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Sensory information is represented in the brain by the joint activity of large groups of neurons. Recent studies have shown that, although
the number of possible activity patterns and underlying interactions is exponentially large, pairwise-based models give a surprisingly
accurate description of neural population activity patterns. We explored the architecture of maximum entropy models of the functional
interaction networks underlying the response of large populations of retinal ganglion cells, in adult tiger salamander retina, responding
to natural and artificial stimuli. We found that we can further simplify these pairwise models by neglecting weak interaction terms or by
relying on a small set of interaction strengths. Comparing network interactions under different visual stimuli, we show the existence of
local network motifs in the interaction map of the retina. Our results demonstrate that the underlying interaction map of the retina is

sparse and dominated by local overlapping interaction modules.

Introduction

The nature of the population code with which large groups of
neurons represent and transmit information depends on the net-
work of interactions between them. The discussion whether neu-
ral population codes are redundant, independent, decorrelated,
synergistic, or error correcting (Barlow and Levick, 1969; van
Hateren, 1992; Gawne and Richmond, 1993; Dan et al., 1998; Gat
and Tishby, 1999; Barlow, 2001; Petersen et al., 2001; Schnitzer
and Meister, 2003; Schneidman et al., 2006) is to a large extent a
question of the architecture of neuronal networks. Generally, the
number of dependencies among neurons may be exponentially
large and arbitrarily complex, and so understanding neuronal
functional architecture relies on finding simplifying principles
that govern the organization and activity of the network. Studies
of functional dependencies in neural systems have focused on
relations among brain regions (Sporns et al., 2004, 2005; Eguiluz
etal., 2005; Achard et al., 2006; Livet et al., 2007; Stam et al., 2007)
and global network properties such as small-world (Watts and
Strogatz, 1998) and scale-free (Barabasi and Albert, 1999) prop-
erties, in vivo (Yu et al., 2008; Bonifazi et al., 2009) and in vitro
(Bettencourt et al., 2007). The interplay between neuronal “ar-
chitectural design” and functionality has been studied for wiring
length and optimal coding (Chen et al., 2006), neuronal layout
and dendritic morphology (Shepherd et al., 2005; Song et al.,
2005; Lee and Stevens, 2007), and connectivity scaling laws
(Clark et al., 2001; Chklovskii et al., 2002).
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Analysis of the joint activity patterns in neural circuits has
shown that, although typical pairwise correlations between cells
are weak, even small groups of neurons can demonstrate strongly
correlated population activity. In the retina, cortical cultures,
cortical slices, and in cortical activity in vivo, it was shown that the
minimal probabilistic models of the population that rely only on
pairwise interactions between cells can be surprisingly accurate in
capturing the network activity (Schneidman et al., 2006; Shlens et
al., 2006, 2009; Tang et al., 2008; Yu et al., 2008). These maximum
entropy models give a detailed, unique, functional interaction
map of the network. The success of these models presents a huge
reduction in the complexity of the network compared with the
exponential number of potential network interactions of all or-
ders. We ask here whether we can identify further simplifying
design principles of the network organization.

The retina, because of its sensory role, organization, and experi-
mental accessibility, has been a central experimental system to study
neural population coding (Meister et al., 1995; Schnitzer and Meis-
ter, 2003; Segev et al., 2004). Recording from large populations of
retinal ganglion cells, responding to natural and artificial stimuli, we
studied the architecture of functional interactions in the retina. We
examined how different approaches can reduce the complexity of
the functional interaction network and which design principles are
at the basis of these simplifications. We found that functionally the
retinal code can be modeled as relying on a sparse interaction net-
work, which is predominantly locally connected and comprises
overlapping modules.

Materials and Methods

Electrophysiology. Experiments were performed on adult male and female
tiger salamander (Ambystoma tigrinum). Before the experiment, the sal-
amander was adapted to bright light for 30 min. Retinas were isolated
from the eye and peeled from the sclera together with the pigment epi-
thelium. Retinas were placed with the ganglion cell layer facing a multi-
electrode array with 252 electrodes (Ayanda Biosystems) and superfused
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with oxygenated (95% 0,/5% CO,) Ringer’s medium (in mm): 110
NaCl, 22 NaHCO3, 2.5 KCl, 1 CaCl,, 1.6 MgCl,, and 18 glucose (at room
temperature). The electrode diameter was 10 wm, and electrode spacing
varied between 40 and 80 wm. Recordings of 24 30 h were achieved consis-
tently. Extracellularly recorded signals were amplified (Multi Channel Sys-
tems) digitized at 10 kSamples/s on four personal computers and stored for
offline spike sorting and analysis. Spike sorting was done by extracting from
each potential waveform amplitude and width, followed by manual cluster-
ing using an in-house-written MATLAB program.

Visual stimulation. Natural movie clips were acquired using a Sony
(Handycam DCR-HC23) video camera at 30 frames/s. The stimulus was
projected onto the salamander retina from a cathode ray tube video monitor
(ViewSonic G90fB) at a frame rate of 60 Hz such that each acquired frame
was presented twice, using standard optics (Puchalla et al., 2005). The orig-
inal color movies were converted to grayscale, using a gamma correction for
the computer monitor. The receptive field of each cell was mapped by cal-
culating the average stimulus pattern preceding a spike under the random
checkerboard stimulation. The center position of ganglion cell receptive field
was found by fitting a two-dimensional Gaussian to the spatial profile of the
response. The checkerboard stimulus was generated by selecting each
checker (100 wm on the retina) randomly every 33 ms to be either black or
white. In all cases, the visual stimulus covered the retinal patch that was used
for the experiment entirely. “Natural pixel” stimuli were generated by select-
ing a random pixel from a natural movie and displaying the intensity of that
pixel uniformly on the entire screen.

