribution result from cells with poor tuning of their response
latency to the IPD (see Fig. 14, cells V, VII, and VIII, with best IPD
difference of —0.285, —0.09 and —0.07, respectively). We shall
characterize all neurons by their rate best IPD, hereafter.

tWTA accuracy in single cells

The dependence of response latency on IPD implies that infor-
mation about the IPD is also embedded in the timing of the first
spike. We studied the accuracy of the tWTA as a code for IPD,
based on single-cell responses in a discrimination task between
the cell’s preferred IPD and a different IPD. Essentially, the tWTA
is a “race to threshold” decision mechanism (Mazurek et al.,
2003). In a competition between two cells, the tWTA estimates
the stimulus IPD by the preferred IPD of the cell that reached the
decision threshold of one spike first, i.e., the cell with the shortest
latency at that IPD.

To quantify tWTA accuracy based on the single-cell response,
we applied a standard method that is widely used in neuroscience
(Britten et al., 1992; Skottun et al., 2001; Shackleton et al., 2003).
Essentially, tWTA accuracy is quantified by the probability of
correct discrimination in a two-alternative forced-choice task be-
tween the cell’s preferred IPD and another IPD, based on the

1 \Y,
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IPD [cycle] IPD [cycle]

The nth spike time statistics of four typical IC cells, I-IV (shown in each column from left to right, respectively). Top, We present the mean nth spike time as a function of stimulus IPD

(n = Tinred squares; n = 2 in green circles; n = 3 in blue triangles; n = 4in black triangles). Middle, We present the standard deviation of the nth spike time as a function of stimulus IPD (n =
Tinred squares; n = 2in green circles;n = 3in blue triangles; n = 4in black triangles). Bottom, Probability of firing the nth spike (during 100 ms after stimulus onset) as a function of stimulus IPD
(n = Tinred squares; n = 2 in green circles; n = 3 in blue triangles; n = 4in black triangles).
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function fits to the neurometric curves that were used to compute the JND (see Materials and Methods);
hence, the solid lines, in contrast with the open symbols, do not need to obtain the value 0.5 at an IPD
difference of zero. Note that the n-tWTA with n = 1isthe tWTA.
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cell’s responses to the two stimuli (see Materials and Methods).
Figure 6 I-IV shows the neurometric functions, i.e., the propor-
tion correct as a function of the IPD difference of the two alter-
natives for the tWTA (red squares) and for spike counts in 100 ms
(gray stars) for the four cells in Figure 3. For zero IPD difference,
discrimination accuracy is at chance level, Pg,... = 0.5. The
accuracy increases as the IPD difference is increased. In general,
the accuracy of the tWTA is comparable but somewhat inferior to
that obtained by counting spikes in 100 ms.

It is sometimes possible to improve tWTA accuracy by basing
the decision on the time of arrival of the nth spike, the n-tWTA,
rather than by the time of arrival of the first spike (i.e., n = 1).
Figure 7 shows the (cumulative) probability distribution, F,(t,
@), of the nth spike time (at the nth row) for the four cells used
also in Figure 6. As n is increased, F,,(t, ¢) becomes more delayed
in time, but also better defined along the IPD dimension. As a
result, we obtain a trade-off of accuracy versus decision time. For
cells that are characterized by low firing rates, for example, the
cell in column IV, increasing n beyond the number of spikes fired
per trial (in this case, 2) results in a decay of F, (¢, ¢) to zero and
correspondingly poor accuracy, because many stimulus presen-
tations would not evoke n spikes or more within the stimulus-
dependent response and, hence, will be dominated by spontaneous
firing that does not carry information about the stimulus. We would
therefore expect that increasing # in an #n-tWTA metric would in-
crease accuracy for some cells but not others; this is borne out by the
neurometric functions in Figure 6 that characterize the n-tWTA ac-
curacy of the four cells in Figure 3 (n = 1, red; n = 2, green; n = 3,
blue; n = 4, black). For cells I-1II, increas-
ing n above 1 results in an improvement of
the temporal readout accuracy, which be-
comes similar to that of the rate code
readout. This is the manifestation of the
narrowing along the IPD dimension of
isoprobability curves of F,(t, ¢) = const
as n is increased. The isoprobability curve
100 Fu(t ) = const can be thought of as the
nth spike latency tuning curve, which is
characterized with a single peak at the
neuron’s (latency) preferred IPD. The
width of this peak (e.g., the range of IPDs
for which the latency tuning curve is
shorter than a certain time) decreases as
n is increased, as shown in Figure 7. Cell
IV has a low firing rate of an average of
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Figure 8.  Comparison of n-tWTA and rate code accuracies. A, The JND of the tWTA is
plotted as a function of the JND of the conventional rate code readout (i.e., withn = 1).
The JND was defined as the IPD for which the neurometric curve fit crossed the threshold
value, Py, = 0.75. Cases where the neurometric curve did not cross threshold are repre-
sented by JND value of 0.5 cycles. Four of the cells in our data set did not reach threshold.
These cells are described in Figure 14. B, The n-tWTA JND is plotted (in green, blue, and
black for n = 2, 3, and 4, respectively) as a function of the JND of the conventional rate
code readout, which uses the total spike count in the entire response (i.e., the number of
spikes fired during 100 ms after stimulus onset). ¢, The n-tWTA JND is plotted (in green,
blue, and black for n = 2, 3, and 4, respectively) as a function of the tWTA (n = 1) JND.

