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Systematic errors in human path integration were previously associated with processing deficits in the integration of space and time. In
the present work, we hypothesized that these errors are de facto the result of a system that aims to optimize its performance by incorpo-
rating knowledge about prior experience into the current estimate of displacement. We tested human linear and angular displacement
estimation behavior in a production-reproduction task under three different prior experience conditions where samples were drawn
from different overlapping sample distributions. We found that (1) behavior was biased toward the center of the underlying sample
distribution, (2) the amount of bias increased with increasing sample range, and (3) the standard deviation for all conditions was linearly
dependent on the mean reproduced displacements. We propose a model of Bayesian estimation on logarithmic scales that explains the
observed behavior by optimal fusion of an experience-dependent prior expectation with the current noisy displacement measurement.
The iterative update of prior experience is modeled by the formulation of a discrete Kalman filter. The model provides a direct link
between Weber-Fechner and Stevens’ power law, providing a mechanistic explanation for universal psychophysical effects in human

magnitude estimation such as the regression to the mean and the range effect.

Introduction
Path integration, that is, the ability to keep track of changes in
orientation and position using self-motion cues, constitutes an
essential component of spatial navigation (Mittelstaedt and Mit-
telstaedt, 1980; Etienne and Jeffery, 2004). Yet human path inte-
gration performance exhibits systematic errors. Characteristic
overestimation and underestimation of traveled distances and
turning angles and thus a tendency to bias toward certain dis-
placements have been reported for path integration tasks in real
and virtual environments (Loomis et al., 1993; Jiirgens et al.,
1999; Riecke et al., 2002; Seemungal et al., 2007; Glasauer et al.,
2009b). Furthermore, systematic errors differ between studies:
while participants correctly reproduced a 10 m distance in one
study (Klatzky et al., 1990), they underestimated the same dis-
tance by 2 m in another one (Schwartz, 1999). The main differ-
ence between the two studies was the range of distances tested. In
the context of magnitude estimation, these systematic errors can
be interpreted as regression and range effects (Stevens and Green-
baum, 1966; Teghtsoonian and Teghtsoonian, 1978).

One account of a bias in path integration posits processing
deficits that accumulate during integration over space or time
(Mittelstaedt and Glasauer, 1991; Fujita et al., 1993; Glasauer et
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al., 2007; Lappe et al., 2007; Mossio et al., 2008; Bergmann et al.,
2011). However, research in related domains has shown that a
bias is not necessarily a result of deficient processing, but can also
represent the optimal solution of a system that incorporates prior
knowledge about the world to maximize its use of information
provided by sensory cues (Knill and Pouget, 2004; Burge et al.,
2008; Fetsch et al., 2009). A probabilistic interpretation of this
statement is the model of an optimal Bayesian estimator that
combines a current noisy measurement with an a priori estimate
that depends on previous experience (Kording et al., 2004; Mi-
yazaki et al., 2005; Jazayeri and Shadlen, 2010) or reflects a gen-
eral intrinsic tendency (Jirgens and Becker, 2006; Stocker and
Simoncelli, 2006).

We hypothesize that such an estimation process could provide
a potential explanation for systematic biases in human path inte-
gration. In particular, we speculate that an experience-dependent
prior could cause the posterior estimate to adapt to the range of
stimuli presented and show a regression toward the expectancy
value of the underlying distribution. Thus, we tested human lin-
ear and angular displacement estimation separately in three dif-
ferent prior-experience conditions. In a virtual environment,
participants were asked to produce and subsequently reproduce
distances and turning angles that were drawn from three partially
overlapping sample ranges. If participants incorporated knowl-
edge about prior experience into their current estimate of dis-
placement, their behavior should depend significantly on the
underlying sample distribution. In a second step, we developed
and tested two variants of a Bayesian estimator model where the
reproduced displacement was determined by fusion of the cur-
rent measurement and an a priori expectation. The prior was
either modeled as a fixed value that approximated the statistical
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The production—reproduction task. a, Temporal sequence of events in each test trial. Participants had to produce and subsequently reproduce a certain displacement in the VR by using

the joystick. Depending on the session, participants walked on a linear path (DE) or turned on the spot (AE) until they were automatically stopped after a certain displacement, d, or cv,, respectively.
Next, participants were instructed to reproduce the same amount of perceived displacement while keeping the direction of movement constant. Participants indicated that they reached their final
position by a button press. This estimated displacement is referred to as d, in DE sessions and c, in AE sessions. b, DE and AE were tested separately under three different conditions that differed only
in the underlying uniform sample distribution (small displacements, intermediate displacements, and large displacements range, for DE: turquoise, light blue, and dark blue, respectively; for AE:
bright green, olive, dark green, respectively) from which the production displacements d, and e, were drawn.

properties of the underlying sample distribution or as an iterative
estimate updated in each trial, which represented the immediate
prior experience.

Materials and Methods

Participants

Fourteen volunteers (seven female), aged 22—34 years, were monetarily
compensated for their participation in the study. All had normal or
corrected-to-normal vision and were naive to the purpose of the exper-
iments. The experiments were approved by the local ethics committee in
accordance with Declaration of Helsinki.