Exact solution for the maximum entropy pairwise distribution. The
maximum entropy pairwise distribution is known to take the form

> Byxix;) (Jaynes, 1957). In the

1=i<j=n
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PA(x) = - exp( 2 a;x; +
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current setting, x is a binary vector that represents the spiking activity
of each neuron in the network, «; is related to the tendency to spike of
the ith neuron, B; corresponds to the interaction between neurons i

and j, and Zis a normalization constant. The parameters a;and 8;; can
be found by maximizing the following function:
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where H denotes the entropy function. This function is concave with the

following derivatives Frole (X)) pu — (Xi)po» ()p denotes average with
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respect to the distribution P (similarly for 8;)). The parameter values were
found using gradient ascent.

Estimating maximum entropy distributions for large networks. To find
maximum entropy distributions using exact methods, one must calcu-
late model expected values, denoted above (x;)pe. Because the number of
patterns is exponential in the number of neurons, it quickly becomes
unfeasible to exactly calculate the expected values. To estimate the ex-
pected values for such networks, we used Monte Carlo methods (Neal,
1993). We used a gradient ascent algorithm, applying a combination of
Gibbs sampling and importance sampling to efficiently estimate the gra-
dient. Sampling was performed in parallel on a 16-node cluster with two
2.66 GHz Intel Quad-Core Xeon processors and 16 GB of memory per
node. Our algorithm was much more efficient for this specific task than
previously suggested algorithms (Swendsen and Wang, 1987; Wolff,
1989). A similar algorithm has been described by Broderick et al. (2007).
The algorithm terminated when the average error in firing rates and
coincident firing rates reached below 1 and 6%, respectively (for Fig.
4C,D only, the threshold was relaxed to 2 and 11% because of smaller
dataset size and higher uncertainty in empirical estimates), which is
within the experimental error. To estimate the partition function, we
generated samples from the desired distribution using Gibbs sampling

and defined our estimate as Z = where 0 denotes the all zeros

1
Py !

_ 1
pattern, i.e., x = (00...0)], because it holds that P(0) = 7 This estimate
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proved better than several other estimators we tested (Potamianos and
Goutsias, 1993, 1997).

Sparse interaction maximum entropy models. To quantify the contribution of
each of the simplifications of the full model, we limited ourselves to models of the

> BM>> where

following exponential form Py,oqq(x) = ! exp| > ax; +
z (z‘l (=

EC{l...n} X {1...n}. Thatis, P, 4. satisfies all the empirically measured
firing rates but only a subset (denoted E) of the pairwise correlations,
resulting in an interaction term f3 only for those interactions in the set E.

Discrete valued interaction models. To generate a model with K different inter-
action clusters, each cluster having a single interaction value, we find the maxi-
mum entropy model that obeys the firing rates of each of the cells and a set of

additional constraints of the form { > X = > X;
(i, JECk model (i, )ECk data
C, represents a group of interactions that are forced to take the same

1 n
value. The result is an exponential model: P, ,40(x) = — exp( Dy
i=1

, where

V4

+ 2 Bxx; |. Each neuron pair belongs to exactly one cluster C,,
(i, )ECk
which has an interaction strength identical to all pairs in that cluster, 3, .

Measures of model performance. In general, model accuracy was
assessed by its similarity to the pairwise model, as quantified by the
Kullback-Leibler divergence (Cover and Thomas, 1991). Because the
number of possible network states grows exponentially with network
size whereas experimental data is limited, empirical sampling be-
comes unreliable for large groups of neurons. Therefore, we used the
pairwise model as a reference instead of the empirical distribution to
overcome sampling noise and estimation errors (Ganmor et al., 2009,
their Fig. 1C). Note that, for the family of models used in this study
(i.e., maximum entropy models with a feature set that is a subset
of the feature set of the pairwise model), we have that
DKL(Pdata”Pmodel) = DKL(Pdata” P(Z)) + DKL(P<Z) HPmodel); thus, the
divergence from the true distribution is the D, we measure here plus
a constant term Dy;(Py,||P®) (Csiszar, 1975; Amari, 2001; Sch-
neidman et al., 2003). For presentation purposes, we further scaled
the measured divergence by Dy (P® | P'V) and present a scaled
divergence d(P®, P, 4e1) = D, (PP || Prroger)/ D, (PP || P (d =
1 means the model covered none of the distance between P® and P, and
is thus identical to the independent model, whereas d = 0 means that
the model covered the entire distance and is thus identical to the full
pairwise model). Notice that this means that, regardless of the “true”
underlying distribution, the shape of the curves we present (when we
use the scaled divergence) will not change, but they may be shifted
upward. When empirical sampling was involved, accuracy was mea-
sured using the Jensen—Shannon divergence (Lin, 1991) between the
distributions. The Jensen—Shannon divergence was used instead of
the more common Kullback-Leibler divergence (Cover and Thomas,
1991), because it is bounded and does not diverge in the case of
empirical sampling. For comparison of empirical sampling to the
different models, we randomly split the data into train and test sets
(~1 h for each set, noncontiguous). We quantify the performance of
the models by the Jensen—Shannon divergence between the empirical
distribution, the independent model, or the pairwise model (all esti-
mated using the training data) and the empirical distribution esti-
mated using the test data.

Markov blankets. Given a network (or graph) with the set of random
variables X = {X, ..., X} as its nodes, the Markov Blanket (MB) of the
variable X is the set of its neighbors MB(X;). Given its Markov blanket, a
node is independent of the rest of the nodes in the network, i.e., P(X; |
X\{X,}) = P(X;| MB(X,)), where X\{X,} denotes the whole network except
for X,. Identifying the Markov blanket of a node X; is known to be a
computationally hard problem, and so we use an approximation sug-
gested by Abbeel et al. (2006). Briefly, we searched for a minimal set of
nodes Y for which the conditional entropy H(X; | Y) was very close to the
value H(X | X\{X;}). This was done by sequentially adding neurons to the
set of neighbors (according to the distance of their receptive field from
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that of X;) and stopping when the conditional
entropy was within 5% of its final value, esti-
mated by conditioning on the 55 neurons with
closest receptive field centers. For details about
graphical representations of joint distributions
and Markov blankets, see Koller and Friedman
(2009).