(i.e., most points are above the diagonal line of equality). How-
ever, the accuracy of the n-tWTA for n = 3 and 4 is similar to that
of the rate code for most cells: the JND increases by <20% in 80%
of the neurons (Fig. 8 B, blue diamond, black star for n = 3, 4,
respectively). The improvement of the n-tWTA code over the
tWTA code is shown in Figure 8C (n = 2, 3, and 4 for green, blue,
and black, respectively), with n-tWTA JNDs being generally
lower than the tWTA JNDs (most points are below the diagonal).
However, the improved performance is achieved at a price: in-
creasing the number of spikes required to reach a decision also
results in a slower readout (e.g., compare the mean nth spike time
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Figure9.  Effect of spontaneous firing on the ability of tWTA to accumulate information from

large populations. The accuracy of the tWTA in a competition between two homogeneous
populations is shown as a function of the population size. Response statistics of cell lll in Figure
3 were used to generate the responses of two homogeneous pseudopopulations of N cells (see
Materials and Methods). tWTA accuracy is plotted as a function of the population size, N, in
circles for discriminating (6; — 6,) = —0.1and in triangles for (6, — 6,) = —0.28. Specif-
ically for this cell, the preferred IPD was 6, = 0.16, and for the illustration in this figure we used
6, =0.06and 6, = —0.12.

at the preferred IPD) (Fig. 5), which is similar to averaging over
long time intervals in the traditional rate code readout. To im-
prove the accuracy of the tWTA and maintain a fast decoder, the
tWTA must pool information from a larger neural population.

tWTA accuracy in population codes

How does the accuracy of tWTA readout change with the increase
of population size? We addressed this question by studying the
accuracy of the tWTA in a two-alternative forced-choice compe-
tition between two homogenous pseudopopulations, as defined
below. Using the response statistics of a single cell, we calculated
the probability of correct discrimination in a tWTA competition
of two homogenous populations, where neurons in one popula-
tion have a best IPD of 6, and neurons in the other population
have a best IPD of 6,. The spike times of the different cells in each
pseudopopulation were drawn independently from the spike
time distribution of the single-cell response. Figure 9 shows the
dependence of tWTA accuracy on the size, N, of the population
for 6, — 6, = —0.1 (circles) and 6, — 6, = —0.28 (triangles),
based on the response statistics of cell III in Figure 3. The specific
values of 6, — 6, were chosen to be near threshold and at satura-
tion of the tWTA discrimination accuracy (see Fig. 6 III ), respec-
tively. Qualitatively similar results can be obtained with other
values as well. Initially, for small values of N, tWTA accuracy
improves with the increase in the population size, N, until the
population reaches a critical size, Nc. However, an increase in the
population size beyond the critical value Nc results in a marked
deterioration of the tWTA accuracy. This property of the tWTA
readout can be understood if we examine the distribution of time
to first spike in a population of size N.