Experimental setup

Stimuli were presented binocular on a computer monitor (resolution,
1280 X 800; frame rate, 59 Hz) driven by an ATI Mobility Radeon HD
3400 graphics card. Experiments were conducted in complete darkness
except for the illumination by the monitor. The real-time virtual reality
(VR) was created using Vizard 3.0 (Worldviz) and depicted an artificial
stone desert consisting of a textured ground plane, 200 scattered stones,
and a textured sky (Fig. 1a). The orientation of the ground plane texture,
the position of the stones, and the starting position of the participant
within the VR were randomized in each trial to prevent participants from
using any of these as potential cues. The sky was simulated as a 3D dome
centered on the participant’s current position so that the distance to the
horizon was kept constant. The eye height in the VR was adjusted individu-
ally to the true eye height of each participant (Daum and Hecht, 2009).
Participants used a multidirectional movable joystick (SPEEDLINK)
to navigate.

Experimental procedure

The estimation of traveled distances and the estimation of turning angles
were tested separately under three different conditions in a production—
reproduction task (Fig. 1a).

Distance estimation experiment. Each trial started with an instruction
for participants to move forward along a linear path while keeping track
of their self-displacement. Direction of movement during production
was indicated by a visual cue at the horizon. When participants reached
the sample distance d,, movement was automatically stopped and dis-
abled for a few seconds. Subsequently, participants were instructed to
reproduce the perceived distance and indicate their final position via
button press. In all trials, velocity was kept constant during movement,
but changed randomly up to £60% (scaling factor drawn from a normal
distribution) between production and reproduction phases to exclude
time estimation strategies to solve the task. To test the effect of prior
experience only, the settings for the three conditions were the same ex-
cept that the sample distances and respective turning angles were drawn

from three different underlying uniform sample distributions, specified
as small displacements (dp =[1,2,3,4,5,6,7,8,9,10] m), intermediate
displacements (dp =15,6,7,8,9,10, 11, 12, 13, 14] m) and large dis-
placements range (dp = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19] m). The
sample distributions of the three conditions were chosen to be partially
overlapping to test whether displacement estimation behavior differed
significantly for the same sample stimulus depending on the previously
experienced displacements (Fig. 1b). Participants had no knowledge
about the amount of displacement they had to reach during the produc-
tion phase and were naive to the condition in which they were tested.

Turning angle estimation experiment. The stimulus and settings in the
angle estimation (AE) experiment were identical to the distance estima-
tion (DE) experiment, with the following exception: participants turned
on the spot to a previously indicated direction. Turning direction was
kept constant between production and reproduction to preclude the use
of external cues to solve the task. The sample turning angles, «,, for the
three prior experience conditions were in analogy drawn from three
different sample distributions specified as small displacements (a,, = [10,
20, 30, 40, 50, 60, 70, 80, 90, 100]°), intermediate displacements (ap =
[50, 60, 70, 80, 90, 100, 110, 120, 130, 140]°) and large displacements range
(ap = [90, 100, 110, 120, 130, 140, 150, 160, 170, 180]°).

All participants performed both types of experiment. The three con-
ditions for DE and AE were tested in separate sessions, resulting in six test
sessions per participant. Each session lasted between 45 and 60 min and
was composed of 200 trials. The first 20 training trials per experimental
condition served to familiarize participants with the VR. Feedback on the
performance was given after the reproduction by displaying an object in
the VR at the correct distance or turning angle and asking subjects to
navigate toward this location. In the following 180 test trials, no feedback
was given. Only test trials were used for data analysis. Two sessions of the
same experiment type, AE or DE, were separated by at least 1 h and up to
a few days. Within sessions, participants had a short break of 100 s after
100 and 150 trials. Each sample displacement was repeated 20 times per
condition in randomized order. The same trial order within one con-
dition was maintained for all participants. The order in which the
three conditions for DE and AE were tested was randomized for each
participant.

Analysis of behavioral data

Position and orientation of participants within the VR were sampled at
20 Hz. The displacement between the end of the production phase and
time of the button press was calculated as the reproduced displacement d,
and a,. The estimation error was defined as the difference between the
reproduced and produced displacement. Data analysis was conducted in
MATLAB R2010b (MathWorks). Statistical differences were assessed us-
ing repeated-measures ANOVA (rm-ANOVA). One rm-ANOVA with
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Figure2. Two-stage Bayesian estimator model on logarithmic scales. a, Schematic estimation process. Stage 1, The produced displacement d, ;in trial iis represented by the Bayesian estimator
as a measurement likelihood on logarithmic scales p(x;, ). The posterior estimate of displacement is determined by the weighted average of the measurement x, ; and an a priori estimate of
displacement, ;. 1, With weights of measurement w,,, and prior w,,, resulting after backtransformn areproduced displacement on linear scales d, .. Stage 2, The posterior estimate of the prior
intrial/, X, » is estimated before the next trial according to the weighted average of the a priori estimate &, ;,, ,_; and the measurement ., , with weights k;and 1 — k;, modeled by the discrete
formulation of the Kalman filter, where k; refers to the Kalman gain. The posterior is updated over time to build the prior estimate £, , in the subsequent trial. b, Example for the effect of the

is close to the mean of the sample interval, Bayesian fusion with the measurement d,,, leads to a posterior

Bayesian estimator model on linear scales for a particular sample interval. If the prior d,
estimate d, that overestimates small displacements and underestimates large displacements. The effect is stronger for larger displacements (black arrows), due to the calculation of the weighted

prior

average on logarithmic scales and thus an increased standard deviation with increasing mean on linear scales.

main factors for the overall condition (small displacements, intermediate
displacements, large displacements) and displacement ([1:10], [5:14],
[10:19] for DE session and [10:100], [50:140], [90:180] for AE sessions)
was performed on the signed estimation error to reveal differences in the
error magnitude and shape of the curve.