Results
To study the functional network architec-
ture that underlies the population code of
the retina, we recorded the joint activity of
large groups of ganglion cells in the tiger
salamander retina, responding to natural
and artificial movies (Meister et al., 1994;
Segev et al., 2004). We then constructed
pairwise maximum entropy models of
these neuronal networks (see below) and
explored the nature of the interactions be-
tween neurons in these models. Figure 1A
shows an example of the joint activity of 99
ganglion cells responding to a natural
movie. If time is discretized into small
enough bins, A7, then in each bin each of the
neurons is either silent (“0”) or spiking
(“17), and we can represent the activity of
the population at any given time bin by an
n-bit binary “word” x = (x;, %5 ..., X,,),
where 7 is the number of neurons. Here we
used a time bin of AT = 20 ms, based on the
typical width of the correlation function be-
tween cells, but this particular choice is not
critical for the results we present (Sch-
neidman et al., 2006; Ganmor et al., 2009).
In general, the distribution of activity
patterns of n cells may require 2” — 1 pa-
rameters to describe. Although the typical
correlation between pairs of neurons is
weak, even small groups of neurons may
be strongly correlated as a group (Bair et
al.,, 2001; Schnitzer and Meister, 2003;
Schneidman et al., 2006). Surprisingly, it
was found for several different neural sys-
tems that the distribution of joint activity
patterns of small- and intermediate-sized
populations of neurons can be described
with high accuracy using the minimal
model that relies only on the firing rates of
the cells and their pairwise correlations
(Schneidman et al., 2006; Shlens et al.,
2006, 2009; Tang et al., 2008). This mini-
mal model is the maximum entropy dis-
tribution, which is the most random, or
least constrained, model that has the same
firing rates and pairwise correlations as in
the empirical data but does not make ad-
ditional assumptions about higher-order
relations between neurons. The maxi-
mum entropy model is mathematically

unique and is known to take the following form (Jaynes, 1957):

1 n
P(x) = 7P (Ea,-xl- +
=1

1=i<j=n
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Figure1.  Success of the pairwise maximum entropy model in describing the activity of small and large populations of neurons.

A, The simultaneous activity of a group of 99 retinal ganglion cells responding to a natural stimulus. The x-coordinate represents
time (s scale bar), whereas the y-coordinate represents cell ID. Dots represent the spike of a single neuron at a certain time bin. B,
The average Jensen—Shannon divergence between the empirical distributions measured from the data and the pairwise/indepen-
dent models (red/gray dots). Also shown is the average Jensen—Shannon divergence between empirical distributions estimated
using two separate halves of the data (black dots). Error bars represent SD over 20 randomly chosen cell groups (error bars are
missing when the SD is greater than the mean). Note that, even for small groups of cells for which we can accurately sample the
joint distribution, the pairwise model proves more accurate during cross-validation. For larger groups, direct empirical sampling is
problematic because of sampling noise, and the pairwise model is far more accurate in predicting cross-validated data (see
Results). €, /I, values, which quantify the contribution of pairwise correlation to the total network correlation (Schneidman et
al., 2003), as a function of the diameter of the subgraph for 100 randomly selected groups of 15 cells. D, Model versus empirically
observed pattern frequency, for the responses of a group of 50 neurons. The x-axis represents the probability with which a pattern
was observed during the experiment, and the y-axis represents the model derived probability for the same patterns (red dots,
pairwise model; gray dots, independent model; each dot corresponds to a single activity pattern observed during the experiment;
black line marksidentity between axes). E, The distribution of the number of simultaneously spiking neuronsin each time bin in the
experiment (colors same as D). Error bars and shaded areas represent SD over 30 randomly selected groups of 50 cells (error bars are
not symmetrical because of the logarithmic scale). F, Validity of empirical sampling of activity pattern frequency in large networks.
The empirical data were randomly separated into two halves. We plot the probability of each pattern observed in the first half
against the probability of that pattern in the second half but only for patterns that appeared more than once. Dashed cyan lines
mark 99% confidence intervals of the probability estimated in the first half. Clearly, for patterns that appear more than once, we
have a good estimate of both probability and estimation certainty.

where the n single-cell parameters {e;} and the n(n — 1)/2
pairwise interaction parameters {§;} are found numerically
such that (x;)pe) = (X;)data> (XiXj)p0) = (XiX))data> b J» = 1...1, where

2 .
E Bijxix]_) ( )per denotes average over P, ( )4,., denotes the empirical

average, and Z is a normalization factor or partition function.
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Shlens et al., 2006, 2009; Tang et al., 2008).
In addition, pairwise maximum entropy

Cell Index

models are much more accurate than inde-

pendent models of neural population activ-

ity, which assume PV (x) = IT,P(x;), also for

larger networks as is reflected by the accu-

racy of the model in predicting the observed

activity patterns (Fig. 1D) and the overall

By synchrony in the population (Fig. 1E)
2 (Tkacik et al., 2006; Shlens et al., 2009). For

small groups of neurons, we can also directly
quantify the contribution of pairwise corre-
lations to the total network correlation,

0 measured by I?/I (Schneidman et al.,
60 2003), which we found to be ~90% for
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-1 nearby cells as well as for widespread popu-
lations (Fig. 1C).

-2 Importantly, for large groups of neu-
rons, direct sampling of the entire joint dis-
tribution is not feasible because the number
of network states grows exponentially with
the number of neurons. However, even for

.:"a-' large groups of 50—100 neurons, the precise

Figure 2.

atright). C, D, Same as A and B but for a group of 63 neurons recorded from a different retina.