Figure 10 illustrates the effect of increasing population size on
the first spike time distribution. The different panels show the
cumulative distribution of first spike time, F(N, t | 0), as function
of time and IPD in color code for different population sizes, N.
Also shown are line plots of F(N, ¢ | 0) at the best phase of the cell
considered above and separations of 0.1 and 0.28 cycles from it.
As N is increases, the functions F(N, t | 8) become steeper at all
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neous firing rate of about 10 spikes per
second, about 50% of the cells fire <0.1
spontaneous spikes per second, and 15%
of the cells fire <0.01 spontaneous spikes
per second. Assuming the typical time to
first spike at the preferred IPD is A, then
the probability of firing one or more
spontaneous spikes in the population of N
cells during this time is, according to Pois-
son process statistics, (1 — e “Nrwom),
where 7., is the spontaneous firing rate
in spikes per second. In consequence,
in a proportion of trials, equal to (1
— ¢ AN there will have been a spon-
taneous firing before either population
has a chance to respond to the stimulus.
100 Since it is equally likely that either cell
N=10 population will generate a spontaneous
1 spike, the tWTA probability of correct
discrimination in these trials will be 0.5,
whereas in the other trials they will be
some value P dependent on the firing
properties during the stimulus. Thus, the
mechanism that governs the asymptotic
decay of the tWTA accuracy (atlarge N) is

50

0 50
N=20

100 O 50
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100 O 50
N=100
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Figure 10.

of 6, = 0.06 (blue), and atan IPD of 6; = —0.12 (red).

IPDs, but especially at the best IPD, so the probability of cells
tuned to the best IPD firing before cells tuned either 0.1 or 0.28
cycles away from it increases. Thus, the probability of correct
discriminations improves as N increases. However, increasing N
also increases the probability of a spontaneous spike in either cell
population before the response to the stimulus. This can be seen
in the initial slope of the curves before they turn rapidly upward.
A consequence of this is that the cumulative distribution of first
spike latency is less tuned to the external stimulus IPD, as can be
seen in the color plots. For a population of about N = 100 cells, in
this case, the first spike time distribution is dominated by the
spontaneous firing rate, and tWTA performance is expected to
decrease to chance level.

Thus, the limiting factor in the ability of the tWTA readout to
improve with the population size is the spontaneous firing rate,
which is independent of the IPD. Figure 11 shows the cumulative
distribution of spontaneous firing rate in the population. Al-
though some cells in the population have relatively high sponta-

0.5

First spike time distribution in a population. Top, The cumulative distribution of first spike time in a pseudopopu-
lation of N cells is shown ina color scale as a function of time from stimulus onset (abscissa) and stimulus IPD (ordinate) for different
values of N. Response statistics of the N cells in the pseudopopulation was taken to be independent and identically distributed
following response statistics of the cell in Figure 9. The dashed white lines in the N = 1 panel show the preferred IPD, 6, = 0.16,
and 6, = 0.06, —0.12, used in Figure 9. Bottom rows, The cumulative distribution of first spike times, F(N, t
timein a homogeneous pseudopopulation of N cells for different population sizes at the preferred IPD, 6, = 0.16 (black), atan IPD

generic and depends only on two values:
the spontaneous firing rate and the typical
time in which the neuron starts respond-
ing to its preferred IPD. On the other
hand, since first spike time is an extreme
value (in the tails of a probability distribu-
tion) and hence a sensitive measure, the
initial increase of the probability of cor-
rect discrimination at small population
0 sizes depends on the specific details of the
0 o0 100 fi ike time distribution (Shamir
time [ms] st spl N . . i
2009), which also varies between different
IPDs. Thus, there is no simple rule of the
thumb that allows us to accurately
estimate the value of Nc. Additionally, ex-
trapolating single-cell data to large popu-
lations should be done with caution. For
example, the specific cell of Figure 9 is
characterized with a spontaneous firing
rate of 0.8 Hz. During the first 12.5 ms
after stimulus onset, this cell is expected to fire a total of four
spontaneous spikes in 400 trials. Because of inherent random-
ness of the neural response, during 400 trials with 6, — 6, =
—0.1, this cell fired eight spontaneous spikes, whereas the
same cell fired only two spikes during the initial 12.5 ms in all
400 trials with 6, — 6, = —0.28. Hence, the decay of the
probability of correct discrimination of the two curves on
Figure 9 is characterized with a different exponent [see also the
noise in F(N, t) for N = 200 at small ¢] (Fig. 10).

