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Perceptual skills improve with daily practice (Fahle and Poggio, 2002; Fine and Jacobs, 2002). Practice induces plasticity in task-relevant
brain regions during an “offline” consolidation period thought to last several hours, during which initially fragile memory traces become
stable (Karni, 1996; Dudai, 2004). Impaired retention of a task if followed by training in another task is considered evidence for the
instability of memory traces during consolidation (Dudai, 2004). However, it remains unknown when after training memory traces
become stable and resistant against interference, where in the brain the neuronal mechanisms responsible for interference are localized,
and how these mechanisms produce interference. Here, we show in human participants strong interference between two visual skill-
learning tasks for surprisingly long time intervals between training periods (up to 24 h). Interference occurred during asymptotic
learning, but only when stimuli were similar between tasks. This supports a strong contribution to interference of low-level visual cortical
areas (Karni and Bertini, 1997; Ahissar and Hochstein, 2004), where similar stimuli recruit overlapping neuronal populations. Our
finding of stimulus-dependent and time-independent interference reveals a fundamental limit in cortical plasticity that constrains the
simultaneous representation of multiple skills in a single neuronal population, rather than a time-limited consolidation process.

Introduction
Consolidation is classically defined as a several-hours-long, time-
limited process of neuronal plasticity following a learning experience
during which initially fragile memory traces become stabilized (Du-
dai, 2004). In the domain of skills, a form of long-term memory
(LTM) (Kandel et al., 2000), the hypothesized fragility of implicit
memories during consolidation predicts interference with training-
induced gains in behavioral expertise in a task if it is followed by
training in another task within a restricted time interval (behavioral
interference).

However, reports of behavioral interference have been inconsis-
tent. It is not a universal finding (Aberg and Herzog, 2010), and in
studies that did report interference, it was found for widely varying
time intervals, from 0 h up to 4 h in some studies (Brashers-Krug et
al., 1996; Shadmehr and Holcomb, 1997; Seitz et al., 2005), to 24 h up
to a week in others (Goedert and Willingham, 2002; Caithness et al.,
2004; Zhang et al., 2008). These findings raise fundamental ques-
tions about the notion of time-limited consolidation and its relation
to behavioral interference.

Behavioral interference is frequently linked with the interrup-
tion of time-limited cellular consolidation processes (Dudai,

2004), but may also reflect overlap between neuronal populations
involved in storing memory traces for different tasks (O’Reilly
and Rudy, 2001). The latter factor may contribute to the variable
results in prior studies, which have limited themselves to the very
first session (Brashers-Krug et al., 1996; Shadmehr and Holcomb,
1997; Goedert and Willingham, 2002; Caithness et al., 2004) or
first few sessions (Seitz et al., 2005; Zhang et al., 2008) of skill
learning. During early learning, networks in high-level cortical
regions orchestrate strategic choices, as well as attentional and
motivational allocation in response to specific task demands, in-
structions, and context (Willingham, 1999; Hochstein and
Ahissar, 2002; Doyon et al., 2003). Therefore, high-level networks
involved in memory storage in two subsequent tasks may overlap
or not, based on variables that are difficult to control. Conse-
quently, opposite conclusions in similar studies of behavioral
interference are reported (Seitz et al., 2005; Aberg and Herzog,
2010), although Hung and Seitz (2011) suggest an additional
explanation involving eye-movement control and procedural
divergences.

If overlap between neuronal populations contributing to
memory traces yields behavioral interference, the time window of
behavioral interference cannot simply depend on the time course
of cellular plastic processes occurring if a task had been trained in
isolation. Instead, behavioral interference may depend strongly
on the success of a systems-level process by which memory traces
that may overlap initially become segregated. Thus, behavioral
interference may depend more on an often unpredictable overlap
between memory traces at a population level than on the more
predictable time course of known cellular plastic processes.

Because the contribution of representational overlap of mem-
ory traces to behavioral interference cannot be easily tested dur-
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ing early learning, we tested it during asymptotic learning. Here,
memory storage recruits stimulus-specific populations in lower
(sensory) cortical areas (Karni and Bertini, 1997; Hochstein and
Ahissar, 2002; Ahissar and Hochstein, 2004), which permits test-
ing the overlap between populations involved in memory storage
on behavioral interference by simple stimulus manipulations.

Materials and Methods
Participants. All 29 (17 female, 12 male) participants had normal or
corrected-to-normal visual acuity, gave written informed consent for
all parts of the experiment, and were debriefed following completion
of data acquisition. Participants were financially compensated for
their participation. Participants were carefully selected on their moti-
vation to participate in a long-term learning study. After their reaction to
an advertisement, participants were invited for an interview in which
general information was given about the experiment, and in which the
importance of physical and mental fitness and sufficient sleep was em-
phasized. Participants were then sent home to carefully consider their
decision and to recontact us within a few days to let us know their
decision.

