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Bimanual action requires the neural controller (internal model) for each arm to predictively compensate for mechanical interactions
resulting from movement of both that arm and its counterpart on the opposite side of the body. Here, we demonstrate that the brain may
accomplish this by constructing the internal model with primitives multiplicatively encoding information from the kinematics of both
arms. We had human participants adapt to a novel force field imposed on one arm while both arms were moving in particular directions
and examined the generalization pattern of motor learning when changing the movement directions of both arms. The generalization
pattern was consistent with the pattern predicted from the multiplicative encoding scheme. As proposed by previous theoretical studies,
the strength of multiplicative encoding was manifested in the observation that participants could adapt reaching movements to compli-
cated force fields depending nonlinearly on the movement directions of both arms. These results indicate that multiplicative neuronal
influence of the kinematics of the opposing arm on the internal models enables the brain to control bimanual movement by providing
great flexible ability to handle arbitrary dynamical environments resulting from the interactions of both arms.

Introduction
One of the unsolved problems in motor control science is how the
brain orchestrates the movement of multiple body parts as a uni-
fied action (e.g., bimanual movement). Previous studies of uni-
manual reaching movement have suggested that the brain
accomplishes flexible movements by constructing an “internal
model” of the dynamic properties of the body and the environ-
ment (Kawato, 1989; Bhushan and Shadmehr, 1999). It was also
suggested that humans build these internal models through a
flexible combination of motor primitives encoding the kinemat-
ics of the desired arm (Thoroughman and Shadmehr, 2000;
Donchin et al., 2003; Sing et al., 2009). However, this powerful
scheme is not directly compatible with control of bimanual
movement. When we perform bimanual movements such as ma-
nipulating an object, every movement of each arm disturbs the
other arm because the dynamics of both arms are coupled
through the object and the person’s body. Therefore, the desired
motor command for each arm cannot be determined solely by the
state of the arm itself, which may not be explained by the conven-
tional scheme of primitives. One solution is to assume that an
additional neuronal process adjusts the motor command by esti-

mating the interaction; however, this may create another ques-
tion regarding how this additional process is implemented in the
brain.

An alternative is to assume, as we have done here, that the
primitives of the internal model encode not only the desired ki-
nematics of the relevant arm but also those of the opposite arm.
This proposal is based on recent reports that distinct internal
models can be constructed depending on the kinematics of the
opposite arm (Nozaki et al., 2006; Nozaki and Scott, 2009; How-
ard et al., 2010). According to this assumption, the process of
constructing an internal model for one arm with primitives can

be formulated as f̂ � wtg(xr, xl), where f̂ is a force output, w �

(w1, w2,. . . )t is a weight vector, and g � ( g1(xr, xl), g2(xr, xl),. . . )t

is a vector whose elements represent the output of each primitive;
xr and xl represent the kinematics of the right and left arm,
respectively.

From this viewpoint, the ability of the brain to accomplish
flexible bimanual movement can be regarded as the ability to
construct flexible force output by combining the primitives.
How, then, should the primitives encode the kinematics of both
arms? Previous theoretical works (Pouget and Sejnowski, 1997;
Salinas and Sejnowski, 2001) have provided a clue. They pro-
posed that neurons encoding two inputs, x1 and x2, multipli-
catively [h(x1, x2); “gain field” encoding (Andersen and
Mountcastle, 1983; Andersen et al., 1985)] work as a set of basis
functions enabling downstream neurons to construct the arbi-
trary output function y(x1, x2) � wth(x1, x2). This close similarity
to the current problem led us to further hypothesize that multi-
plicative encoding of the kinematics of both arms in the primi-
tives enables the brain to create an arbitrary force output. We
tested this hypothesis by examining the generalization pattern of
motor learning (Shadmehr and Mussa-Ivaldi, 1994; Thorough-
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man and Shadmehr, 2000; Donchin et al., 2003; Hwang et al.,
2003; Sing et al., 2009), which should reflect the encoding struc-
ture in the primitives (Hwang et al., 2003; Wainscott et al., 2005).

Materials and Methods
Participants. Thirty-six healthy right-handed volunteers (aged 18–31 years;
12 women) participated in our study after providing written informed con-
sent. All experimental procedures were approved by the ethics committee of
the Graduate School of Education, The University of Tokyo.

General task settings. The participants were asked to make simultane-
ous center-out bimanual reaching movements (see Fig. 1 A), with a
movement amplitude of 8 cm and a duration of 400 ms, holding the
handles of two robotic manipulanda (Phantom 1.5 HF; SensAble Tech-
nologies). Throughout the experiment, the position of each handle was
always visible as a white cursor (diameter, 6 mm) on a horizontal screen
over the handles. The movements of the handles were constrained to a
virtual horizontal plane implemented by a simulated spring (1.0 kN/m)
and dumper [0.1 N/(m/s)]. Wrist braces were used to reduce unwanted
wrist movements. The participants’ upper arms were supported by arm
slings to reduce fatigue and allow maintenance of a constant arm posture.