The detrimental effect of spontaneous firing on tWTA accu-
racy can be overcome in two ways. One method is to raise the
decision threshold level, i.e., use the n-tWTA readout with a de-
cision threshold, #, that is larger than the mean number of spon-
taneous spikes fired during the relevant time interval for the
n-tWTA decision. Figure 12 shows the neurometric curve of
n-tWTA competition in a homogeneous population of N = 10
cells (Fig. 9) for n = 1, 2, 3, and 4 (from bottom to top). The
spontaneous firing rate of a single cell in this population is 0.8 Hz.

100
N=200

0), as a function of
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Figure 12.  Population n-tWTA accuracy. The neurometric curves of n-tWTA competition of

two homogeneous populations of N = 10 cells are shown in red, green, blue, and black squares
forn = 1,2, 3 and 4 respectively. Solid lines are the logistic function fits of the neurometric
curve (see Materials and Methods). The accuracy of the n-tWTA was computed by averaging
n-tWTA accuracy over 10,000 realizations for the neural responses of the N cells in each pseu-
dopopulation that were drawn randomly with equal probabilities and no repetitions from trials
of the single-cell data of the same cell as in Figure 9.

A population of N = 10 cells will fire an average of about 0.1
spikes during a period of about 12 ms after stimulus onset, in
which the tWTA typically reaches a decision (compare Fig. 10).
Hence, in about 10% of the trials, the tWTA decision will be
determined erroneously by a spontaneous spike. This ac-
counts for the asymptotic accuracy of P = 0.9 of the tWTA at
large IPD difference. On the other hand, the probability of
firing two spontaneous spikes during the tWTA decision pe-
riod is about 0.5%. Thus, setting the decision threshold level to
n = 2 spikes or more overcomes the detrimental effect of
spontaneous firing (Fig. 12).

The central limiting factor of the tWTA accuracy in large pop-
ulations is the spontaneous firing before the cell responds to the
stimulus. Thus, the other method to decrease the detrimental
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Figure 13.  Decreasing the detrimental effect of spontaneous firing by correct estimation of

neuronal response time. 4, B, tWTA probability of correct discrimination between its preferred
IPDand 6, — 6, = —0.1(4) and —0.28 (B) as a function of the pseudopopulation size, N, for
different values of onset estimation times. Response statistics of the N cells in the pseudopopu-
lation were taken to be independent and identically distributed following response statistics of
the cell in Figure 9. The different curves show the accuracy of tWTA readout using different
values of onset time, £, for the tWTA readout (bottom to top, 4, ¢, = —10,0,8,10,and
12ms; B, t, . = —10,0,8,and 12ms). The onset of the tWTA competition, £, is measured
relative to the auditory stimulus onset time, i.e., 0 ms is at the actual stimulus onset time and
—10 msis 10 ms before the auditory stimulus onset.

effect of spontaneous firing on tWTA accuracy is to obtain a
better estimate for the actual onset time of the neural response.
The specific cell in the examples in Figures 3III and 9 began to
respond to the stimulus only about 12 ms after stimulus onset, at
its preferred IPD. Until that time, the cell fired randomly at its
spontaneous firing rate. Decreasing the time between the onset of
the tWTA competition and the actual response time of the cell
will decrease the probability that the tWTA decision will be de-
termined by a spontaneous spike. Figure 13, A and B, shows the
tWTA probability of correct discrimination between its preferred
IPD, 6, and 6, — 6, = —0.1 and —0.28, respectively, as a func-
tion of the population size, N. The different curves show the
accuracy of the tWTA readout when the tWTA competition
started at time T after stimulus onset. Thus, the curves of Figure
13 marked with T'= 0 ms show the accuracy in the case where the
tWTA competition started at stimulus onset, and hence are iden-
tical to the two curves of Figure 9. Typically, the probability of
correct discrimination increases as the onset time for the tWTA
competition approaches the actual (shortest) response time of
the cell (at its preferred IPD). When the onset time is at the actual
response time of the cell (Fig. 13, top curves), the probability of
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Figure 14.