Stimuli, apparatus, and task. Participants performed a visual orienta-
tion discrimination task (ODT) in which they indicated whether an ori-
ented stimulus was tilted clockwise or counterclockwise with respect to a
(never-shown) reference orientation of 135°. Stimuli consisted of Gabor
patches (0.75 cycles/deg spatial frequency, 50% Michelson contrast) pre-
sented on a PC monitor (19 inch screen size, 60 Hz refresh rate, 1280 �
1024 pixel resolution) in one of the four quadrants of the visual field
depending on condition (3° diameter at 6° eccentricity) while partici-
pants were seated in a dimly lit room. Average luminance of stimuli and
of the gray background was 56 cd/m 2. Participants rested their head in a
chin rest to stabilize head position relative to the stimulus monitor. Eye
position was monitored with an infrared eye camera (60 Hz sampling
rate Viewpoint Eye Tracker v.2.8.3, Arrington Research). A trial started
with a blank gray screen, followed by presentation of a white fixation dot
at the middle of the screen. In the first 500 ms of presentation of the
fixation dot, participants were instructed to orient their eyes toward the
fixation dot. This was followed by a 750 ms period in which accurate
fixation would initiate another 250 ms period in which fixation was to be
maintained, followed by a 500 ms presentation of the Gabor stimulus.
Participants responded with their right index (left arrow key on key-
board) or middle finger (right arrow key on keyboard), respectively rep-
resenting a counterclockwise or clockwise deviation from the reference
orientation. The response window was 1000 ms. Participants received
feedback on their response by a brief color change of the fixation dot
(green for correct, red for incorrect). Stimulus presentation and response
recording were performed using Cortex (v.5.9.6; NIH freeware for psy-
chophysical and neurophysiological experimentation). Trials with eye
position deviations beyond 1.5° relative to the fixation dot were aborted
and replaced by a new randomly generated trial. Trials in which no
response was given were also randomly replaced.

Training protocol. Training was separated into two periods (Fig. 1 B).
During a first training period (P1), just-noticeable differences (JNDs) in
orientation were determined at an oblique reference orientation (135°)
in an Experimental (E135) and a Control quadrant (C135). After a time
interval �T (0, 0.5, 1, 3, 6, or 24 h), additional training was given in a
second training period (P2) at the same stimulus location in the experi-
mental quadrant using reference orientations 105° (E105) and 165° (E165)
(Fig. 1 B). For each condition, learning curves were measured over 15
sessions. During each session, two blocks of four JNDs in orientation
discrimination were determined. Within training periods, the quadrant
order was counterbalanced across days/participants. For all but one time
interval (�24 h) between P1 and P2, the training periods were done on
the same day. Although testing schedules differed between participants,
they were all tested during daytime, and within participants, testing
schedules were kept constant for the duration of the experiment. In the
24 h interval, P1 and P2 training took place on separate consecutive days,
so two complete sessions were collected in a time span of a work week. In
the experiment in which interference was compared for orientation dif-

Figure 1. ODT and training-induced tuning changes in single neurons. A, Gabor stimuli
and task. Participants fixated in the center of the screen while covertly attending the
Gabor patch in an upper (left/right) quadrant of the visual field. Participants indicated the
clockwise or anticlockwise deviation of the stimulus relative to a never-presented refer-
ence (in this case 135°; dashed line shows reference for illustrative purposes) by pressing
the right or left arrow key on a computer keyboard. Feedback was given by a change in
color of the fixation dot (green, correct; red, incorrect). Trials with fixation errors (�1.5°
from fixation) were aborted (Arrington Research), and 84% correct staircase JNDs were
determined (implemented in CORTEX 5.9.6, NIH freeware). B, Testing paradigm. Partici-
pants were tested in four conditions (4 JNDs of �100 trials per condition). In training
period P1 participants were trained at a 135° reference orientation in upper left and right
quadrant. One upper quadrant served as a control (C135). The other was the experimental
quadrant (E135), where P1 training after a variable time interval of rest (�T) was followed
by training in a second period P2 at reference orientations 105° (E105) and 165° (E165). C,
Tuning curve of an orientation selective cell is most discriminative at its flanks. A differ-
ence � between two orientations on the flanks of the tuning curve will yield a differential
response �R(�) that is larger than the differential response �R�(�) yielded by the same
difference between two orientations closer to the neuron’s preferred orientation (dashed
line). D, Our experimental design is informed by prior research showing that extensive
training in orientation discrimination invoking asymptotic performance (Vogels and Or-
ban, 1985; Schoups et al., 1995) selectively modified flank slopes of tuning curves in V1
and V4 neurons (Schoups et al., 2001; Raiguel et al., 2006). As V1 neurons are more
narrowly tuned to orientation (David et al., 2006), and are probably more crucial during
final asymptotic performance, we used V1 tuning properties to predict conditions of be-
havioral interference. In a V1 population neurons with tuning curve peaks about 15° away
(blue curves) from a trained reference orientation R (135°) (red curve) sharpen their
tuning curve flanks (fat dark blue line segments) overlapping with the reference orienta-
tion. Extrapolating this idea, we predicted that following up P1 training at the reference
orientation R with subsequent, P2 training at R � 30° (green curves) would cause inter-
ference with training at R. P1 training at R and subsequent P2 training at R � 30° both
require plasticity in neurons with preferred orientations at R � 15°, P1 training should
increase the slope of flanks in tuning curves overlapping with R, and P2 training the slope
of flanks overlapping with the �30° and �30° orientations (fat light blue line seg-
ments). We hypothesized that one requirement would counteract the other, leading to
behavioral interference at R [P2 training is also expected to lead to steepening of flanks of
�45° neurons’ tuning curves (in purple)].
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ferences of 90° and 30° between P1 and P2 ref-
erence orientations, the upper quadrants were
the experimental quadrants in which interfer-
ence was tested, and the control quadrant was
in one of the lower quadrants. Within upper
quadrants, the assignment of conditions was
counterbalanced over participants, and the
same held for the assignment of the control
quadrant to the lower quadrants.