Although the pairwise interactions in the model do not necessar-
ily reflect a physical interaction between cells, they give a unique
functional interaction map between the neurons in the network
(supplemental Fig. S1, available at www.jneurosci.org as supplemen-
tal material) and represent statistical dependence between pairs of
units. Importantly, the interactions in the maximum entropy model
differ from the pairwise correlations between cells, which quantify
the average tendency of cells to fire or be silent together. Pairwise
correlations are notoriously problematic to interpret or analyze
when more than two elements are involved. In particular, they are
prone to “overcounting” of dependencies between elements, such
thatif neuron A has a strong influence on both cells B and C, then the
latter two may be highly correlated even if they are not directly in-
teracting at all. The maximum entropy approach, conversely, over-
comes this problem by finding the minimal model that satisfies all
correlations simultaneously. The resulting interactions correspond
only to direct functional dependencies between cells (Besag, 1974).
In the above example, the interaction value between neurons B and
C (Bgc) will be zero, as one would intuitively require (Martignon et
al., 2000; Schneidman et al., 2003, 2006; Bettencourt et al., 2007; Yu
et al., 2008). Moreover, because of the equivalence between these
maximum entropy models and Markov networks, the pairwise in-
teractions provide a natural candidate for edges in the graphical rep-
resentation of the network (Koller and Friedman, 2009).

The accuracy and structure of the pairwise maximum entropy
model for large neuronal populations

The maximum entropy pairwise model provides a very accurate
description of neural activity for small groups of neurons (Fig.
1B, C), in agreement with previous studies (Schneidman et al., 2006;

Physical layout and structure of the interaction maps underlying the pairwise maximum entropy models. A, Spatial organi-
zation of the functional interaction network of the 99 retinal ganglion cells from Figure 1A. Neurons (dots) are placed according to the
position of their receptive field on the retina. Line thickness represents pairwise interaction magnitude, whereas line color represents sign
of interaction (blue, negative; red, positive; interactions weaker than 0.05 in magnitude are not drawn). B, The connectivity matrix of the
functional interaction network derived using the maximum entropy pairwise model for the responses of the neurons in 4 to a natural
stimulus. Rows and columns correspond to different neurons, and colors represent the interaction value between pairs of neurons (color bar

empirical probability of many of the net-
work activity patterns, or states, can still be
estimated within tight confidence limits
(Fig. 1 F). This is because of the low en-
tropy of the joint response, which can be
bounded from above using the entropy
of the pairwise model [22.33 = 0.02 bits,
SD over 20 Monte-Carlo estimates with
500,000 samples (Schneidman et al,
2003)]. This means that the patterns
that account for most of the probability mass can be sampled
empirically in reasonable time. In addition, the pairwise
model accurately predicts the distribution of synchronous
events, a statistic of the distribution that can be accurately
estimated from the data even for large groups (Fig. 1 E).

The second-order maximum entropy distribution P® is not
only more accurate than P‘" but can give a better prediction of
network activity patterns than what can be achieved by empirical
sampling (as verified by cross-validation; see Materials and Meth-
ods). Figure 1C shows this is true even for small networks in which
the number of samples is much larger than the number of network
states (our data consist of ~350,000 samples). The inaccuracy of
empirical sampling is further exacerbated for large networks. The
reason for the accuracy of the pairwise model is that it relies only on
accurate sampling of pairwise correlations, which can be reliably
estimated from a relatively small sample, and so does not suffer a
drop in accuracy as network size is increased as a result of sampling
errors (Ganmor et al., 2009).

Local structure in the functional interaction network of large
neural populations

Although the second-order maximum entropy model presents a
huge simplification compared with the exponential number of
potential interactions among cells, it still requires a quadratic
number of parameters. Finding additional structural organiza-
tion in the network may help us identify underlying principles
governing the coding properties of the network. Figure 2, A and
C, presents the functional interaction maps or 3;; between cells in
two networks of 99 and 63 ganglion cells responding to natural
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movie stimuli, overlaid on the physicallo- A )
cations of the cells’ receptive fields. 10° — Nat Mov (Ret!na 1)

Ordering the interaction matrices be- — Nat M,OV (Retina 2) 6
tween cells (Fig. 2 B, D), such that nearby 2 — Nat Pix g
cells in the matrix are also physically close S B é
to one another, reflects the local nature of 310 N g 2 b
the pairwise interactions, in which strong L&L’ Wm o i
positive interactions tend to aggregate V| WJ/,f\ 0 s
near the diagonal, suggesting that neurons ’ 2 H
recorded from nearby electrodes tend to 10! - 0 5 4 6
strongly interact. -05 0 05 1 15 N

The distribution of interaction values Bij Bij
in the full pairwise model of ganglion cells
responding to natural and to full-field c ' D 2
natural pixel movies (see Materials and 2 * Nat Mov (Retina 1)
Methods) has many values that are close _ * Nat Mov (Retina 2) 1
to zero with a long tail of strong positive ‘2‘ F Atk o 1 ‘
interactions (Fig. 3A). Although correla- s 1 § 1
tions are generally larger when presenting = T A = 05 L4 ‘
the full-field stimulus (Fig. 3A) and the “ F *‘ L] ++ | F} I3 4
exact interaction values are affected by the g THrie ¢+*‘ ++“H++¢* O # +T (RUMIIAL
stimulus (Fig. 3B), we find similar depen-
dence of interaction strength on correla- g 0'_5 ) 18 g 080s .0t 02

RF distance (mm) Corr. coeff.

tion and receptive field distance in both
cases. Namely, interaction strength de-
cays with the distance between cells (Fig.
3C), and weak pairwise correlations of-
ten imply weak pairwise interactions
(Fig. 3D) (supplemental Fig. S1A, avail-
able at www.jneurosci.org as supple-
mental material).