Initially, the participants were required to move each cursor into its
home position (diameter, 10 mm; the distance between the starting po-
sitions was 20 cm). After a 2 s holding time, a gray target (diameter, 10
mm) appeared for each hand in each position. The “go” cue, a color
change and “beep” sound, was provided after a further random holding
time (1–2 s). A warning message was presented on the screen if the
movement speed of either handle was above (“Fast”) or below (“Slow”) a
target range of 376 � 56.4 mm/s. At the end of each trial, the handle of
each manipulandum automatically returned to its home position. The
motion data for each manipulandum were recorded at a sampling rate of
500 Hz. The data for the handle velocity and force were low-pass filtered
using a fourth-order Butterworth filter with a cutoff frequency of 8 Hz.

Evaluation of motor performance. We had participants adapt to a novel
force field during bimanual reaching movements (see Fig. 1B; see the follow-
ing sections for further details). To quantify the degree of motor adaptation
when changing movement directions of both arms (see Fig. 1B for the defi-
nition of “movement direction”), we used the “error-clamp” method (Sc-
heidt et al., 2000; Smith et al., 2006; Sing et al., 2009). During error-clamped
trials, the trajectory of the handle was constrained to a straight line toward
the target by a virtual “channel” (see Fig. 1B) in which any motion perpen-
dicular to the target direction was constrained by a one-dimensional spring
(2.5 kN/m) and damper [25 N/(m/s)]. This method enabled us to measure
directly the lateral force exerted toward the channel; the difference between
this lateral force at the peak velocity and that from the baseline session was
used as the aftereffect of learning. To quantify performance in trials where
the error-clamp method was not adopted (e.g., trials in the training phase),
we quantified the lateral deviation of each handle trajectory at the peak ve-
locity from a straight line between the starting position and target.

Experiments 1 and 2. Experiments 1 and 2 (N � 8 apiece) were de-
signed to investigate how the adaptation of one arm (left arm in Experi-
ment 1 and right arm in Experiment 2) to a novel force field acquired
while reaching both arms forward was transferred to the same arm when
the movement directions of both arms were changed (8 directions for the
trained arm, and 6 directions for the opposite arm [i.e., 48 (�8 � 6)
combinations]; see Fig. 1C). Participants also performed unimanual
reaching movements in eight directions.

The experiment was composed of 280 trials in the baseline session, 80
trials in the training session, and 463 trials in the testing session. Exper-
iments 3–5 also consisted of these three sessions (Table 1). During the
baseline session, each pattern of 56 combinations of movement direc-
tions for both arms (48 and 8 bimanual and unimanual movement pat-
terns, respectively) was performed in a randomized order within each
cycle; thus, every movement configuration was performed in a single
cycle. The first 112 trials were composed of null force field trials, and the
subsequent 168 trials were composed of error-clamped trials. During the
training session, participants moved both arms forward and a velocity-
dependent rotational force field was applied on one arm as f � Bv, where
f � (fx, fy)

t is the force to the handle of the trained arm (N), v � (vx, vy)
t

is the velocity of the handle (m/s), and B is the viscosity matrix [N/(m/s)].
To cancel out the biomechanical effect of the force direction, the direc-
tion was reversed for one-half of the participants, as B � [0 �10; 10 0] or
B � [0 10; �10 0]. During the testing sessions, in addition to the force
field trials with both arms reaching forward, every other trial was a catch
trial (error-clamped trials), allowing quantification of the aftereffects of
the training trials. The order of the 56 movement patterns was random-
ized within each of the four cycles.

Experiment 3. In Experiments 1 and 2, only one movement configura-
tion was adopted for the training. Experiment 3 was designed to examine
how participants adapt to a force field when they are trained at multiple
movement configurations and how the learning effect can be generalized
to the other movement configurations. We also used the data to evaluate
how accurately the mathematical models identified in Experiment 1 (de-
scribed later) can predict the aftereffects.

Ten participants trained with the same force field used in Experiment 1 for
four different movement combinations: (�r, �l) � (0°, 0°), (0, 180), (180, 0),
and (180, 180) (see Fig. 1D). The direction of the force field was reversed
between the parallel [(�r, �l) � (0°, 0°), (180, 180)] and opposite [(�r, �l) �
(180°, 0°), (0, 180)] movement patterns. The experiment consisted of 192
trials for the baseline session, 160 trials for the learning session, and 399 trials
for the testing session (total � 751 trials). In the baseline session, 64 move-
ment patterns (eight directions for each arm: �l � �135, �90, �45, 0,
45, 90, 135, 180°, and �r � �135, �90, �45, 0, 45, 90, 135, 180°) were
adopted. Subsequent to the 64 null force field trials, 128 error-clamped
trials were performed for the baseline session (two cycles). After the
learning session of four movement patterns (40 cycles), in the testing
session, the force field trials of the four movement patterns and catch
trials (i.e., error-clamp trials) of the 64 movement patterns (see Fig. 1 D)
were performed alternately (three cycles). Movement patterns were per-
formed in a randomized order within a single cycle for all sessions.