Data and analyses. JNDs were determined
using a Wetherill and Levitt staircase that
tracked an 84% correct performance. Mea-
surements were terminated after 14 reversal
points or when a total of 120 trials was reached
(on average, �100 trials were performed per
staircase), and computed as the geometric
mean of the last 10 reversal points. During the
initial session, the starting orientation differ-
ence was set at a large value. In later sessions,
measurements started at the threshold level of
the previous day. In total, one block of four
staircases was performed in 20 –30 min for
each condition. All experiments consisted of
four blocks, except for the experiment that in-
cluded a quadrant in which P2 training was
performed at a reference orientation orthogo-
nal to the reference used for P1 training. In that
experiment, daily sessions consisted of six or
seven blocks, the latter case corresponding to
“double” training (see Fig. 6 A). All analyses in
the current paper were performed on JNDs re-
sulting from averaging per block of four
staircases.

To quantify specific aspects of the learning
curves, we used a piecewise nonlinear regres-
sion fitting procedure. The piecewise fit con-
sisted of two parts: a nonlinear (exponential)
decreasing function, and a monotonically de-
creasing linear function. The nonlinear part of
the piecewise fit was constrained by taking the
mean of the first eight staircases (two sessions)
as its starting point. A constraint on the linear
part of the piecewise fit was imposed by fixing
the end point to the average of the last three
sessions. Given these constraints, the shape parameters of the nonlinear
and linear part and the positioning of the transition between the nonlin-
ear and linear part along the learning curve were algorithmically opti-
mized to best fit the data. The position along the learning curve of the
transition point from exponentially to linearly decreasing function after
optimization is defined as the inflection point (IP), and estimates the
beginning of asymptotic learning.

Results
This study was designed to investigate the effect of overlap between
the neuronal populations that are likely to be involved in memory
formation for two tasks upon behavioral interference between the
tasks. In both tasks, we tested perceptual skill learning in an orienta-
tion discrimination paradigm (see Materials and Methods), in which
participants judged the clockwise or anticlockwise deviation of a
Gabor stimulus from a reference orientation (Fig. 1A,B) and were
trained until they reached asymptotic learning. Prior research
shows that extensive training in orientation discrimination leads
to large gains in performance (Vogels, 1990; Schoups et al., 1995)
and to changes in orientation tuning in V1 and V4 neurons
(Schoups et al., 2001; Raiguel et al., 2006). Tuning curves are most
discriminative for orientation on their flanks, in V1 at �15° from the
preferred orientation (Fig. 1C,D), and training-induced steepening

of flanks overlapping the trained orientation has been proposed to
underlie performance enhancements in orientation discrimination
(Schoups et al., 2001; Raiguel et al., 2006). We tested whether
training-induced performance gains in a first task would be de-
creased by training in a second task with stimuli chosen so that
learning in the two tasks relied on steepening opposite tuning
curve flanks of the same neurons. To that aim, we combined
training in a first testing period (P1) at an oblique reference ori-
entation with training in a second testing period (P2) at reference
orientations deviating by 30° clockwise or anticlockwise from
oblique (Fig. 1D).