We asked then how distant or weakly
correlated neurons interact and whether
they are acting almost independently
from one another, given the neurons in their close vicinity (we
emphasize this is conditional independence given other cells in
the network and not conditional independence given the stimu-
lus). Direct testing for this kind of near conditional independence
is statistically hard, because it requires an accurate estimation of
the joint distribution of all the neurons in the network. Still, two
lines of evidence suggest that many neurons in the network are
conditionally independent given a sufficiently large group of
their neighbors. First, the pairwise interaction strength in the full
pairwise model decays with the distance between receptive fields,
implying a finite interaction range (Fig. 3C). Second, the condi-
tional entropy of a neuron given a growing set of its neighbors
seems to reach its minimum value after considering only ~10-20
neighboring neurons (Fig. 4A, B), suggesting that neurons are
nearly conditionally independent of all the other neurons in the
network given a small set of neighboring cells; this is also known
as the Markov blanket of each of the cells (Pearl, 1988; Koller and
Friedman, 2009) (see Materials and Methods). We find a similar
Markov blanket organization, also when the retina was presented
with a natural pixel movie, which has different spatial stimulus
statistics, and pairwise interaction values (Fig. 4B). Figure 4C
shows an example of the layout of the Markov blankets of a subset
of 20 neurons at the center of the recording array reflecting the
high overlap between the Markov blankets of the neurons.

Figure 3.

A sparse interaction network accurately approximates the full
pairwise model

The pairwise maximum entropy model presents a huge reduction
in the dimensionality of the network model of large neuronal

Pairwise interactions distribution and their relation to distance and correlation between cells. 4, Histogram of
interactions derived from population models of retinal ganglion cells responding to natural pixel (Nat Pix; red; see Materials and
Methods) and natural movie (Nat Mov) stimuli. The interaction values of the model presented in Figure 2, A and B, are shown in
blue (retina 1), and those from the model in Figure 2, Cand D, are in green (retina 2). B, Network interactions under different
stimulus conditions. The functional interaction values (as measured by the parameter 3in the pairwise model) for a natural movie
stimulus (abscissa; same as in Fig. 1A) are plotted against the values obtained for the same pairs of recording electrodes under
natural pixel stimulation (full-field stimulus with natural temporal statistics; see Materials and Methods; ordinate). Line marks
identity. €, Average pairwise interaction plotted against receptive field (RF) distance (bars represent SD; colors asin A). D, Average
pairwise interaction magnitude plotted against correlation coefficient (bars represent SD; colors as in A).

populations: for a network of # neurons, it uses an order of n”
parameters instead of the exponential number of parameters re-
quired in general to describe the distribution of activity patterns.
It is not immediately clear, however, that all the pairwise interac-
tions are necessary for the model to be accurate. In fact, the results
presented in the previous section suggest that many of the pair-
wise interactions can be safely ignored.

We therefore asked whether we could further reduce the com-
plexity of the model, or the number of its parameters, by remov-
ing pairwise interactions from the functional interaction
network, without sacrificing much of its accuracy. Nearest-
neighbor models offer such a simplified network model, which
can still exhibit long-range correlations in the network. We first
explored a simple nearest-neighbor model in which each element
is only connected to the four elements with nearest receptive field
centers, analogous to a two-dimensional Ising lattice system or
first-order Markov random field used in image processing (Li,
2001). We found that for groups of 20 retinal ganglion cells re-
sponding to natural movies, which contain long range correla-
tions, a nearest-neighbor model covers only ~41 * 19% of the
distance between the independent model and pairwise model,
leaving much room for improvement. These results differ from
those of Shlens et al. (2009) who reported that nearest-neighbor
models are very successful in describing the responses of similarly
sized groups of ganglion cells in primate retina. Although differ-
ences between species may contribute to the difference in results,
a recent study points toward the type of visual stimulation as the
most likely source (Cocco et al., 2009). Importantly, while Shlens
et al. (2009) use spatiotemporal white noise, which by construc-
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Figure4.  Neurons are conditionally independent of other neurons in the network, given a small st of their neighbors. 4, The

conditional entropy of the activity of a single neuron given a set of its neighbors (as a fraction of the unconditional entropy) is
plotted against the number of neighbors considered. Neighbors were added either according to the distance of their receptive field
(RF) from the receptive field of the neuron (left) or in decreasing correlation magnitude order (right). The conditional entropy was
calculated using the pairwise model and thus provides an upper bound. Same data as Figure 1A. B, Same as A but for a natural pixel
movie (see Materials and Methods). €, Overlapping modular structure (Markov blankets) of neural dependencies. For a subset of 20
neurons, positioned near the center of the recording array, we identified for each neuron a minimal set of spatially adjacent
neurons that rendered it nearly conditionally independent of the rest of the network. For each neuron, the conditional entropy
given growing sets of neighbors was estimated as in A. When the conditional entropy was within 5% of its saturated value
(estimated by conditioning on 55 neurons as in 4), we considered the attained set of neighbors as the Markov blanket of the
neuron. Black dots show the position of the neurons (including the neurons that constitute the Markov blankets) on the retina. Each
of the shaded ellipses corresponds to one neuron and shows the 2 SD contour of the Gaussian fit to its Markov blanket. Given the
activity of all neurons within a Markov blanket (shaded region), the neuron corresponding to that blanket becomes independent of
therestof the network, i.e., all the information present in the network about the activity of a single neuron resides within its shaded
region (see Materials and Methods).

tion lacks correlation structure, here we focused on natural mov-
ies that are known to contain long-range correlations.