Experiments 4 and 5. Experiments 4 and 5 were designed to investigate
whether participants could adapt their arm movements to more compli-
cated dynamic force fields that change nonlinearly with the kinematics of
both arms. The participants (N � 5 for each experiment) attempted to adapt
their left arm movement to a velocity-dependent rotational force field, the
magnitude of which depended nonlinearly on the movement directions of
both arms as fexp4 � cos(�l � �r)Bv (Experiment 4) and fexp5 � cos(�l �
�r)Bv (Experiment 5). The direction of the force fields was reversed for two
of five participants. Regarding fexp4, the relative difference in the movement
directions between both arms determines the direction of the force field. As long
asthemovementdirectionsofbotharmsarethesameintheextrinsicworkspace,
the direction of the force field to the left arm is identical; the force direction
reverses when both arms move in the opposite direction. However, in fexp5, as
long as the movements of both arms are mirror symmetric (i.e., the same direc-
tionwithrespecttothejointorintrinsicworkspace), thedirectionofforcefieldto
the left arm is identical; however, this force reverses direction when both arms
move in the opposite direction in the intrinsic workspace.

The experiments consisted of 144 trials for the baseline session, 960 trials
for the learning session, and 192 trials for the testing session (total � 1296
trials). Participants were asked to reach in 16 movement configurations (�l �
�90, 0, 90, 180°, and �r � �90, 0, 90, 180°) for all sessions. In the baseline
session, the error-clamped trials were randomly conducted once every three
trials (three cycles). In the learning session (40 cycles), 16 movement patterns
were randomly performed within each cycle; to effectively promote learning,

Table 1. Experimental conditions

Experiment
Trained
arm

Movement
configuration Trial number

Training Baseline/test Baseline Training Test

Experiment 1 (N � 8) Left
1 48 280 80 463

Experiment 2 (N � 8) Right

Experiment 3 (N � 10) Left 4 64 192 160 399

Experiment 4 (N � 5) Left
16 16 144 960 192

Experiment 5 (N � 5) Left
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the number of trials with force was twice that of trials with null force. In the
testing session, in addition to the force field trials performed the same as in
the training session, catch trials (error-clamped trials) were performed once
in every four trials (three cycles), and the order of the movement patterns was
randomized within each cycle.

Theoretical background. We modeled the motor learning process using
the state space model (Thoroughman and Shadmehr, 2000; Donchin et
al., 2003; Wainscott et al., 2005; Lee and Schweighofer, 2009; Nozaki and
Scott, 2009), consisting of N primitives that encode the movement direc-
tions of both arms as g(�r, �l), where �r and �l are the movement direc-
tions of the right and left arms, respectively (see Fig. 3A). The output
force created by the internal model can be represented by a linear sum-
mation of the outputs of primitives as follows:

f̂ �i� � �w�i�	tg��r
�i�, �l

�i��, (1)

where i is the trial number, and g(�r, �l) � [g1(�r, �l), g2(�r, �l),. . . gN(�r,
�l)]t and w � [w1, w2,. . . wN]t are column vectors whose elements rep-
resent the output and weight of each primitive, respectively.

A state space model of the motor adaptation to the force field f can be
represented as follows:

e�i� � d�� l
�i��� f�i� � f̂ �i�� (2)

w�i�1� � �w�i� � e�i�Kg��r
(i), �l

(i)), (3)

where e is the movement error, d(�l) is the compliance that depends on
the movement direction of the trained arm (here, we assumed that the
left arm is trained), and � and K are constants representing, respectively,
the spontaneous loss of memory and the update rate to the error.

From Equations 1–3, the weight vector after sufficient training of a
constant force field f is obtained as follows:

wt �
Kd��l)fg��r,�l�

t

1 � � � Kd��l�g��r, �l�
tg��r, �l�

. (4)

When movement directions of both arms are changed by 
�r and 
�l, the

force output (i.e., aftereffect) is represented as follows: f̂��r � 
�r,
�l � 
�l� � wtg��r � 
�r, �l � 
�l�. Thus, the function of how
the training effect is transferred from (�r, �l) to (�r � 
�r, �l � 
�l) is
represented by the following:

��
�r, 
� l� �
f̂ ��r � 
�r, � l � 
� l�

f̂��r, � l�

�
g��r, �l�

tg��r � 
�r, �l � 
�l�

g��r, �l�
tg��r, �l�

. (5)

Decomposition of the generalization function. If the primitives encode the
movement directions of both hands multiplicatively as follows: gj(�r, �l) �
rj(�r)lj(�l), when N is sufficiently large (N is assumed to be a square
number), and lj(�l) and rj(�r) have translational symmetry with respect
to j and are distributed uniformly on the (�r, �l) plane, then

g��r, �l�
tg��r � 
�r, �l � 
�l�

�
1

N �
j�1

�N rj��r�rj��r � 
�r��
j�1

�N lj��l� lj��l � 
�l�.