Response statistics of four IC cells, V=VIII (shown in each column from left to right, respectively), that are characterized by weak tuning of their first spike latency. Top, We present the

conventional rate-tuning curve of each cell, which is characterized by a single peak at the preferred IPD of each cell. Second row, Tuning of the temporal structure of the response to the IPD. PSTHs
of each of the four cells are plotted for the different IPDs in different colors. Third row, First spike time probability distribution, f{t, 6), is plotted as a function of time from stimulus onset, ¢, for different
values of the IPD, 6, in different colors. Fourth row, First spike time cumulative probability distribution, F(t, 6), is plotted as a function of time from stimulus onset, ¢, for different values of the IPD,
0, in different colors. Bottom row, First spike time cumulative probability distribution, £(t, 6), is shown in a color plot as a function of time and IPD.

correct discrimination is a monotonically increasing (in the weak
sense) function of the population size N'and does not decrease for
large populations. However, a reliable estimate of stimulus onset
time is required to implement this regime.

Onset detection

In the previous section it was shown that the tWTA method
became more accurate when there was an independent estimate
of stimulus onset. In this section we will discuss how such an
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estimate might be obtained. A small per- V
centage of about 15-20% of the cells had 0.4

poor tuning of their first spike latency to

the stimulus (these cells show large tWTA 03

JNDs) (Fig. 8). Figure 14 shows the re-
sponse property statistics of four of these
cells. Although their firing rate was tuned
to the stimulus, their first spike time in
response to the stimulus had very weak 0.1
dependence on IPD. Hence, their first

spike time can be used to estimate stimu- 0

0.2

f(t)

lus onset time in a manner that is mostly 0 50 100

independent of the stimulus IPD. Figure
15 shows the distribution of first spike la-
tency of these four cells averaged over all
IPDs. We studied a simple stimulus onset
detector that is based on single-cell re-
sponse. Our detector estimates stimulus onset time by the time of
the first spike of the cell (and ignores additional spiking in the
subsequent 60 ms). The accuracy of this simple onset detector
appears in Table 1. The quality of an onset time detector is char-
acterized by four attributes. The first two characterize stimulus
detection, and the second two characterize the temporal accuracy of
the estimated onset time. First, probability of a hit, P,;,, is defined as
the probability of correctly detecting that a stimulus onset occurred.
In the case of our simple detector, hit probability is the probability
that the cell fired in response to stimulus onset. To reduce the effect
of spontaneous firing on the calculation of the hit probability, we
omitted spikes that were fired up to 8 ms after stimulus onset and
considered spikes that occurred up to 90 ms after stimulus onset.
Second, the false alarm rate, FA, ., is the average number of false
alarms per unit time. Note, that in contrast to false alarm probability
in standard two-alternative forced-choice tasks, in stimulus detec-
tion, false alarm is characterized by a rate of occurrences. The reason
for that is that when a stimulus is not presented, an onset detector
may have a false alarm once, twice, or more. For example, cell VII will
have a spontaneous spike every 210 ms on average; thus, cell VII will
report an average of 4.8 false alarms during a period of 1 s, in which
stimulus is not present. The other two attributes quantify the tem-
poral accuracy of the onset detection, given a correct detection: the
mean, ,, and standard deviation, 4 of the estimated onset time. It
is obvious that a more sophisticated readout using more than one
cell will improve onset estimation. Nevertheless, in the example of
cell VIII, the onset was detected at all stimulus presentations, there
were no false alarms, and the standard deviation of the estimated
onset time was only 1.4 ms.

Is the estimated onset time accurate enough to enable correct
discrimination of stimulus IPD? To address this question we
computed tWTA accuracy based on single-cell responses, using the
estimated onset time (based on the responses of cell VIII). Note
that as our recordings are not simultaneous, onset time cannot be
estimated on the same trial as used for stimulus discrimination.
Thus, onset times were estimated using the first spike times of cell
VIII drawn from random trials. Figure 16 plots tWTA accuracy
using estimated onset time as a function of tWTA accuracy using
the actual onset time for each cell in the population. In most
cases, estimating the onset time from the neural response does
not improve the tWTA accuracy because these cells are not lim-
ited by spontaneous firing before the onset of stimulus response.
However, in a few cases with high spontaneous firing rate, esti-
mating the onset time results in a marked improvement in the
tWTA accuracy. Specifically, the two points on Figure 16 with the
largest deviation from the identity line (marked with a star) are

time [ms]

Figure 15.
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First spike time probability distribution of the four cells in Figure 14 with weak tuning of their first spike latency,
averaged over all different IPD conditions.

for the two cells with spontaneous firing of >10 spikes per second
(compare with Fig. 11). This is because, using the estimated onset
time starts the tWTA competition at about 12 ms after stimulus
onset. During this period, most cells have not yet responded to
the stimulus and fire only spontaneous spikes.