To further explore the structure of the local interaction map, we
used a heuristic approach to identify the important or dominant
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interactions in the network. We built a fam-
ily of network models, starting from the in-
dependent model, by adding at each step the
strongest interaction, which is not yet part of
the network (interaction strengths were de-
rived from the full model). In each step, we
recalculate the appropriate maximum en-
tropy model, for the new set of pairwise
constraints (see Materials and Methods).
Our results indicate that most interactions
in the full pairwise network can be dis-
carded, with only a very slight effect on the
accuracy of the network model. For net-
works of up to 99 retinal ganglion cells re-
sponding to a natural movie, we used a
specially tailored Monte Carlo algorithm to
construct these maximum entropy models
(Broderick etal.,2007) and found that using
less than half of the potential interactions in
the network we can cover >95% of the dis-
tance between the independent model and
pairwise model (Fig. 54, B).

We conclude that an accurate model
does not necessarily require a fully con-
nected network. However, to identify
which edges can be removed from the net-
work, we first had to construct a fully con-
nected model.

Next we asked whether we could infer a
priori which interactions are essential for
building a successful model. We found that,
by including only pairwise interactions ac-
cording to the magnitude of correlation be-
tween the corresponding cells or by the
proximity of their receptive field centers, we
can construct a very accurate model using
relatively few parameters, much like using
only strong interactions (Fig. 5A). Impor-
tantly, selecting neuronal interactions based
on correlation between cells could be imple-
mented biologically, using Hebbian plastic-
ity. Adding interactions according to the
distance between the receptive field centers
of the cells also allowed us to examine the
number of neighbors required to achieve an
accurate approximation. On average, >20
neighbors per node were required to cover
95% of the distance between P'" and P
(Fig. 5C), suggesting that a simple lattice
structure, or a first-order nearest-neighbor
structure, does not suffice to accurately ap-
proximate the functional interaction net-
work of retinal ganglion cells responding to
natural stimuli. The average number of
neighbors required is similar to the number
calculated using the conditional entropy
measure in Figure 4.

We further examined how the removal
of edges from the network affected the

overall structure and connectivity of the induced graph. We
found that, by removing interactions according to their strength,
the network breaks up into several disjoint components signifi-
cantly faster than if edges are randomly removed. Nevertheless, to
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Sparse connectivity models for the functional interaction network. 4, The scaled divergence between each of the models and the full pairwise model (see Materials and Methods) is

plotted against the number of interactions used in the model, for the network of 99 neurons from Figure 1A (the full model contains 4851 interactions). Interactions (3) were added according to their
strength in descending order (red), descending correlation magnitude (blue), ascending receptive field distance (green), or random order (black). Note that a scaled divergence of T means that the
model is identical to the independent model, whereas a scaled divergence of 0 represents a model that is identical to the pairwise model. B, The minimal number of interaction parameters, chosen
according to their magnitude, needed to cover 95% of the distance between the independent model and the full pairwise model is plotted against network size. For small networks (up to 20
neurons), the values were averaged over 50 randomly selected networks (SD error bars approximately the size of the dots). Dashed lines represent the number of parameters in the independent
model (bottom) and the full pairwise model (top). €, The average number of neighbors per node in the network as a function of the scaled divergence between P2 and the sparse models (bars
represent SD). Edges were added to the network according to receptive field center distance between the interacting neurons.

achieve an accurate description of net-
work activity, we require 400—-500 edges
(Fig. 5A), which implies a nearly con-
nected network (Fig. 6A).

Interestingly, when removing edges ac-
cording to the magnitude of correlation be-
tween cells, the network disintegrates into
disjoint components much more rapidly
(Fig. 6 A). Closer inspection reveals that the
network initially breaks up into singleton
neurons and one large connected compo-
nent (Fig. 6 B, C). An accurate description of
network activity requires ~1000—2000 in-
teractions between highly correlated neu-
rons (Fig. 5A). Thus, analysis based on the
correlations implies a network with one
large (80 neuron) component and 19
singletons. This stands in contrast to the
analysis based on pairwise interactions
in which a connected, but much sparser,
representation was derived, providing
an example in which these two similar
types of analysis lead to qualitatively dif-
ferent results.

Discrete interaction valued networks
capture most of the full network model
Another simplified network model we con-
sidered is a uniform interaction model, in
which the network is fully connected, with
the same interaction strength between each
of the pairs. This model has a single interac-
tion parameter instead of the quadratic
number of the full pairwise model and has
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Figure 6.  Breakdown of the interaction network by edge removal. A, The number of disjoint connected components in the
network is plotted against the number of edges in the network. Retina responding to a natural movie (Nat Mov; as in Fig. 1A) is
depicted by a solid line, and the response to a natural pixel (Nat Pix) movie is depicted by a dashed line. Edges were sequentially
added to the functional interaction network by order of decreasing interaction magnitude (|8, red), decreasing correlation
magnitude (blue), increasing receptive field (RF) center distance (green, dashed and solid lines overlay because receptive fields are
identical for both conditions), or random order (gray area represents mean == 15D). B, The maximal connected component size is
plotted against the number of edges in the network. Details are as in A. Clearly, if we only keep edges among highly correlated (or
anticorrelated) pairs, the resulting network s composed of significantly more and smaller disjoint components. €, lllustration of the
functional interaction network under natural movie stimulation with 100 (left), 500 (middle), and 1000 (right) edges, respectively.
Edges retained in each network were the ones corresponding to greatest correlation magnitudes.

clear computational and practical benefits (Bohte et al., 2000; Mon-
tani et al., 2009). We found that such a model is a poor approxima-
tion of the network and covers only 24 * 2% of the distance between
the independent and pairwise models.