Thus, the transfer function is as follows:

��
�r, 
� l� � ��
�r, 0���0, 
�l�. (6)

On the other hand, if the primitives encode the movement directions
of both hands additively as follows: gj(�r, �l) � rj(�r) � lj(�l), then

g��r, �l�
tg��r � 
�r, �l � 
�l� � �

j�1

N
�rj��r� � lj��l�	 {[rj(�r � 
�r) �

lj��l�] � �rj��r� � lj��l � 
�l�	 � �rj��r� � lj��l�	}. Thus, the transfer
function is as follows:

��
�r, 
� l� � ��
�r, 0� � ��0, 
� l� � 1. (7)

It should be noted that previous work (Wainscott et al., 2005) obtained
theoretically similar relationships (Eqs. 6, 7) in the generalization func-
tion calculated from the trial-by-trial changes in the aftereffects.

Estimating the function of the primitives. Here, we assume that the
encoding function can be represented by a Gaussian function. In the case
of multiplicative and additive encoding, the primitive can be represented,
respectively, as follows:

gj��r, � l� � �arexp� � ��rj � �r�
2

2�r
2 � � br�
� �alexp� � ��lj � �l�

2

2�l
2 � � bl� (8)

and

gj��r, � l� � arexp� � ��rj � �r�
2

2�r
2 � � alexp� � ��lj � �l�

2

2�l
2 � � b,

(9)

where a and b are constants, and � indicates the preferred direction.
Substitution of Equations 8 or 9 into Equation 5 yielded the theoretical

transfer function

��
�r, 
� l�

�

�ar
2�rexp� �

�
�r�
2

4�r
2 � � 2�2arbr�r � 2�	br

2�
� �al

2�lexp� �
�
�l�

2

4�l
2 � � 2�2albl�l � 2�	bl

2�
�ar

2�r � 2�2arbr�r � 2�	br
2�

� �al
2�l � 2�2albl�l � 2�	bl

2�

(10)

for the multiplicative encoding case, and

�

�	ar
2 �rexp� �

�
�r�
2

4�r
2 � � �	al

2 �lexp� �
�
�l�

2

4�l
2 �

� 2aral�r�l � 2�2	arb�r � 2	b2

�	ar
2�r � �	al

2�l � 2aral�r�l

� 2�2	arb�r � 2�2	alb�l � 2	b2

(11)

for the additive encoding case.
To estimate the parameters in the primitives (Eqs. 8, 9), the data of

motor learning transfer when changing the movement direction of one
arm in Experiment 1 [i.e., �(
�r, 0) and �(0, 
�l)] were fitted by a
Gaussian function as follows:

� � c exp� �

�2

2�2	 � d, (12)

using the method of least squares. Then, the parameters of the primitives
(Eq. 8 or 9) were estimated by comparing the parameters of Equation 12
with Equation 10 or 11.

Estimating the parameters � and K. The trial-dependent changes in
movement error when a constant force f is imposed for only a particular
movement combination (�r, �l) is as follows:

e�n� �
K�d�� l�	

2fgtg

1 � � � Kd��l�g
tg

�� � Kd��l�g
tg	�n�1�

�
�1 � ��d��l� f

1 � � � Kd��l�g
tg

, (13)

where g is the abbreviation of g(�r, �l). We estimated the values of K by
fitting the trial-dependent changes in the training phase with Equation
13. The value of � was set to 0.996 in advance, adopted for the slow
process of motor learning (Smith et al., 2006). We ignored the contribu-
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tion of the fast process because a relatively high
number (500 –1000) of training trials were per-
formed in our experiments.

Simulation of state space model. The simula-
tions of Experiments 1, 3, 4, and 5 were per-
formed 100 times each using Equations 1–3
with the identified primitive (i.e., Eq. 8 for the
multiplicative model or Eq. 9 for the additive
model). The task schedule was randomized for
the 100 simulations, and the output data were
averaged. The initial condition was w � 0.

Statistics: Experiments 1 and 2. To determine the
effect of the movement of the opposite arm on the
aftereffects, a one-way repeated-measures ANOVA
with factors of the opposite-arm movement direc-
tion (six directions) was performed for the data ob-
tained when the trained arm was moving in the
original direction. A post hoc multiple-comparison
test (Tukey–Kramer) was then performed to ex-
plore differences in the aftereffect among six move-
ment directions of the opposite arm.