To assess range effects, we also looked for differences in reproduced
displacements of samples that were presented in more than one condi-
tion (i.e., overlapping samples) using a second rm-ANOVA referred to as
duplicated samples comparison with main factor condition (Higher
Range vs Lower Range). Thereby, overlapping samples were compared in
a single rm-ANOVA. For the factor Higher Range, we used [5:9] m from
the intermediate displacements condition and [10:14] m from the large
displacements condition, compared with the factor Lower Range includ-
ing [5:9] m from the smaller displacements condition and [10:14] from
the intermediate displacements condition. Note that each measurement was
only used once, either for the factor Higher Range or Lower Range. For
angular displacements, the factor Higher Range included [50:90]° from the
intermediate displacements condition and [100:140]° from the large dis-
placements condition; the Lower Range factor included [50:90]° from the
small displacements condition and [100:140]° from the intermediate dis-
placements condition. Linear regression analyses were performed to quan-
tify the relationship between mean and standard deviation. A probability
level of p < 0.05 was considered significant for all statistical analysis.

Bayesian estimator model
The stimulus displacements for the production phase of the three condi-
tions were entered into a Bayesian estimator model in the same order as
in the experiment (Fig. 2). The model assumes Bayesian fusion of mea-
surement and prior experience on logarithmic scales to achieve a final
displacement estimate. The single computational steps are as follows.
Logarithmic internal representation of displacement. Weber—Fechner’s
law proposes the representation of a stimulus size on a logarithmic scale
(Fechner, 1860). Several recent psychophysical studies support the no-
tion that human behavior approximately follows this law for numerical
quantities (Dehaene et al., 2008), visual motion perception (Zanker,

1995; Jiirgens and Becker, 2006; Stocker and Simoncelli, 2006), and lo-
comotor path integration (Durgin et al., 2009). Accordingly, we intro-
duced a modified logarithmic representation of perceived linear or
angular displacements, similar to the one previously proposed for mo-
tion perception (Stocker and Simoncelli, 2006):

dl]"l
Xm = Inl1 + — | + n,, (1)
dy

where d, is the measured displacement on linear scales and x,, is the
internal noisy logarithmic representation of the measured displacement.
The random variable 7, represents the normally distributed measure-
ment noise p(n1,,,) ~ N(0, 62,). The input stimuli are expressed in virtual
meters or degrees. d, << 1 is a small normalization constant, which leads
to a unitless internal representation of displacement. For the simulations,
we chose an arbitrary fixed value of d, = 0.01 m for distance estimation
and d, = 0.01° for angle estimation. The addition of 1 allows for repre-
senting a null displacement and may account for the deviation of the
Weber—Fechner law at small magnitudes.

Since all represented displacements (d,,/d,) in our experiment are
large compared with 1, we reduced the general description of the trans-
formation in Equation 1 to the simpler form:

Xm = In dio + . (2)

Note that d always indicates displacements on linear scale, whereas x
refers to the mean of the internal distributions (Fig. 2a). Since the distri-
bution of the measurement noise is known, the measured displacement
can internally be represented by the likelihood distribution, a Gaussian
distribution with p(x,) ~ N(x,,, 02,).

Bayesian fusion of measurement and prior. The probability of having
experienced a certain displacement is given by the posterior probability
distribution, which depends on the likelihood of measurement or evi-
dence and the prior probability. Assuming that the likelihood functions
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of prior and measurement are approximately Gaussian, the mean of the
posterior distribution on logarithmic scales X, is, according to Bayes’
rule, given by a weighted sum of the mean of the prior distribution x,,,;,,
and the measurement likelihood x,,..

X = Wprior : xprior + Wi * Xm (3)
with variance
A2 Ofn : 0’]23rior
62 = —m Tprior, (4)
Yoo, +
m prior

The weights w,,,;,, and w,,, add up to unity and depend on the uncertainty
of the measurement and prior, measured by the inverse variance of prior
and measurement distributions:

1o},

l/o-fn + l/o-f)rior. (5)

Wi = 1 = Wyior =
In the proposed model, Bayesian fusion takes place on logarithmic scales
(Egs. 1, 2), thus the reproduced distance on linear scales is determined
from the back-transformation of the Gaussian distribution p(x,) = N(%,,
07?), resulting in a lognormal distribution on linear scales.

Up to this point, the model specifies a posterior probability distribu-
tion of distances rather than the particular distance that should be repro-
duced. To determine the distance to be reproduced and thus to execute a
specific action the peak, the mean or any specific value of the posterior
distribution could be selected, depending on the cost associated with
making different types of errors (Doya et al., 2007). Commonly proposed
symmetric cost functions (Kérding and Wolpert, 2004b) lead to repro-
duction of one of the location parameters mean, mode, or median of the
estimated posterior distribution.

However, in contrast to a normal distribution for the resulting lognor-
mal distribution, these location parameters are no longer equal. The

median d,, mean d,, and mode d, of the distribution are given by

T max

drmax = gr7$ : d07 (6)

and thus differ by a shift, which depends on the stimulus distance on
linear scales. The variance o7 is given by

oi, = - (e = ). (7)

To account for these differences in the reproduction estimate depending
on the cost function, we introduced a shift term, Ax, as additional pa-
rameter in the model” (see Model fit), so that the reproduced displace-
ment is given as

d, = " "A . 4, (8)

Note that with Equations 3 and 8, the reproduced displacement becomes

— Ax . ] dor o ] Wm
dr = e dpriorwP dmw > (9)

and thus follows Stevens’ power law (Stevens, 1961).