The uniform connectivity model can be extended to allow for
a small set of different interaction values: more than one, as in the
uniform connectivity model, and less than the number of pairs,

~n?, as in the full pairwise model. Because there is no analytical
solution for how to optimally cluster the interaction values into
groups, we used a heuristic approach, by which we grouped to-
gether the interactions according to their value in the full model
using the k-means algorithm. We found that such a model can
capture most of the network behavior and greatly reduce the
complexity of the model. For example, for 20 neurons, we found



Ganmor et al. @ Retinal Network Architecture

1
08 Uniform connectivity
% 06 _I Nearest neighbor
oF
@Q 04k U Clustering
5 ¢  Sparse
|
' t
ol " '-'—‘—'—:-‘M—
1 10 100
# parameters
Figure7. Reduced exponential models for the distribution of network activity patterns. The

average scaled divergence (error bars represent SD) from the full pairwise model is plotted
against the number of interaction parameters allowed in the model, for 32 randomly chosen
networks of 20 neurons. Interactions were either clustered together and forced to take the same
value (black circles; for details, see Results) or added according to the absolute interaction
strength (gray diamonds; as described in Results). A scaled divergence of 1 represents a model
thatisidentical to the independent model, whereas a scaled divergence of 0 represents a model
thatis identical to the pairwise model (see Materials and Methods). Average scaled divergence
for the uniform connectivity (clustering with one allowed value) and first-order nearest-
neighbor models are also shown for comparison. Note that the x-axis is on a log scale and that
the full pairwise model consists of 190 different interactions.

that typically only five different interaction values (for the 190
interactions in the full pairwise model in this case) are required to
cover ~95% of the distance between the pairwise and indepen-
dent models (Fig. 7). Moreover, this clustering approach vastly
outperforms the uniform connectivity model, the nearest-
neighbor model, and even the sparse interaction model (with
interactions chosen post hoc according to the interaction
strength). Although it is not immediately clear how this approach
may be implemented biologically, it provides a clear indication
that the complexity of pairwise models for neural network activ-
ity can be greatly reduced.

Motifs in the functional interaction networks of neurons

To test whether a more intricate local structure exists in the net-
work, and in particular whether there are certain subgraphs
(“motifs”), which occur more frequently than we would expect
from a random network with no local structure, we compared the
functional interaction network with an ensemble of random net-
works with similar overall interactions but devoid of any local
structure, as in previous studies (Milo et al., 2002; Shen-Orr et al.,
2002).

Network motifs have been studied in many biological and
other systems (Alon, 2007), yet most studies, and algorithmic
tools, have focused on unweighted network interactions. Thus,
studying interaction networks such as transcriptional regulation
networks or metabolic networks, which are fundamentally
weighted interaction networks, has relied on transforming the
interaction map into an unweighted representation. We first con-
verted the functional interaction network into an unweighted
network by removing all interactions with magnitude below
some threshold and “coloring” each of the remaining interac-
tions according to their sign (red for positive, blue for negative).
Random networks were then generated using the switching algo-
rithm in the study by Milo et al. (2003), such that the colored
degree of each node (i.e., the number of blue/red edges connected
to each node) was preserved.
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We found that, if two neurons both interact with a third
neuron, they are significantly more likely to interact with each
other than expected by chance (see graphs 1 and 5 in Table 1),
regardless of the number of edges retained in the graph. In
addition, it is much more likely to find triplets for which the
product of the pairwise interaction values is positive than is
expected by chance from the distribution of interaction values
(see graphs 1 and 3 in Table 1). In the equivalent model in
physics, the Ising spin model, such a set of interactions among
a triplet of spins (neurons) would be “unfrustrated,” because
it has two stable configurations in which all edges are “satis-
fied” (the spins at both ends of the edge are aligned for positive
edges and unaligned for negative ones). Triplets for which the
product of pairwise interaction values is negative were much
rarer than expected by chance (see graphs 2 and 4 in Table 1).
Such interactions correspond to “frustrated” triangles in the
Ising model. Frustrated triangles do not have stable states in
which all edges are satisfied and are usually indicative of
higher entropy because many states have relatively similar en-
ergy or probability.

Most of our conclusions hold regardless of the arbitrary
threshold values used to remove edges (Table 1). Furthermore,
although the exact value of the interactions is affected by stim-
ulus statistics (Fig. 3B), the qualitative results regarding the
simple building blocks presented in Table 1 are essentially
unaffected when we repeat the procedure with the same retina
presented with a different naturalistic full-field stimulus (nat-
ural pixel movie; see Materials and Methods) (Table 1, bottom
rows).

To study the architecture of the weighted interaction network
directly, we used the approach presented by Onnela et al. (2005).
This study suggested to measure the “abundance” of a certain
weighted subgraph in a weighted network using the intensity of the

subgraph, defined as I(g) = (ILijeyyB;)"™), ie., the geometric
mean of the interactions [V( g) denotes the set of nodes in the sub-
graph]. The mean intensity of a motif is the sum of the intensities of
all subgraphs isomorphic to that motif, divided by the number of sub-
graphs. These intensity measures can then be compared with those re-
covered from an ensemble of random weighted networks. To handle
negative edge weight product [for which I( g) is not defined], we con-
sidered motifs with negative edge weight products separately, and their

intensity was defined simply by I(g) = (—ILjeyoB;)"™.

The results of the analysis of the weighted graph were consis-
tent with those of the unweighted graph analysis, which we de-
scribed above. Specifically, we found that the mean intensity of
unfrustrated triangles was significantly higher than chance,
whereas the mean intensity of frustrated triangles was signifi-
cantly lower than chance (Fig. 8A,B). Moreover, a clear depen-
dence between subgraph intensity and receptive field distance
was observed (Fig. 8C). For subgraphs of size 5-7, the mean
intensity in the functional interaction network was slightly but
significantly greater than chance (for both positive and negative
edge weight products, see Fig. 8A, B).