To test which encoding scheme, additive or
multiplicative, was more likely, we compared the
actual aftereffects and the artificial aftereffects
constructed based on each encoding scheme.
More specifically, to construct the artificial
data of the generalization curve f��r, � l�, the
aftereffects obtained when only the move-
ment direction of the trained arm was

changed (eight data points [i.e., f̂�0, � l�])

were shifted as f̂�0, �l� � f̂��r, 0� � f̂�0, 0�
for additive encoding or multiplied as
f̂�0, �l� f̂��r, 0�/ f̂�0, 0� for the multiplicative
encoding model. We used 13 aftereffects [i.e.,
f̂�0, �l� and f̂��r, 0�] to predict the other 35 after-
effects using both multiplicative and additive
models. Then, the sums of the squared resid-
ual errors between the predicted and actual
aftereffects of those 35 data points were
calculated for each participant; the data
of the multiplicative and additive models
were subsequently compared using one-way
repeated-measures ANOVA with factors of
model type.

Statistical analysis: Experiments 3, 4, and 5. To
evaluate how accurately the model predicted the
actual aftereffects, we performed linear regres-
sion between the aftereffects obtained experi-

mentally ( f̂
exp) and those predicted by the

model � f̂
mdl) as f̂

exp � 
l � 
2
f̂
mdl [the

number of data was calculated as movement
configurations � participants; i.e., 640 (64 �
10) for Experiment 3 and 80 (16 � 5) for Ex-
periments 4 and 5]; the correlation coefficient
(R 2), intercept (
1), and slope (
2) were also
calculated. Since the 
1 and 
2 may differ by
participant, we checked the validity of the re-
gression by performing linear regression with a

linear mixed model: f̂
exp � 
1 � 
2

f̂
mdl �

b1 � b2
f̂

mdl � �, where the b1 and b2 are
random effects (participant) of the intercept
and slope, respectively. Since the inclusion of
the random effects did not significantly im-
prove the regression in Experiments 3–5
( p � 0.05 by the likelihood-ratio test), we
adopted a simple linear model.
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Figure 1. Experimental setup. A, The participants made simultaneous bimanual reaching movements from the starting point toward
aperipheral targetforeacharmpresentedonahorizontalscreen. B,Aforcefieldwasappliedtotheparticipants’ trainedarmforthetraining
(toppanel).Error-clampedtrialswerealternatedwithstandardtrialstotestthedegreeofmotoradaptation(bottompanel).Themovement
direction toward a forward target was defined as 0°, and the movements in clockwise (CW) and counterclockwise (CCW) directions were
positiveandnegative,respectively. C–F,Movementconfigurationsforthetrainingandtestingtrials.Thediamondsindicatethemovement
configurations used for the training, while the open circles indicate the movement configurations for which the training effect was tested.
For example, in Experiments 1 and 2 (C), participants learned the force field for the trained arm while moving both arms forward, as
indicated by the diamond [(�trained, �opposite) � (0, 0)]. This training effect was then tested at the other movement configurations
represented by open circles [e.g., (�trained,�opposite)� (30, 60)]. In D–F, the color of the diamonds indicate the kind of force field: blue and
red indicate CW and CCW force fields, respectively (the direction of force field was reversed for one-half of participants), and the green
diamond indicates a null force field. It should be noted that several tested configurations are plotted twice [e.g., (180, 180) and (�180,
�180) in C, and (�90,�90) and (270, 270) in D]. It should also be noted that unimanual movements were also tested in Experiments 1
and 2, but these movements are not displayed in B.
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Figure 2. Generalization pattern of motor learning of the left arm with the movement direction of each arm (Experiment 1). A, B, Learning curves for the trained left arm (A) and untrained right
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Results
Experiment 1: effect of motor learning transfer when
changing the movement direction of each arm
This experiment was designed to investigate how the adaptation
of the left arm to a novel force field acquired while reaching both
arms forward was transferred to the same arm when the move-
ment directions of both arms were changed (8 directions for the
trained arm and 6 directions for the opposite arm, i.e., 8 � 6 � 48
combinations; Fig. 1C) and when the movement was performed
unimanually (8 directions). With the training, the lateral devia-
tion of the left handle at the peak velocity gradually decreased
(Fig. 2A). After the 80 training trials, we performed catch trials at
every other trial. The lateral movement deviation of trials imme-
diately following the catch trials was not significantly different
from those of the last 10 trials of the training phase (p � 0.5633 by
t test; Fig. 2A). This indicated that catch trials using the error-
clamped method did not deteriorate the motor learning perfor-
mance, and confirmed the validity of conducting the catch trials
so frequently. The adaptation of the trained hand did not seem to
influence the untrained hand. There was no significant lateral
deviation throughout the experiment (Fig. 2B; t test with Bonfer-
roni’s correction for 4 bins of 20 trials), which is consistent with
the results of recent studies showing that there is no influence of
the perturbation to one arm on another hand when two cursors
are appropriately presented for both arms (Diedrichsen, 2007;
Kasuga and Nozaki, 2011).