Finally, to account for signal-independent variability of the repro-
duced displacement caused, for example, by reaction times in handling
the response device, the random variable 7, representing normally dis-
tributed constant noise p(n.) ~ N(0, 07) was added to the reproduced
displacement on linear scales d..

Prior update. In the current study, the Bayesian estimator was tested
with two methods to implement an experience-dependent distance

“If the displacement to be reproduced was estimated already on logarithmic scales, then the mode, mean, and
median of the posterior distribution would be equal and, for commonly used symmetric cost functions, the statisti-
cally optimal estimate would be the median of the log-normal distribution. We tested for this possibility and found
that the model accounts well for the behavior of subjects when the shift parameter was not significantly different
from zero (see Results), but generated worse fits for the remaining participants.
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prior, referred to as one-stage and two-stage model. In the one-stage
model, the prior was implemented as a distribution with a fixed mean
centered at the mean of each underlying sample distribution and thereby
represented the global statistics of the input stimuli. In the two-stage
model, the displacement prior was updated iteratively in an additional
computation step dependent on the posterior estimate of the prior in the
previous trial and the current measurement of displacement (Fig. 2a).
The update in each measurement step is modeled by the discrete formu-
lation of the Kalman filter for a 1D first-order system. The state to be
estimated and the current measurement at update step i, corresponding
to trial 4, are modeled by
xprior,i = xprior, i—1 + nq

(10)

Xm,i = Xprior, i + n,.

The random variables n, and #, represent the process and measurement
noise, respectively. They are assumed to be independent with approxi-
mately normal probability distributions p(nq) o« N(0, q) and p(n,) = N(0,
r). The system defined by Equation 10 thus states that (1) the prior has no
intrinsic dynamics and is varying only due to random changes modeled
by g and (2) the current measurement is an instantiation of the current
prior perturbed by the measurement noise #,.

For this simple system, the difference equation system of the Kalman
filter reduces to

r = pi-1 T q
Copiat gt

pi = ki-r (11)

J%prior, i = (1 - kz) * ;Cprim, i—1 + ki * xm, »
with k; being the Kalman gain, £,,;,,;—, and £ ,,;,,,; being the a priori and
a posteriori estimate of the distance prior at update step 7, and p;and p;_,
the corresponding variance. Note that it is evident from this equation
that the Kalman gain k; can be interpreted as weight of the measurement
depending on measurement noise and the assumed random change of
the distance prior. The new estimate of the distance prior is thus a
weighted sum of the previous estimate and the current measurement.
In the context of the Bayesian estimator model, we refer to p; as the
estimated variance of the distance prior of,rior and r as the measurement
variance o7,. The prior for the two-stage model was initialized by the first
measurement and reset at the beginning of each new session to account
for the lack of prior knowledge of the underlying distribution except for
the training trials. Note that after a measurement has been taken, the
entire model is deterministic and does not involve any random elements
to determine the distance to be reproduced. A preliminary version of the
model has been published in abstract form (Glasauer et al., 2009a).
Model fit. The displacements used in the experiment were used in the
same order as input d,, for both the one-stage and the two-stage models.
The shift term Ax was implemented in both models using Equation 8. In
the one-stage model, the single estimate of the prior x,,,;,, was modeled as
the log-transformed mean value of each underlying sample distribution
on linear scales. The weighting of prior w,;,, and Ax were determined by
minimizing the sum of the squares of the residuals of the one-stage
estimator model and the individual participants’ mean responses for all
three conditions simultaneously using the Matlab procedure Isqnonlin.
In the two-stage model, the prior x,,,;,, was modeled as a continuously
varying value determined by the Kalman filter (Eq. 11), which was reset at
the beginning of each condition. To quantify the time course of the
Kalman gain k;, which approaches a steady-state value, its time constant
Texpressed in trials was determined by fitting an exponential function to
k;. The ratio between measurement and process noise in the Kalman filter
r/q and the shift term Ax were determined by minimizing the sum of the
squares of the residuals of the two-stage estimator model and the indi-
vidual participants’ mean responses for all three conditions simultane-
ously using the Matlab procedure Isqnonlin. To be comparable to the
one-stage model, the steady-state weighting of the prior w,,,;,,, which is
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proportional to the ratio /g, was determined from the result of the fitting
procedure and is reported in the Results, below.

Thus, both the one-stage and the two-stage models are each fully de-
termined by two free parameters. However, the one-stage model requires
additional input about the prior in each condition, whereas the two-stage
model does not. To assess the precision of the fitted parameters, we
estimated 95% confidence intervals (Clyso,) of all parameters, which
were determined from the Jacobian of the parameter surface at the min-
imum using the Matlab procedure nlparci. The coefficient of determina-
tion R? was estimated to assess the proportion of variability in the mean
data that is accounted for by the respective model. To test for a significant
difference in the R? for individual participants between the two models,
we used the Matlab procedure signtest.

For both models, the variance of the reproduced displacement &7 was
determined separately from the slope of the linear regression between
standard deviation and mean of the reproduced displacements, using
Equation 7. The y-intercept of the regression was interpreted as being due
to constant noise p(n,) =~ N(0, o,) (see Bayesian fusion of measurement
and prior, above).