Behavioral interference occurs during asymptotic learning
and for all time intervals
Figure 2A shows the learning curves for E135 and C135 for all
P1–P2 time intervals (five participants per interval, except for
�24 h, where we had four participants). For �0 h, learning curves
in the control quadrant showed fast learning in the first few ses-
sions, followed by asymptotic leaning. There was little learning in
the experimental quadrant, leading to strongly increased JNDs in
experimental compared to control quadrant by the end of testing.
Hence, performance enhancements induced by P1 training at
E135 were strongly interfered with by P2 training at reference

Figure 2. Behavioral interference during asymptotic learning. A, Interference for six different intervals between training period
1 (P1) and training period 2 (P2) (�0 –�24 h). Each panel (corresponding to one interval) shows the natural logarithm of the just
noticeable difference [LN(JND)] plotted as a function of session in experimental quadrant (red line) and control quadrant (blue
line). For all intervals except the 24 h interval, P1 and P2 training were completed on the same day. In the �24 h condition, P1 and
P2 training were alternated from day to day, and a session therefore took 2 d (testing took 30 d). B, Data averaged over P1–P2
intervals. C, Difference between learning curve asymptotes (�Asymptote in ln units) in experimental and control quadrant
averaged over the last eight sessions. A one-way ANOVA showed that there was no significant difference in the size of �Asymptote
between intervals (F(5,23) 	 0.22, p 	 0.951). Shaded red and blue regions and error bars are standard errors; numbers in top right
corner represent N participants (conventions are similar for all figures).
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orientations E105 and E165. Strikingly, this pattern of results was
present for all P1–P2 intervals. A repeated-measures ANOVA
[Quadrant (2) � Interval (6) � Session (15)] showed significant
effects for Session (F(3.322,76.404) 	 14.412, p 	 0.001), Quadrant
(F(1,23) 	 68.375, p 	 0.001), and Quadrant � Session
(F(5.588,128.521) 	 14.265, p 	 0.001), confirming behavioral inter-
ference. The effects of Interval (F(5,23) 	 1.936, p 	 0.126) and of
the Interval � Session interaction (F(16.610,76.404) 	 1.098, p 	
0.372) were not significant, and therefore we pooled the dataset
over intervals (Fig. 2B).

At the end of learning, there was a constant performance dif-
ference between C135 and E135, which was independent of the
P1–P2 interval. Figure 2C shows the difference between learning
curve asymptotes in experimental and control quadrant averaged

over the last eight sessions (�Asymptote in ln units). A one-way
ANOVA showed that there was no significant difference in the
magnitude of �Asymptote between intervals (F(5,23) 	 0.22, p 	
0.951).

Further, in Figure 3 we show that interference started at as-
ymptotic learning. Figure 3A gives an illustration of the proce-
dure to determine the beginning of asymptotic learning for the
control condition at reference orientation 135° (C135) in a single
participant. First, the beginning of asymptotic learning was de-
fined as the IP of the C135 learning curve by using a piecewise
nonlinear regression fitting procedure (see Materials and Meth-
ods). Then a comparison was made of the average inflection point
per P1–P2 interval with the average session in the course of learn-
ing at which the first significant interference (FSI) is observed
(averaged over subjects for each of the six P1–P2 intervals). We
found that the inflection point of the learning curve for C135,
where asymptotic learning starts (session 7.4), was closely
matched by the moment at which thresholds for E135 first signif-
icantly exceed those for C135 (session 6.5) (t 	 �1.7399, df 	 5,
p 	 0.1424; paired t test on average FSI and IP per P1–P2 inter-
val); this is in line with the idea that interference blocks learning
when it is about to become asymptotic.

The finding that behavioral interference blocks asymptotic
learning (Fig. 2B) suggests that it predominantly reflects interac-
tions in early visual cortex (Karni and Bertini, 1997; Ahissar and

Figure 3. Significant interference starts at asymptotic learning. A, Illustration of the proce-
dure to determine the beginning of asymptotic learning for the control condition at reference
orientation 135° (C135) in a single participant. The beginning of asymptotic learning was de-
fined as the IP of the learning curve. To determine the IP, we used a piecewise nonlinear
regression fitting procedure (see Materials and Methods). The results of optimized nonlinear
and linear fitting as well as the optimized transition point (the IP; vertical gray line) are shown.
The IP was determined for all intervals between the first (P1) and second (P2) training periods
for the C135 condition, and the resulting IP (29 participants) was on average at session 7.4. B,
Comparison of the average inflection point with the average session in the course of learning at
which the FSI is observed. The figure shows the data for the control condition C135 (blue dots)
and the experimental condition E135 (red dots). For both conditions, the data were averaged
over the different P1–P2 intervals (0, 0.5, 1, 3, 6, 24 h), as these experimental conditions did not
significantly differ from each other. The fitted curves represent the average result of piecewise
fitting for C135 (blue) and E135 (red). The vertical lines respectively mark the average session of
FSI (green line) and average inflection point of the control condition C135 (IP, purple line)
corresponding to the point at which initial fast learning is replaced with later asymptotic learn-
ing. While IP was based on estimates within each of 29 individuals, FSI was estimated in six
groups of participants corresponding to the different P1–P2 delay conditions. The FSI was the
first session in which paired-samples t tests between the JNDs from E135 and C135 showed a
statistically significant difference. Averaged over the six P1–P2 delay conditions, this occurred
at session 6.5. The two horizontal boxes show the size of the 95% confidence intervals, for both
FSI and IP. Their overlap indicates that the distribution and the averages of the FSI and IP are not
significantly different. In addition, a t test between the FSI and IP for the six different P1–P2
intervals showed that the average FSI is not significantly different from the average IP (t 	
�1.7399, df 	 5, p 	 0.1424; paired).