First, we demonstrated how the movement direction of each arm
influenced motor learning transfer. Figure 2 indicates the aftereffects
when the movement direction of the trained arm (Fig. 2C) or the
opposite arm (Fig. 2D) was changed while maintaining the move-
ment direction of the other arm in the original trained direction.
When the movement direction of the trained arm was altered, the
aftereffect gradually decreased as the movement direction deviated
more from the original direction, converging monotonically to 0
when the angular difference was greater than 90° (Fig. 2C,E). Figure
2E also shows the generalization pattern observed in the unimanual
movement. The amplitude of the generalization function decreased
during the unimanual movement, demonstrating the partial motor
learning transfer from bimanual to unimanual movement, which we
reported in our previous studies (Nozaki et al., 2006; Nozaki and
Scott, 2009). In contrast to previous studies (Donchin et al., 2003), a
bimodal generalization pattern was not observed; the aftereffects for
an angular difference of 180° were not significantly different from
those of 90°.

A similar decay pattern in the aftereffect was observed when
the movement direction of the opposite arm was changed (Fig.
2D,F). However, unlike the pattern for the trained arm (Fig.
2C,E), the aftereffects decayed to 61.7 � 16.5% (mean � SD) of
the aftereffect of the original direction (Fig. 2F). The movement
directions of the opposite (right) arm significantly affected the
aftereffect (F(5,35) � 16.3; p 
 0.001 by one-way repeated-
measures ANOVA), and a post hoc test revealed significant differ-
ences for several movement directions [0° vs (30°, �60°, or
�180°), 30° vs �180°, and �30° vs (�60° or �180°)], indicating
that the aftereffect was a smooth function of the movement di-
rection of the opposite arm and that the movement direction of
the opposite arm smoothly interferes with the internal model.

The generalization pattern is considered to reflect the possible
encoding pattern of the kinematics in the primitives of the inter-
nal model (Thoroughman and Shadmehr, 2000; Donchin et al.,
2003; Hwang et al., 2003; Poggio and Bizzi, 2004; Sing et al.,
2009). The generalization pattern observed when changing the

opposite-arm movement direction suggests that the primitives
also encode neuronal information that changes smoothly with
the kinematics of the opposite arm.

The generalization curves (Fig. 2E,F) were fitted well by the
Gaussian function (Eq. 12): The variance explained by this model
was high [R 2 � 0.85 and 0.94 for �(0, 
�l) and �(
�r, 0), re-
spectively]. From the estimated parameters (c, d, and �) summa-
rized in Table 2, we calculated the concrete encoding function for
the multiplicative and additive encoding models (Eqs. 8, 9) (Fig.
3A,B). The parameters are also shown in Table 2.

Experiment 1 and 2: whole generalization pattern
We trained the identified multiplicative and additive models with
the task of Experiment 1. Both models exhibited almost identical
generalization patterns in �(
�r, 0) and �(0, 
�l) but predicted
completely different patterns of generalization when the move-
ment directions of both arms were simultaneously changed (Fig.
3C,D). As expected from Equations 6 and 7, the multiplicative
encoding model predicted the change of the amplitude of the
generalization curves, and the additive model predicted the up-
ward or downward shift of the curves (Fig. 3C,D).

Although the additive model predicted negative learning
transfer when the movement configurations were more different
from the training configuration, this was not indicated in the
actual data (Fig. 4A). In contrast, the actual data appear to sup-
port the prediction made using the multiplicative model (Fig.
4A). To statistically test which model explained the actual data
more accurately, we predicted the aftereffect data of 35 move-
ment configurations from those of 13 movement configurations
using both multiplicative (Eq. 8) or additive (Eq. 9) models. The
residual sums of squares between the actual and predicted after-
effects of both models were then statistically compared by one-
way repeated-measures ANOVA. We found a significant main
effect of model (F(1,7) � 21.96; p 
 0.005) for Experiment 1. In
Experiment 2 in which the right arm was trained, we also found a
significant main effect of model (F(1,7) � 9.03; p 
 0.05; Fig. 4B),
suggesting that the multiplicative model explains the data more
accurately than the additive model.

Experiment 3: generalization of motor learning performed in
multiple movement configurations
In Experiments 1 and 2 in which only one movement configura-
tion was used for the learning of a force field, the generalization
patterns to the other movement configurations were not local-
ized around the movement configuration for the training, but
were elongated along the axis of the movement direction of the
opposite arm (Fig. 4). With this generalization pattern, when

Table 2. Parameter estimates of generalization functions and primitives

c d � (°) R 2

�(0, 
�l) 0.955 0.045 29.9 0.849
�(
�r, 0) 0.377 0.623 38.5 0.940

Multiplicative ar br �r (°) al bl �l (°)

1.00 0.318 27.2 1.00 0.0158 21.1

Additive ar �r (°) al �l (°) b

0.553 27.2 1.00 21.1 �0.252

Common N � K d(�l)

100 0.996 0.00724 10 (�l � 0, 180)
5 (�l � 90, 270)
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participants tried to learn different force fields simultaneously with
different movement configurations, the training effects obtained
with training movement configurations should influence each other
and create a particular generalization pattern. Experiment 3 aimed
to examine this issue and determine how accurately our multiplica-
tive encoding model identified above in Experiment 1 (Table 2)
could predict the global motor learning pattern.