Predictions for Bayesian estimation. The proposed Bayesian framework
makes specific predictions on the behavior of an optimal estimator that
can be tested experimentally. First, assuming independent noise sources
for prior experience and measurement, the estimate on logarithmic
scales is determined by the weighted average of prior and measurement
dependent on the respective reliability. This leads to a power law depen-
dence between input stimulus and reproduced displacement (Eq. 9) in
linear space, as proposed by Stevens (1957), where the power function is
determined by the individual weighting of the subjects. Second, accord-
ing to this relationship, the difference between prior and measurement
and therefore the effect of the Bayesian fusion becomes more pro-
nounced for larger displacements, meaning that the overestimation and
underestimation increase for increasing displacements. This results in a
behavior known in the psychophysics literature as range effect (Teght-
soonian and Teghtsoonian, 1978). Third, assuming constant Gaussian
noise on logarithmic scales leads to a linear dependence of the mean
reproduced displacement and its corresponding standard deviation on
linear scales (Eq. 7).

Results

Experience-dependent behavior

Participants’ responses show three major characteristics that can
be attributed to an estimation process that incorporates knowl-
edge about the underlying sample distribution. These character-
istics were tested at the group and single-subject levels.

First, reproduced distances and turning angles exhibited a
clear tendency toward the mean of the underlying sample distri-
bution for each of the three sample distributions tested. In each
condition, small distances and angles were overestimated and
large distances and angles were underestimated (Fig. 3). This can
be seen in the overlapping distances ([5:14] m) and angles ([50:
140]°) that were tested in more than one condition for which the
duplicated samples comparison reveals a significant difference
between conditions (main effect: Higher Range, Lower Range;
DE: F(, 3 = 204, p < 0.001; AE: F(, 5 = 66.6, p < 0.001).
Furthermore, the duplicated samples comparison on the single-
subject level reveals that 11 of 14 participants in DE sessions and
all participants in AE sessions showed a significant dependence of
estimation magnitude on the underlying sample distribution
(main effect: Higher Range, Lower Range; DE: F; ;5 = 9.8—
202.0, p < 0.01; AE: F 15, = 12.4-217.0, p < 0.01).

Second, the bias toward the center for each sample distribu-
tion increased with increasing displacement range. The overesti-
mation and underestimation errors were more pronounced for
the conditions with larger displacements (interaction: condition X
displacement; DE: F( 4 534y = 4.4, p < 0.0015 AE: F(15 534y = 3.2,p <
0.001). This causes a decrease in the slope between produced and
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Figure 3.  Mean displacement estimation behavior over all participants for the three prior

experience conditions (small displacements, intermediate displacements, and large displace-
ments range). @, Mean participants’ response in DE sessions in virtual meters (blues). b, Mean
participants’ response in AE sessions in degrees (greens). Error bars depict the standard devia-
tion between participants’ responses. The dotted line indicates were the response and sample
stimulus would be equal. In both experiments, the behavior deviated significantly from the line
of equality depending on the prior experience condition. Small displacements were underesti-
mated and large displacements were overestimated in all conditions. The bias increased for
increasing sample range, being strongest for the large displacements range (dark colors). Small
displacements, intermediate displacements, and large displacements range, for DE: turquoise,
light blue, and dark blue, respectively; for AE: bright green, olive, dark green, respectively.

reproduced displacement for increasing sample range. The signifi-
cant change in the bias, measured by the change in estimation error
over the conditions, was found for 13 of 14 participants in DE and
AE sessions (interaction: condition X displacement; DE: F( |4 534, =
4.7-38.3, p < 0.05; AE: F 1534 = 10.2-120.1, p < 0.001).

Third, the standard deviation of the reproduced displace-
ments was dependent on the sample distribution. The duplicated
samples comparison revealed that standard deviations of over-
lapping samples differed significantly depending on the underly-
ing sample distribution (main effect: Higher Range, Lower
Range; DE: F, 15, = 11.1, p = 0.005; AE: F, 5, = 7.8 p = 0.01).
Additionally, we observed a strong correlation between the mean
reproduced displacement and the corresponding mean standard
deviation for both DE and AE sessions. (DE: linear regression: r =
0.95, p < 0.001; AE: r = 0.97, p < 0.001; Fig. 4a,c). On the
single-subject level, the linear regression between standard devi-
ation and mean of reproduced distances yielded a highly signifi-
cant correlation coefficient r for all participants (DE: p < 0.001
for 11 of 14 participants, p < 0.01 for the remaining three partic-
ipants, AE: p < 0.001 for 11 of 14, p < 0.01 for the remaining
three participants).

Test of the Bayesian estimator model

The experimental findings support the notion that humans in-
corporate knowledge about the stimulus properties applied in the
current condition into their measurement of displacement and
that this behavior is qualitatively in agreement with a Bayesian
estimation process.