Figure 4. Comparing the fast learning part of the learning curves between the different
P1–P2 intervals does not reveal time-limited consolidation. Here, a comparison of fast learning
is shown at the �0 h (A) and �1 h intervals (B). A, The first seven sessions for the E135 and C135

conditions in the �0 h P1–P2 interval, up to the average IP. B, The first seven sessions for the
�1 h interval. These plots show the two intervals that are comparable to the intervals used
in the paper of Seitz et al. (2005), who found time-dependent behavioral interference
between two Vernier tasks during early learning. A repeated-measures ANOVA on our data
[Condition (E135, C135) � Session (7) � P1–P2 Interval (�0 h, �1 h)] failed to find a significant
interaction between Condition and Interval (F(1,8) 	 0.330, p 	 0.581). Also, for redundancy, a
comparison was made between �0 with all other P1–P2 intervals in a combined repeated-
measures ANOVA; again, the interaction between Condition and Interval was not significant
(F(5,23) 	 0.374, p 	 0.861).
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Hochstein, 2004). The mechanism of in-
terference may be related to P1 training at
reference orientation R and subsequent
P2 training at R � 30° both requiring plas-
ticity in neurons with preferred orienta-
tions at R � 15°. In the R � 15°
population (Fig. 1D, blue curves), P1
training should increase the slope of
flanks in tuning curves overlapping with
R, and P2 training should increase the
slope of flanks overlapping with the �30°
and �30° orientations. Our data suggest
that one requirement counteracts the
other, producing behavioral interference
at R. Although we have based our explan-
atory model on V1 (Fig. 1D), contribu-
tions from other cortical areas with
orientation selective neurons cannot be
excluded.

The present study is the first to have
described interference between two visual
skill-learning tasks during prolonged, asymptotic learning. While
we found interference to be time independent for time intervals
between tasks of up to 24 h, a prior study (Seitz et al., 2005)
reported that behavioral interference between two Vernier tasks
(after five daily sessions) disappeared with an interval between
tasks of just 1 h. Visual inspection of our data suggests that within
the fast learning part of the learning curve, there could be a trend
toward time-limited consolidation (Fig. 2A). To test this data
trend, we ran a repeated-measures ANOVA on data from 10
subjects that were tested using the two P1–P2 intervals that are
comparable to those used in the study of Seitz et al. (2005) [Con-
dition (E135, C135) � Session (7) � P1–P2 Interval (�0 h, �1 h)]
but failed to find a significant interaction between Condition and
Interval (F(1,8) 	 0.330, p 	 0.581). Thus, the reduction in the
difference between E135 and C135 conditions in Figure 4B com-
pared to Figure 4A, which might suggest time-limited consolida-
tion during early learning, was not confirmed by statistical
testing. For completeness, we also made a comparison of �0 with
all other P1–P2 Intervals in a combined repeated-measures
ANOVA, and again the interaction between Condition and In-
terval was not significant (F(5,23) 	 0.374, p 	 0.861). Hence, we
failed to reproduce the trend for time-limited consolidation dur-
ing early learning reported by Seitz et al. (2005) in a different task.

Behavioral interference is stimulus dependent
During the training at the �30° and �30° reference orientations,
there are neurons for which the tuning curve flanks overlap with
these two references (deviating �45° from R; purple curves in
Fig. 1D) that are not stimulated by other stimuli. They are likely
sufficient in number to permit normal orientation discrimina-
tion learning at the �30° and �30° axes. Accordingly, P2 training
of E105 and E165 should slow down learning at E135 induced by P1
training, but P1 training at E135 should not affect P2 training at
E105 and E165. Figure 5A shows exactly that result. Learning curves
averaged over 29 subjects for conditions E105, E165, and C135 over-
lapped completely. A repeated-measures ANOVA showed nei-
ther a main effect of Condition (E105, E165, C135) (F(2,56) 	 0.049,
p 	 0.952) nor an interaction between Condition and Session
(F(8.857,248) 	 1.521, p 	 0.142). Thus, the E105 and E165 training
during P2 was unaffected by the preceding E135 training because
the E135 training only affected half of the population contributing
to the training in the E105 and E165 conditions. In the light of

simulation studies indicating that on the order of 100 neurons
permit normal orientation discrimination (Vogels, 1990), the
normal training results at E105 and E165 are, in fact, unsurprising.