Discussion

A mathematical description of the joint activity patterns of many
interacting elements may require an exponential number of pa-
rameters. Pairwise maximum entropy models have been shown
to accurately capture the joint activity patterns of small groups of
neurons using only pairwise interactions between them. Analysis
of the functional interaction network defined by the full pairwise
model revealed that a reduced sparse pairwise interaction net-
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Table 1. Motifs and anti-motifs in the functional interaction network
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p values
500 edges 1000 edges 2000 edges
Subgraph Motif Anti-motif Motif Anti-motif Motif Anti-motif
<1073 <1073 <1073
<1073 <1073 <1073
<1073
<0.01 <1073 <1073
<1073 <1073 <1073
<1073 <1073 <1073
<0.01 <1073
<1073 <1073 <1073
<1073 <1073 <1073
<103 <1073 <103
<103 <1073 <0.05
<1073 <1073 <1073
<1073 <1073 <0.01
- <0.1 <0.01 <103

pvalues for the frequency of appearance of the seven possible two-colored connected triplets are shown for two stimuli presented to the same retina (natural movie, top rows; natural pixel movie, bottom rows; empty entries correspond

to nonsignificant values).
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Subgraph size

Subgraph radius (mm)

Subgraph intensity reveals recurring weighted motifs. 4, The mean ratio of the intensity of subgraphs in the real network and the intensities of the same subgraphs in 1000 shuffled

networks is shown as a function of subgraph size, for graphs with positive edge weight product (blue, network from Fig. 2 4; green, network from Fig. 2¢; SD error bars are approximately the size of
the dots). The intensity of small subgraphs is greater in the real network than in the random networks. B, Same as A but for subgraphs with negative edge weight product. Unlike the result in 4,
triangles with negative edge weight product (frustrated triangles) have lower intensity in the real network than in the random networks. €, Absolute value of subgraph intensity as a function of

subgraph radius for triangles.

work can accurately approximate the fully connected one.
These reduced models may be built by eliminating many of the
weak pairwise interactions ( post hoc) or by including only
pairs that are highly correlated or have nearby receptive fields,
suggesting that the important interactions in the network are
those between neurons that are highly correlated or have
nearby receptive fields. Alternatively, a very good approxima-

tion to the full pairwise model can be achieved by using only a
very small number of different interaction values. In addition,
our results show that the functional interactions are predom-
inantly local and organized as a set of overlapping modules,
whereas immediate nearest-neighbor interactions alone are
not sufficient to fully capture the network responses to natural
stimuli.
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Implications of structure for coding and learning

We found that the dominant functional interactions in the net-
work are between neurons that are highly correlated or have ad-
jacent receptive fields. In other words, assuming no interaction
between neurons that are weakly correlated or have distant recep-
tive fields incurs only a slight penalty on accuracy. However, this
does not imply that the network can be simply broken up into
independent components but rather should be viewed as a col-
lection of overlapping modules, each of which is relatively small.
This implies that the joint activity and dependencies of a set of
neurons can be exactly inferred observing only that set and its
neighbors (Abbeel et al., 2006), and thus learning the joint re-
sponse of highly connected subnetworks may be achieved by ob-
serving only a small subset of the network. This suggests that the
retinal code is organized as a collection of modules, with consid-
erable overlap between them, in which each module can perform
error correction to some extent because of the correlation among
its units (Barlow, 2001; Schneidman et al., 2006). Interestingly, a
recent study reported that the local field potential (LFP) signals in
cortical cultures can be accurately modeled using a functional
interaction network of non-overlapping yet connected clusters
(Santos et al., 2010). The difference between the spiking patterns
of large groups of neurons in the retina and the synaptic inputs in
cortical cultures (reflected by the LFP signals) may result from
biophysical sources (spiking vs LFP), anatomical organization, or
the naturalistic stimuli we presented to the retina. However, it
would be especially interesting if these differences reflect a fun-
damental difference in the structure of the neural code of the two
systems studied.

From a computational perspective, the complexity of a model
of the joint activity of a group of retinal ganglion cells can be
approximately quantified by the number of model parameters.
Simpler models have an obvious advantage for experimental and
theoretical analysis, but they also imply more efficient learning
and inference. Moreover, downstream structures are also likely to
benefit from a compact representation of retinal response for
decoding purposes. It remains to be seen whether downstream
structures actually take advantage of the organization of the pop-
ulation code that we have shown and what is the role of higher-
order interactions (Tkacik et al., 2006; Montani et al., 2009),
especially in large networks. Notably, downstream neurons re-
ceiving input from retinal ganglion cells that are highly correlated
or have adjacent receptive fields seems very biologically plausible
and have been reported experimentally (Torborg and Feller,
2005).

Network motifs

The small network motifs that we identified give an initial
decomposition of the subgraph structures that were much
more abundant or rare than observed in similar networks de-
void of any local structure. We suspect, however, that these
motifs may be subgraphs of larger recurring elements, which
we did not identify. Still, because we reached qualitatively
similar conclusions when presenting the retina with two very
different stimuli, we speculate that these reflect a basic struc-
ture of neuronal functional interaction networks and are in-
variant to the external stimulus.

Beyond the retina and temporal structure

Although this study focused on the retina, pairwise interaction
models have been shown to provide an accurate description of
the joint activity in other neural systems (Tang et al., 2008; Yu et
al., 2008). We believe the approaches implemented here can be
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directly applied to other structures, as was done recently in anal-
ysis of the properties of the interaction network, derived from the
same model, in cat visual cortex (Yu et al., 2008). Although the
notion of receptive field is characteristic of early sensory stages,
the rest of the properties we rely on, such as correlation, are
common to all neural systems, and therefore similar analysis can
be performed in different brain areas. Future studies may also be
extended to examine temporal correlations as well as spatial ones.
Although we focused on purely spatial interactions, a similar
modeling approach can also be applied to spatiotemporal pat-
terns as well (Marre et al., 2009).
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