To evaluate this finding in a quantitative manner, we fit two
variants of the Bayesian estimation model to the mean response
over all participants and to the individual participants’ mean
responses using a least-squares fitting method (Fig. 2a). The first
variant, referred to as one-stage model, tests a fixed prior (for a
similar study, see Jazayeri and Shadlen, 2010), that is determined
by the mean of each sample distribution and therefore represents
prior knowledge that captures the overall statistics of the experi-
ment (model fit group: Wy, pp = 0.40, Clgse, = [0.33, 0.48];
Axpg = 0.03, Clysy, = [0.01, 0.04]; Wpyiorap = 0.40, Clygy, =
[0.36, 0.43]; Ax,p = 0.01, Clgse, = [0, 0.01]; individual partici-
pants: Wy, pg = 0.41 = 0.14, range = [0.20 — 0.61]; Axpy =
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Figure 4. Mean predicted and actual reproduced displacement estimation and corre-

sponding mean standard deviation (std). a, Experimental DE data of mean participants’
responses for all three conditions (blue dots) and linear regression (dotted line). b, Two-
stage model prediction for DE data (triangles) and same regression (dotted line) as in a for
comparison with the experimental data. ¢, Experimental AE data of mean participants’
responses for all conditions (green dots) and linear regression (dotted line). d, Two-stage
model predictions for AE sessions and same regression line as in ¢ for comparison with the
experimental data. Small displacements, intermediate displacements, and large displace-
ments range, for DE: turquoise, light blue, and dark blue, respectively; for AE: bright green,
olive, dark green, respectively.
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0.02 £ 0.13; Wpyior,ar = 0.39 = 0.12, range = [0.14 — 0.62]; Ax,; =
0.01 = 0.01). The shift parameter Ax was not significantly different
from zero for four of 14 participants in DE and three of 14
participants in AE sessions (remaining participants: DE: five
participants, <0; five participants, >0; AE: five participants,
<0; six participants, >0).

The second variant, or two-stage model, tests an iteratively
updated version of the prior that additionally accounts for vari-
ations during the time course of the experiment. This model has,
like the one-stage model, two free parameters (model fit group:
Wiriorpe = 0.34, Closy, = [0.30, 0.58]; Axpy, = 0.03, Clygy, =
[0.01, 0.05]; Wiyior ar = 0.33, Clysy, = [0.28, 0.40]; Ax,y; = 0.02,
Clyse, = [0, 0.04]; individual participants: Wp,;o,pp = 0.36 =
0.15, range = [0.20 — 0.61]; Axpp = 0.01 = 0.1 Wyorap =
0.32 = 0.09, range = [0.14 — 0.62]; Ax,p = 0.02 = 0.07). The
shift parameter Ax was not significantly different from zero
for six of 14 participants in DE and five of 14 participants in AE
sessions (remaining participants: DE: four participants, <0;
four participants, >0; AE: three participants, <0; six partici-
pants, >0).

The linear relationship between standard deviation and mean
of the experimental data was deployed to derive an estimate of the
noise sources to simulate the predicted mean reproduction noise
of the model. The results for the two-stage model compared with
the behavioral data are depicted in Figure 4, b and d, for the mean
of all participants.

Figure 5 compares the experimental data to the mean dis-
placement estimate by the two variants of the fitted Bayesian
estimator model. Both variants agree well with the experimental
data (coefficient-of-determination, one-stage model, model fit
group: Rz = 0.98, Rp = 0.97; individual participants: R3p =
0.83 — 0.99, Rp = 0.84 — 0.98; two-stage-model, model fit
group: Rip = 0.98, Rp = 0.97; individual participants: Ry =
0.80 — 0.99, Rp, = 0.88 — 0.98). A non-
parametric comparison indicated no sig-
nificant difference between the R values
of individual participants for the one- and
two-stage models (p > 0.1). However, the
prior in the two-stage model arises due to
the online estimation of the Kalman filter
without any knowledge of the underlying
sample distribution, whereas the current
estimate of the prior in the one-stage
model was set to be the mean of the re-
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spective underlying sample distribu-
tion. Therefore, the one-stage model
requires the incorporation of additional
knowledge compared with the two-stage
case. Furthermore, the two-stage model
with iterative update of the prior accounted
for small variations in the data that were
captured by the variations of the prior (Fig.
5, insets). Consequently, we considered the
two-stage model to be superior to the one-
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Figure 5.

but not by the one-stage model with fixed prior.

Summary of predicted and actual displacement estimation behavior. a, d, Mean reproduced distances in DE (a, blue
dots) and AE (d, green dots) sessions for all conditions (small displacements, intermediate displacements, and large displacements
range, for DE: turquoise, light blue, and dark blue, respectively; for AE: bright green, olive, dark green, respectively). b, e, Corre-
sponding prediction of the fitted two-stage model (upward gray triangles). ¢, f, Corresponding prediction of the fitted one-stage
model (downward gray triangles). The dotted linesin all plots indicate were reproduced estimate and sample displacement would
be equal. Insets show small variations in the participants’ responses that are captured by the two-stage model with varying prior

stage model and used it for further analysis.

Figure 6¢ shows an example for a typi-
cal time course of the variable prior and
measurement in one session. The range of
displacements predicted by the prior esti-
mates is smaller than that of the sample
stimulus. This leads to a predicted mea-
surement that covers a smaller range of
displacements than the input stimuli. The
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time constant of the evolution of Kalman
gain varied between subjects (DE: 7, =
[0.2 — 1.6] trials, AE: T, = [0.3 — 2.1]
trials). These values are similar to the time
constants reported for the learning of
pointing movements (van Beers, 2009)
and shown for learning the mean of a
prior distribution in a virtual coin-
catching task (Berniker et al., 2010, their
Fig. 6).