Figure 5A shows the generalization pattern measured for 64 dif-
ferent combinations of movement directions (8 directions for each
arm) when the training was performed at movement configurations
of (0, 0), (0, 180), (180, 0), and (180, 180). The participants exhibited
significant aftereffects at these four points (p 
 0.001 by t test with
Bonferroni’s correction), and the training effect gradually decayed
around the training configurations This pattern was quite similar to
that predicted by the multiplicative model (Fig. 5B). Linear regres-
sion between the predicted and actual aftereffects produced an R2

value of 0.38 (p 
 0.001); in addition, the intercept and slope of the
regression line were close to 0 (�0.01 � 0.03) and 1 (1.03 � 0.05),
respectively (mean � SD). These results suggest that without alter-
ing the parameters of the multiplicative model identified in Experi-

ment 1, the model accurately predicted not only the generalization
pattern but also the size of the actual aftereffects even when the
training was simultaneously performed at multiple movement con-
figurations. In contrast, due to the nonlinear dependence of the force
direction on the movement direction, the additive model could not
adapt to this force field at all (Fig. 5C), which sharply contrasts from
the patterns of the aftereffects exhibited by the participants.

Experiments 4 and 5: construction of arbitrary force output
by the internal model
Experiments 4 and 5 were designed to investigate whether the
participants could actually adapt their arm movements to a much
more complicated force field that depended on the movement
directions of both arms in a nonlinear fashion. The multiplicative
model, whose predictions were already demonstrated to be very
accurate, should enable the participants to learn such compli-
cated force fields. As expected, the observed pattern of the after-
effects measured after a sufficient amount of training was similar
to that with imposed force fields (Fig. 6A,B). These patterns were
similar to those predicted by the multiplicative encoding model
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whose parameters were identified in Experiment 1 (Fig. 6C,D).
The same linear regression analysis as the one used in Experiment
3 showed that the R 2 values between the predicted and actual
aftereffects were significant (p 
 0.001) for Experiment 4 (0.72)
and Experiment 5 (0.76). In addition, the intercept and slope of
the regression line of Experiments 4 and 5 were close to 0 and 1
(0.02 � 0.05 and 1.08 � 0.08 for Experiment 4; 0.17 � 0.06 and
1.45 � 0.09 for Experiment 5; mean � SD). The slope was signif-
icantly greater than 1 in Experiment 5 (p 
 0.05), while it was not
significantly different from 1 in Experiment 4 (p � 0.05). Thus,
although the actual aftereffects tended to be greater than the pre-

dicted aftereffects in Experiment 5, the
multiplicative model was able to predict
the size of the aftereffects without adjust-
ing the parameters. In contrast, the addi-
tive model could not learn the force fields
due to the nonlinear dependence on the
movement directions (Fig. 6E,F). These
results indicate great flexibility in con-
structing internal models through the lin-
ear combination of primitives that
multiplicatively encode the movement di-
rections of both arms.

Discussion
Performing flexible bimanual movement
requires the internal model for each arm
to predictively compensate for mechani-
cal interactions resulting from the move-
ment of both arms. Thus, the internal
model must integrate the kinematics in-
formation from the opposite arm in addi-
tion to the relevant arm. By examining the
adaptation of reaching movements to
novel force fields, we demonstrated that

an internal model for each arm multiplicatively encodes the
movement directions of both arms and that such multiplicative
encoding provides us with a flexible ability to compensate for the
mechanical interaction between arms.

Encoding of opposite-arm kinematics in the primitives
As demonstrated by previous studies using a bimanual task in
which the position of one arm is maintained during a disturbance
resulting from the movement of the opposite arm (Viallet et al.,
1992; Bays and Wolpert, 2006; Johansson et al., 2006; Jackson and
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Miall, 2008), the brain can predictively
compensate for mechanical disturbance
by using information about the move-
ment of the opposite arm. Recent studies
suggest that the brain displays such an
ability even during reaching movements.
Two distinct internal models for an arm
movement can be constructed depending
on whether the other arm is moving or
stationary (Nozaki et al., 2006), and
whether the other arm is moving in the
same or opposite (or orthogonal) direc-
tion (Howard et al., 2010). Although it is
highly difficult to evaluate the details of
the encoding scheme from only these re-
sults, the data suggest the possibility that
the primitives of the internal models do
encode the kinematics of the opposite
arm.