It could be argued, however, that JNDs in conditions E105 and
E165 should be lower than those for C135 because of the “oblique
effect” in orientation discrimination (Appelle, 1972). If this were
true, the lack of differences among these conditions might there-
fore still hide an effect of interference by the 135° reference ori-
entation on the 105° and 165° reference orientations. To
investigate whether the performance on the P2 conditions 105° or
165° suffered from interference, we retested the five subjects that
already had been trained on the �0 h P1–P2 interval (Fig. 5A,B).
This time, they were trained on the 105° orientation in a naive
visual quadrant (E105) where no other (potentially interfering)
training on any other orientations had taken place. Performance
in this condition was compared to new training at the 135° refer-
ence orientation in another naive visual quadrant (C135). The
naive quadrants used were the two lower quadrants.

The data confirm that the potential for behavioral interference
decreases the less skill memories for the two tasks depend on the
same neural population (O’Reilly and Rudy, 2001). We tested
this further in seven participants by increasing the orientation
difference between the reference orientation used during P1
training and the reference orientation used during P2 training. In
a first Experimental quadrant, we used a 90° difference between
the reference orientation during P1 training (E90135) and the
reference during P2 training (E9045). In a second Experimental
quadrant, we used a 30° difference between the P1 reference ori-
entation (E30135) and the P2 orientations (E30105 and E30165).
Upper left and right quadrants served as experimental quadrants
and the control condition C135 was in one of the lower quadrants
(Fig. 6A). Figure 6B shows that learning curves from P1 training
at C135 and E90135 did not differ (F(1,6) 	 0.237, p 	 0.664; com-
pare gray and blue curves in Fig. 6B), while the JNDs of C135 and
E30135 did differ (F(1,6) 	 12.788, p 	 0.012; compare red and
blue curves in Fig. 6B).

To verify that the absence of interference was not confounded
by the fact that four of the seven subjects tested were presented
with only half of the trials during P2 training (a block of four
JNDs at of E9045) compared to the number of trials given in P2
training in our standard design (four JNDs at 105° and four JNDs
at 165° references), we performed an extra analyses on the data.

Figure 5. Stimulus dependency of behavioral interference. A, Interference is asymmetric. P2 training of E105 and E165 delays P1
training of E135, but not vice versa. Learning curves for E105 and E165 are indistinguishable from learning curves for C135. B, Data of
the five subjects from the �0 h P1–P2 interval on the C135 and E105 conditions from the original experiment. C, Data for the same
five subjects after extra training on new C135 and E105 conditions in the new, control experiment in which training at the 105°
reference orientation could not have suffered from interference. To analyze whether the E105 performance was comparable in
original (B) and control (C) experiments, a repeated-measures ANOVA [Experiment (original, control) � Condition (C135, E105) �
Session (15)] was carried out. This analysis indicated that the Condition � Experiment interaction was not significant (F(1,8) 	
1.501, p 	 0.255). Thus, the performance on the E105 condition was similar in both experiments, thereby supporting the conclu-
sion that training at the 105° and 165° reference orientations was not interfered with by training at the 135° reference orientation
in the same visual field position.
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The data of the same seven subjects were reanalyzed separating
the subjects in two groups according to the number of trials they
trained on in the P2 period. The results are plotted in Figure 6, C
(eight JNDs of E9045) and D (eight JNDs of E9045), and show that
the differences between E90135 and C135 conditions are still neg-
ligible and did not increase when the amount of training on E9045

was doubled in the P2 interval. Statistical evaluation confirmed
that P1 training at the 135° reference orientation is about equally
unaffected by one or two blocks of P2 training at the orthogonal
reference orientation (compare E90135 with C135 in Fig. 6C,D).
Specifically, a repeated-measures ANOVA [Double-Training
(yes, no) � Condition (C135, E90135) � Session (15)] showed that
neither the main effect of Condition (F(1,5) 	 0.95, p 	 0.770) nor
the Condition � Double-Training interaction (F(1,5) 	 2.946, p 	
0.147) were significant.

Discussion
We have studied factors contributing to LTM formation in a
perceptual skill-learning task using a behavioral interference par-
adigm. Skill is one of many forms of LTM, which has been sub-
divided in two main classes: explicit (declarative) and implicit
(nondeclarative) memory (Kandel et al., 2000; Squire, 2004). De-
clarative memory includes memory for facts and events, and im-
plicit memory includes associative and nonassociative learning as

well as motor and perceptual skill learn-
ing. Theories of LTM distinguish between
the manipulation of information for stor-
age (encoding), and storage itself (consol-
idation) (Atkinson and Shiffrin, 1968;
Craik and Lockhart, 1972). The present
study has focused on the processes that
consolidate skill memories. Consolida-
tion exists in both declarative (Squire,
1992; Squire and Alvarez, 1995) and im-
plicit memory (Brashers-Krug et al., 1996;
Karni, 1996; Karni et al., 1998; Robertson,
2004; Robertson et al., 2004), and refers to
a process during which initially labile
memory traces are transformed to stable
memory traces. Because consolidation is
thought to take place in a time-limited
window extending beyond the experience
by several hours (Dudai, 2004), behav-
ioral interference is expected when a sec-
ond experience falls within the
consolidation window of a preceding ex-
perience. However, in our skill-learning
study, we found that training in an orien-
tation discrimination task could be inter-
fered with by training in a second set of
orientation discrimination tasks across a
broad range of time intervals between
training in P1 and P2 (0, 0.5, 1, 3, 6, and
24 h). Moreover, although varying the
time interval between P1 and P2 did not
modulate interference, stimulus similar-
ity did, and increasing the stimulus orien-
tation difference from 30° to 90°
prevented interference.