Predictions on single-subject behavior
Figure 6 compares the model predictions
of mean and standard deviation to the in-
dividual participant’s responses. The
model captures individual differences be-
tween participants mainly by variation in
the weighting of prior and measurement
that in turn determine the slope of the
predicted response curve. A strong
weighting of the prior results in a more
pronounced overestimation and underes-
timation, while a strong weighting of the
measurement results in a predicted re-
sponse that is very similar to the input
stimuli (Fig. 6a,b, line of equality). Thus,
the weighting reflects a scale invariant
measure of the overall behavioral ten-
dency of subjects in one experiment.
Within participants, behavior was com-
pared by weighting the prior w,,;,, between
the DE and AE experiments for each indi-
vidual participant. We found a significant
correlation between the weight in DE com-
pared with AE sessions (linear regression:
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Figure6.  Comparison of individual participants’ responses with predicted behavior of the two-stage model. @, Mean responses

of three selected participants in DE sessions and model predictions (gray triangles, Wy, participant1 = 0-39 Wpior participantz =
0.39, w, = 0.40). b, Mean responses of the same participants in AE sessions and model predictions (gray triangles,

prior,Participant3

Worior participantt = 0-15 Wprior participantz. = 0-36/ Wprior participans = 0-38). ¢, Example of a typical time course for the same
participants of sample displacements (black line), reproduced displacements (light blue line), and predicted displacements (gray
line) within 30 trials of one DE session (small displacements range, trials: 50 — 80). Dotted lines indicate the range of displacements
covered by the prediction of the model. Small displacements, intermediate displacements, and large displacements range, for DE:

turquoise, light blue, and dark blue, respectively; for AE: bright green, olive, dark green, respectively.

r=0.76, p = 0.001). Figure 7 shows that the

weighting of the prior within participants

and between DE and AE conditions was more similar than between
participants. In particular, the mean ratio of the AE versus DE
weights was approximately equal (W0, AE/Wprior,pE = 0-90).
Discussion

Human linear and angular displacement estimation is influenced
by prior experience. We found that (1) reproduced distances and
turning angles were biased toward the center of the underlying
sample distribution, (2) the amount of bias increased with in-
creasing sample range, and (3) the standard deviation for all con-
ditions was linearly dependent on the mean reproduced
displacement. These three characteristics are well captured by a
model of an iterative Bayesian estimator that combines an
experience-dependent a priori expectation with the actual noisy
measurement to achieve an optimal estimate of displacement.
We propose that our results are not limited to displacement esti-
mation, but potentially hold for magnitude reproduction in
general.

Behavioral findings in the context of the literature

Previous work on human linear and angular displacement percep-
tion found similar results to ours with a tendency to overshoot and
undershoot certain displacements (Loomis et al., 1993; Ivanenko
etal,, 1997; Seemungal et al., 2007; Bergmann et al., 2011). An indi-
cation for the influence of prior experience can be found in work that
shows that distance estimation and error magnitude vary consider-

ably as a function of changes in the environmental experience
(Ziemer et al., 2009) or stimulus range (Teghtsoonian and Teght-
soonian, 1978; Klatzky et al., 1990; Schwartz, 1999). Yet the estima-
tion of distances and turning angles was mostly tested in different
studies, because a direct comparison of the two different measures
for single participants is difficult. In the present work, however, the
model provides a chance to compare the two magnitudes in terms of
individual weighting of prior and measurement, which is invariant
to the measure of the magnitude. We found that, overall, individual
participants seem to weight the prior for distances and turning an-
gles similarly, whereas the differences between participants’ weight-
ing were higher. One possible reason for this is that there is a
common processing mechanism for magnitudes in general, includ-
ing the estimation of turning angles and distances as proposed by
Walsh (2003). Another possible explanation is that the reliability of
the input was very similar because both measures were based on
optic flow in the same virtual environment (Frenz and Lappe, 2005;
Mossio et al., 2008). However, the degree of reliance on prior infor-
mation across tasks may also be a general trait that varies among
individual subjects.

Experience-dependent Bayesian inference leads to a
regression toward the mean

The regression effect, first referred to as the central tendency of
judgment (Hollingworth, 1910), in psychophysical magnitude
estimation is the tendency to correctly estimate magnitudes close
to the center of the stimulus range and misestimate marginal
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Figure7.  Comparison of the weighting of the prior within participants. Each dot represents
the weight w,,;,, in AE and DE sessions for one participant. The gray dotted line indicates the
linear regression between the two weights and the black dotted line is the line of equality.

ones: values presented at the lower end of the range are overesti-
mated while those at the upper end show underestimation (Ste-
vens and Greenbaum, 1966; Teghtsoonian and Teghtsoonian,
1978). Stevens (1971) attempted to explain this behavior as the
tendency of the observer “to shorten the range of whichever vari-
able he controls.” A potential explanation for this tendency is
Bayesian fusion of measurement and a priori expectation (Lam-
ing, 1999), as shown for displacement estimation in the present
work. By multiplying the prior and the likelihood distributions,
which correspond to a weighted average of prior and measure-
ment in the Gaussian case, the estimate exhibits a shift from the
measurement toward the a priori expectation. As shown in Figure
6¢, an experience-dependent posterior estimate of randomly pre-
sented stimuli covers a smaller range, with displacements close to
the center being more likely to occur; this consequently results in
a regression toward the center of the sample range.