Discussion

Lacking the spatial dimension of other sensory systems, the tim-
ing of stimulus events is extremely important in the sense of
hearing: the timing of spikes constitutes an important means by
which aspects of the acoustic stimulus are encoded. In some in-
stances, the timing of the spikes follows the stimulus attribute all
the way up to the cortex, but in others there is a recoding at lower
levels of the auditory pathway. For example, variations over tens
of milliseconds in the amplitude of different frequency compo-
nents are faithfully encoded in the timing of spikes in the auditory
periphery. Indeed, there are good indications that at the level of
the midbrain, and even the cortex, neurons sensitive to different
frequencies of envelope modulations appear to be topographi-
cally organized (Joris et al. 2004). At the cortex it appears that
low-frequency envelope modulations are still represented in
spike timing, whereas at higher frequencies the modulation fre-
quencies are represented by differences in mean rates (Wang et
al.,, 2008). Certainly spike rate or timing modulations are con-
veyed to the level of the cortex and presumably contribute to the
sensation of elements of the stimulus, such as its pitch (for review,
see Wang and Bendor, 2010). In whatever form the information
reaches the higher levels of the sensory pathways, reading it out
requires some form of computation and it is one simple readout
scheme that we explore in this paper.

The first spike latency of single neurons has been shown to
convey information about visual, somatosensory, and olfactory
stimuli (Gawne et al., 1996; Peterson and Diamond, 2000; Reich
etal,, 2001; Junek et al., 2010). Indeed, at the level of the primary
auditory cortex, it has been shown that the pattern of onset activ-
ity of single cells can encode information about the spatial loca-
tion of the stimulus (Middlebrooks et al., 1994), even when no
external estimate of stimulus onset time is used (Furukawa et al.,
2000; Stecker and Middlebrooks, 2003). However, the readout
schemes used in these previous papers were trained for each spe-
cific case, and their general properties have not been explored.
The readout scheme presented here is generic and can be ana-
lyzed and understood in great detail, while not losing much dis-
criminative power relative to more standard schemes.

Here we used a body of data detailing the interaural phase
difference sensitivity (a major cue for low-frequency sound local-
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Table 1. Onset detection accuracy

Cell Pri FAste t,, (ms) fq (M)
v 0.996 0.07 19 3
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Figure 16.  Comparison of tWTA accuracies with and without onset detection. The tWTA

accuracy, in terms of the JND, from the responses of single cells was computed in two ways, one
using the stimulus onset time, i.e., fixed onset (abscissa), and one using onset time as estimated
by the responses of cell VIII (Figs. 14, 15) (ordinate). Each square shows the JNDs of a single cell
in the population. The dashed line shows the identity line. Points below the identity line are
cases where estimating stimulus onset time from the neural responses improved the tWTA
accuracy. The JND was defined, as above, as the IPD for which the neurometric curve fit crossed
the threshold value, Py, = 0.75. Cases where the neurometric curve did not cross threshold are
represented by JND value of 0.5 cycles. The two stars mark the two points with the largest
deviation from the identity line.

ization) in the inferior colliculus to test a particular model (the
tWTA) of the way in which such latency information might be
used to make rapid decisions about stimulus location. Informa-
tion about IPD can be extracted from the response latency using
the tWTA readout in the form of a labeled line code. Typically,
tWTA accuracy is comparable to, although somewhat less accu-
rate than, the conventional rate code readout.