To interpret our data, it is useful to
distinguish cellular and systems-level pro-
cesses contributing to LTM consolida-
tion. At the cellular level, an experience
triggers the expression of Immediate Early

Genes (IEGs) whose protein products can act as transcription
factors for Late Genes (LGs) involved in functional and structural
modifications of synaptic strength between neurons (Dudai,
2004). Gene expression and protein synthesis associated with
these initial cascades take place within minutes (IEGs) to hours
(LGs) after neuronal stimulation, and disruption of these pro-
cesses during or immediately after an experience interferes with
memory consolidation (Duncan, 1949; Agranoff et al., 1965; Büt-
efisch et al., 2000; Muellbacher et al., 2002; Luft et al., 2004).
Predictions of behavioral interference in skill-learning experi-
ments seem to be based on this initial molecular cascade taking
place over several hours following an experience (Brashers-Krug
et al., 1996; Shadmehr and Holcomb, 1997; Seitz et al., 2005).
However, cellular plasticity related to LTM formation may com-
prise multiple periods during waking (Bourtchouladze et al.,
1998; Korman et al., 2003; Wanisch et al., 2008) and sleep (Karni
et al., 1994; Stickgold et al., 2000; Gervan and Kovacs, 2010).
Therefore, the notion of a single time-limited consolidation win-
dow cannot guide precise predictions about the time window in
which behavioral interference would take place.

In addition, systems-level processes contribute to memory
formation. Systems-level considerations are an important aspect
in theories of episodic memory formation in which a slow trans-

Figure 6. Double training does not cause behavioral interference. A, Experimental design used to replicate interfering effects of
two blocks of training in P2 at reference orientations that differ by 30° from 135° (C30135 in P1, E30105 and E30165 in P2), and to
compare these with interfering effects of a single block or two blocks in P2 at a reference orientation differing by 90° from 135°
(E90135 in P1, E9045 in P2). Thus, while each stimulus display in Figure 6 A corresponds to four JNDs, display E9045 was tested in
either four or eight JNDs. The number following “E” refers to the orientation difference between reference orientations used during
P1 and P2 training in the same location. B, Training in orientation discrimination with orthogonal reference orientations during P1
and P2 does not cause behavioral interference (N 	 7). The figure shows learning curves for P1 training at the 135° reference
orientation in the control quadrant (C135), for P1 training at the 135° reference orientation in the experimental quadrant where P2
training was performed with an orthogonal 45° reference (E90135) (either 4 or 8 JNDs), and for P1 training at the 135° reference
orientation in the experimental quadrant where P2 training was performed at �30° references (E30135). Learning curves for
E90135 (dark gray) and C135 (blue) overlap. C, Effect of training with a double block (8 JNDs) of P2 training at a 45° reference (E9045)
on learning rate in the preceding P1 training condition at 135° (E90135). D, Effect of training with a single block (4 JNDs) of P2
training at a 45° reference (E9045) in otherwise the same experiment. In both datasets, the E90135 condition (dark gray line) is
compared with the standard control condition C135 (blue line), and with the standard interference condition E30135 (red line) in
which P1 training at 135° was followed by a block (4 JNDs) of P2 training at 105° and a block at 165. A repeated-measures ANOVA
[Double-Training (yes, no) � Condition (C135, E90135) � Session (15)] showed that neither the main effect of Condition (F(1,5) 	
0.95, p 	 0.770) nor the Condition � Double-Training interaction (F(1,5) 	 2.946, p 	 0.147) was significant.
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fer of memory traces from hippocampus to cortex is proposed
(Zola-Morgan and Squire, 1990; Squire and Alvarez, 1995),
though this proposal is debated (Nadel and Moscovitch, 1997; Nadel
et al., 2000). Strengthening of cortical memory traces is also thought
to involve “replay,” a term that refers to the reinstantiation of neural
activity elicited by a prior experience. Replay is coordinated by low-
frequency oscillatory activity (Jensen, 2006; Sirota et al., 2008), and
has been shown in both hippocampal-based memory formation
(Wilson and McNaughton, 1994; Hoffman and McNaughton,
2002) and skill-related memory formation (Stickgold et al., 2000;
Yotsumoto et al., 2009). Another important systems-level factor
is the requirement to segregate different memory traces. This is
well recognized in the field of episodic memory formation
(O’Reilly and Rudy, 2001), but has received less attention in the
field of (perceptual) skill learning. During asymptotic perceptual
learning, sensory neurons involved with acquisition during task
performance with a specific stimulus are thought to contribute to
memory formation (Karni and Bertini, 1997). This permitted
predictions of specific stimulus conditions in which overlap of
memory traces and behavioral interference would occur, and in
which time-limited consolidation could be tested.