Dynamic prior knowledge adapts to the range of stimuli
presented

Several studies have convincingly demonstrated that humans can
use near-optimal strategies to combine stimulus uncertainty and
prior information (Mamassian and Landy, 1998; Kérding and
Wolpert, 2004a; Tassinari etal., 2006). The a priori expectation in
Bayesian models is often viewed as a fixed internal tendency that
is due to general features in the world, e.g., that slow velocities are
more likely to occur than fast ones (Weiss et al., 2002; Stocker and
Simoncelli, 2006). Several studies, however, have shown that the
a priori estimate can be modulated by short-term experience
(Adams et al., 2004; Kording et al., 2004; Miyazaki et al., 2005)
and its mean and variance could be learned during the experi-
ment (Guo et al., 2004; Kording and Wolpert, 2004a; Berniker et
al., 2010). Jazayeri and Shadlen (2010), for instance, assumed an
experience-dependent prior expectation that was modeled as a
continuous and fixed distribution, centered around the mean of
the sample distribution. Indeed, it makes more sense for such a
representation to arise over time. In the present work, we tested
the fixed prior against a variable version that continuously up-
dates its expectation with the previous measurement. The as-
sumption behind the proposed updating procedure is that the
mean of the stimulus distribution changes slowly over time, but
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in a way unknown to the system. We show that such an iterative
updated prior, modeled by a Kalman filter, accounts for small
variations in the data that are most likely due to the order of
stimuli presented and cannot be explained by a version with fixed
prior. Furthermore, this model provides an explanation for the
origin and development of such a prior over time. In particular,
the adaption to the underlying sample range for randomly pre-
sented stimuli (Teghtsoonian and Teghtsoonian, 1978; Kowal,
1993; Cheng et al., 2010) and also, potentially, the hysteresis ef-
fect, which refers to a dependence of the behavior on the order of
stimuli, for experiments with nonrandom order (Eisler and Ot-
tander, 1963; Hock et al., 2005) can result from the continuous
update of a prior according to the experienced displacements.

Logarithmic Bayesian fusion leads to a direct link between
Weber-Fechner and Stevens’ power law

In the present work, we suggest that the most parsimonious ex-
planation for the behavior is that displacement is coded internally
on a logarithmic scale, as first proposed by Fechner (1860) based
on Weber’s law, which has shown to hold for human locomotor
distance reproduction (Durgin et al., 2009). Similar results could,
in principle, also be achieved on linear scales, assuming scalar
variability, that is, a rise in the standard deviation with increasing
mean (Rakitin et al., 1998; Cantlon et al., 2009). Recent work,
however, supports the idea that numerical quantities (Dehaene,
2003; Nieder and Merten, 2007) and visual motion perception
(Jirgens and Becker, 2006; Stocker and Simoncelli, 2006) are
coded logarithmically in the brain. Note that latter authors as-
sumed that Bayesian integration still takes place in linear space.
However, as we have shown here, the power law, or Stevens’ law,
is a direct consequence of Bayesian integration on a logarithmic
scale (Egs. 2,3, 9). Thus, as MacKay (1963) has shown before, the
Weber—Fechner law and Stevens’ law are indeed compatible. The
proposed Bayesian fusion also assumes that the variance of a
measured magnitude is independent of the magnitude on the
logarithmic scale. On linear scales, this leads to a constant in-
crease in standard deviation with increasing mean, as observed in
the experimental data and corresponding to scale invariance
found in both Weber—Fechner’s and Stevens’ laws (Chater and
Brown, 1999).

Bayesian estimation of displacement, velocity, and time
Bayesian models succeeded in describing a variety of psychophys-
ical data in related domains. The experimental design in the pres-
ent study was very similar to recent work on interval timing
(Jazayeri and Shadlen, 2010), allowing for a direct comparison of
the behavioral findings. In particular, the same characteristic fea-
tures, such as a tendency to the mean of the sample interval and
an increase in bias with increasing sample range for estimation of
traveled distances and turning angles, were previously reported
for interval timing. Jazayeri and Shadlen (2010) tested different
probabilistic approaches to combine the two sources of informa-
tion given by sensory input and prior experience and concluded
that a Bayesian observer model is statistically superior to maxi-
mum likelihood estimation (Ernst and Banks, 2002) or maxi-
mum a posteriori estimation in describing the main features of
the behavioral data.

A large range of phenomena in motion perception, such as
misestimation of speed and direction, was also successfully de-
scribed by a Bayesian estimation process based on a prior that
favors low speeds (Weiss et al., 2002; Stocker and Simoncelli,
2006). In line with this work, the variability in angular displace-
ment perception has been proposed to be a result of Bayesian
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fusion of sensory inputs (Butler et al., 2010) and cognitive move-
ment velocity (Jirgens and Becker, 2006). In the present work,
however, movement velocity was varied randomly and indepen-
dently of the experience condition. Thus, we show that the
observed effects between conditions de facto depend on the ex-
perienced distances or turning angles. Yet the measurement of
these displacements in the virtual world is still determined by an
integration of optic flow, raising the question of whether the
Bayesian estimation process is based on an estimate of displace-
ment or takes place for time and velocity separately and is fused
on a higher cognitive level to represent an estimate of displace-
ment. The computational costs of the latter case would be higher
for updating more than one magnitude and update of displace-
ments alone in the present work provides a parsimonious expla-
nation for a large number of findings.

Conclusion

From the realization of the iterative Bayesian estimator model, we
infer that the systematic errors seen in human path integration
behavior are the result of a performance-optimizing estimation
process that exploits knowledge about previous behavior and the
uncertainty of measurements. The model provides a direct link
between Weber—Fechner and Stevens’ power law. Consequently,
we propose that our results are not limited to displacement esti-
mation, but can potentially provide a unified explanation for
commonly seen effects in psychophysical magnitude estimation
studies, such as the range, regression effect, and hysteresis effect.
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