We studied the accuracy of a latency code in the framework of
a two-alternative forced choice between the neuron’s preferred
IPD and another IPD. However, in many cases, the preferred
IPDs of auditory neurons lie on the edge and even outside of the
physiologically relevant IPD range (Harper and McAlpine, 2004).
Thus, the most informative region is not at the peak of a neuron’s
tuning curve, but rather close to the region where the slope of the
tuning curve is maximal (Grothe et al., 2010). This claim holds
for tasks where two very close IPDs need to be discriminated, and
the slope of the tuning curve represents the sensitivity of the
neural response to very small differences in the stimulus IPD.
However, this task is a discrimination between positions, not a
judgment of spatial position. When a fast decision is required for
survival purposes, e.g., in response to the sound of a breaking
twig by an approaching predator, it may be argued that it is not
essential to infer the sound source location with high spatial res-
olution, but instead a simple right or left decision will do. Thus, a
readout mechanism that is based on first spike competition, as
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was studied here in cases where computation speed is imperative,
would be adequate. Our study has clearly demonstrated that in-
formation is also embedded in the neural response latency and
can facilitate discrimination of close-by IPDs even near the broad
rate peak of neurons. However, the study of specific readout
mechanisms to maximize sensitivity near midline using latency
coding is beyond the scope of the current paper and will be ad-
dressed elsewhere.

The spatial localization of low-frequency sounds depends on
fine timing accuracy. The specific timing information, relating to
minute differences in the time of arrival of sounds at the ears, that
we consider in this paper is generally thought to be represented in
a rate code having been recoded at the level of the brainstem. At
the level of the brainstem, neurons acting as coincidence detec-
tors are capable of detecting differences in the time of arrival of
spikes in pathways from the two ears of the order of tens of
microseconds; such neurons convert these minute timing differ-
ences into a rate code (Goldberg and Brown 1969). However, the
discharges of neurons at the midbrain sensitive to IPD not only
carry information in their mean discharge rate, but also in terms
of variation in their first spike latency (Kuwada et al., 1984). For
example in the case of cell III of Figure 5, a difference of 0.02
cycles in the IPD at its best frequency, which corresponds to an
interaural time delay (ITD) 0f 0.02/349 Hz = 57 ps, may result in
a latency difference of up to 13 ms in the cell’s response. Thus,
small differences in the stimulus ITD thatare on the order of a few
tens of microseconds may be coded in latency shifts of several
milliseconds. It is this variation in spike latency that we exploit.

Obviously, without prior knowledge, any spike could be the
first evoked by a sensory event, and in most computations an
external reference has been used to select the appropriate spike
and estimate its latency. The brain has no such external reference
and must rely on some other computation based on the neural
responses to provide the essential time reference point. A variety
of strategies have been suggested for this computation. For exam-
ple, Chase and Young (2007) used a simple coincidence detector
model to detect the onset of a sound across the whole population
of recorded neurons. They demonstrated that, using such a plau-
sible internal reference, the mutual information carried in the
latencies increased slightly, and they discussed various ways in
which this could be implemented neurally.

The tWTA of this paper can be made more accurate by accu-
mulating information from a large neural population, but this is
limited by spontaneous firing. Note that although the majority of
cells in our data had extremely low spontaneous firing rates of
<0.5 spike per second, one should bear in mind that spontaneous
firing rate in the awake animal may be higher.

To overcome the limiting effect of spontaneous firing,
n-tWTA with n larger than the mean number of spontaneous
spikes must be used. Thus, n-tWTA can pool information from
neural populations and provide an accurate discrimination be-
tween a few alternatives. In addition, accurate estimation of onset
time, using the responses of cells whose latency did not vary with
IPD (~15% of the population studied here), can considerably
decrease the detrimental effect of spontaneous firing on tWTA
accuracy. There are additional populations of cells that may rep-
resent stimulus onset time reliably with even less influence from
the IPD. In particular, it is possible that responses of monaural
cells can provide a better signal for stimulus onset detection
(Chase and Young 2007). Interestingly, the increased mutual
information obtained by Chase and Young (2007) by using an
internal reference was not attributable to elimination of spon-
taneous spikes.
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Does the CNS actually use the tWTA? In the pure and ideal
form of the tWTA the answer is probably no. Nevertheless, it is
plausible to assume that discrimination between two alternatives,
for example, will be achieved by a competition mechanism, e.g.,
the standard winner take all, which can be mediated by strong
lateral inhibition. This type of winner-take-all competition is
known to be sensitive to the relative strength of its input; how-
ever, conventional winner-take-all competition is also very sen-
sitive to the relative response latency of its inputs. Thus,
biological readout mechanisms may implement, at least partially,
the tWTA.
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