Because training induces slope changes in the flanks of orien-
tation tuning curves with optimal orientations at �15° from the
trained reference (R) orientation (Schoups et al., 2001), we pre-
dicted behavioral interference when P1 training at R was followed
by P2 training at R � 15° (see Fig. 1 legend). We confirmed this
prediction for all six P1–P2 time intervals tested. The stimulus
specificity of interference was confirmed by the finding that
training with a 90° difference between the reference orientations
for P1 and P2 training, chosen to avoid overlap between memory
traces, did not cause interference at the 1 h P1–P2 time interval.
In addition, P2 training at reference orientations 105° and 165°
was not affected by P1 training at the 135° reference orientation.
This may be due to half of the neuronal population associated
with references 105° and 165° remaining unaffected by the train-
ing at the 135° reference, which according to computational
models (Vogels, 1990) is sufficient to permit normal orientation
discrimination performance. Together, these findings show that
the amount of overlap between populations involved in memory
formation in low-level visual cortex (V1) is a highly determining
factor for interference. Note that although our results suggest
retrograde interference (P2 training affecting P1 training) rather
than anterograde interference (P1 training affecting P2 training),
the distinction between the two is difficult if the main factor
leading to interference is stimulus-determined.

Our finding of equal behavioral interference for a range of
time intervals is difficult to interpret in terms of the classical
concept of time-limited consolidation. There is no doubt that
time-dependent cellular processes take place in a behavioral in-
terference experiment (likely in multiple periods). However,
their interaction with systems-level factors makes the contribu-
tions of both factors difficult to separate. For short P1–P2 inter-
vals, behavioral interference is likely to be related to interference
with more short-lived cellular consolidation processes, but at
longer time intervals (especially 24 h), it may predominantly re-
flect the recruitment of a population of neurons that has become
wired for a different task. However, regardless of the time interval
between first and second training, overlap of memory traces is a
precondition for interference to take place. Possibly, interference
may be avoided by incorporating long periods without training
(e.g., a week) after each pair of P1–P2 training sessions. This may
permit segregation of memory traces through a slow competitive
process in which memory traces may also become sparser. Even if

this is true, the most straightforward interpretation of our data is
that the behavioral interference observed in our study is
stimulus-related and reflects a limit in the simultaneous repre-
sentation of expertise on different skills in a single neuronal pop-
ulation (Ni and Maunsell, 2010).

This interpretation implies that memory traces remain highly
malleable and far from immune for interference by other mem-
ory traces, even at asymptotic levels of expertise. In the domain of
episodic memory formation, this idea has been proposed in the
multiple-trace theory (Lewis, 1979; Nadel and Moscovitch,
2001). Here, previously consolidated episodic memories when
retrieved become subject to reconsolidation (Lee et al., 2004; Lee,
2008), a process during which the original memory is modified. A
related distinction has been proposed between active and inactive
memory traces (Lewis, 1979; Caithness et al., 2004; Xu et al., 2009;
Yang et al., 2009). In this framework, it is proposed that memory
traces are active when they are formed, become inactive when
they are not accessed, and are reactivated when retrieved (Nader
et al., 2000; Nader, 2003). This reactivation returns the memory
trace to a labile state in which it can be modified. Recent studies
have shown that sensory experience leaves traces in the form of
the size and number of synapses and dendritic spines (Xu et al.,
2009; Yang et al., 2009), and that the size of spines is related to the
age of memories so that spine size may be a correlate of trace
reactivation (Alvarez and Sabatini, 2007; Hofer et al., 2009). In
the domain of skill learning, the malleability of memory traces
provides a form of flexibility that can be advantageous. It permits
efficient memory storage, because increases in expertise will lead
to updating of a single memory rather than the creation of new
memories for each level of increased skill, and replacement of
expertise in an old skill with expertise required for a new skill.

In conclusion, we have provided the first full description of
behavioral interference during asymptotic learning of two visual
skill-learning tasks. We found that the extent of overlap between
sensory neuronal populations stimulated in two competing tasks
was the best predictor for the magnitude of behavioral interfer-
ence, regardless of the state of memory formation for the first task
when training in the second task was started. Hence, behavioral
interference paradigms are not a sensitive approach to test the
existence of specific time-limited consolidation processes. In-
stead, interference paradigms can help to identify limits in the
capacity of neuronal subpopulations to simultaneously represent
expertise for different skills during asymptotic learning.
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