Previous neurophysiological findings
on the role of neurons in motor areas for
motor learning also imply that the encod-
ing of opposite-arm kinematics is very
likely. Many neurons in the contralateral
primary motor cortex (MI) are load sen-
sitive (Evarts, 1968; Kalaska et al., 1989),
and this load sensitivity emerges during
motor learning (Gandolfo et al., 2000; Li
et al., 2001; Arce et al., 2010). The neurons
of the supplementary motor area (Padoa-
Schioppa et al., 2002, 2004) and the pre-
motor area (Xiao et al., 2006) of the
contralateral hemisphere are also in-
volved in the adaptation to novel loads.
Thus, the adaptation to a novel force field
can be viewed as the development of a
load representation in a population of
neurons in these areas.

Interestingly, movement of the ipsilat-
eral arm also modifies the activity of neu-
rons in these motor areas (Donchin et al.,
1998; Cisek et al., 2003; Ganguly et al.,
2009). Therefore, when the left arm is
adapted to a force field while the right arm
is being moved in a particular direction,
the representation of the force field is con-
structed specifically for the right-arm
movement direction. As such, when the
movement direction of the right arm
changes from this original direction, the
neuronal influence of the right arm also
changes, which should result in the degra-
dation of left-arm motor learning. Fur-
thermore, considering that the influence
on the MI neuron response smoothly
changes with ipsilateral arm movement
direction during bimanual movement
(Rokni et al., 2003), the degree of the in-
terfering effects is also likely to change
smoothly with movement direction.

Consistent with these speculations, we found that the influ-
ence of the opposite-arm movement direction on motor learning
(i.e., aftereffects) smoothly changed with direction (Fig. 2F). This

indicates that the primitive encodes neuronal information that
changes smoothly with the movement of the opposite arm. It also
provides strong evidence against the view that the formation of
distinct motor memories according to the kinematics of the op-
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posite arm (Nozaki et al., 2006; Howard et al., 2010) can be ex-
plained by regarding the kinematics as cognitive cues (Osu et al.,
2004; Cothros et al., 2009); such a scheme would result in abrupt,
not smooth, changes in the aftereffect.

Gain field encoding in the primitives
Our next hypothesis was that the primitives integrate the move-
ment directions of both arms multiplicatively rather than addi-
tively. Multiplicative neuronal integration, known as gain fields,
was first reported for neurons in posterior parietal cortex (LIP
and 7a) (Andersen and Mountcastle, 1983; Andersen et al., 1985)
and later found in many other areas in the brain, including sub-
cortical structures (Lal and Friedlander, 1990; Van Opstal et al.,
1995; Boussaoud et al., 1998; Wang et al., 2010). It has been
theorized that such gain field encoding is beneficial for sensori-
motor transformation from multiple neuronal inputs (Pouget
and Sejnowski, 1997; Salinas and Sejnowski, 2001). More specif-
ically, neurons with gain field encoding work as a set of basis
functions enabling downstream neurons to construct arbitrary
outputs by flexibly and linearly combining them (Pouget and
Sejnowski, 1997).

Similar to the above problem of creating a sensorimotor trans-
formation mapping, the construction of internal models for arm
movement can be regarded as a process of creating an arbitrary
map from desired sensory states to a motor command for the
relevant arm by flexibly combining primitives. Thus, if the gain
field encoding is equipped with the primitives, this property
would give the brain great flexibility in constructing an arbitrary
force output from the desired state of both arms to a motor
command for each arm.

We tested these multiplicative and additive encoding schemes
in the primitives by investigating the generalization function of
motor learning (Hwang et al., 2003; Wainscott et al., 2005). Mul-
tiplicative or additive encoding predicts multiplicative or addi-
tive generalization functions, respectively (Eqs. 8, 9). Our results
clearly indicate that multiplicative encoding is more likely (Figs.
3, 4), which is consistent with our speculation based on previous
theoretical work.

The strength of multiplicative encoding was exemplified by
Experiments 4 and 5, in which participants adapted their left-arm
movements to force fields that nonlinearly depended on the
movement directions of both arms (Fig. 6). We used two differ-
ent force fields with magnitudes that depended on the directional
difference between the arms in either an extrinsic or intrinsic
workspace (Fig. 1E,F). Due to the nonlinear dependence of the
force fields on the movement directions of both arms, the addi-
tive encoding model cannot adapt to them (Fig. 6E,F), indicating
that the motor learning system of bimanual movement is unlikely
to place special emphasis on bimanual movement patterns, such
as mirror-symmetric, parallel movements. Rather, any meaning-
ful association between the force field and the movement patterns
of both arms (Ahmed et al., 2008) may arise as a consequence of
the greater flexibility in motor learning offered by multiplicative
encoding of primitives.

Possible scheme of bimanual movement control
On the basis of the present results, we can speculate about a
possible scheme of bimanual movement control that compen-
sates for the mechanical interaction between both arms (Fig. 7).
This scheme assumes that the information regarding the desired
movement of the opposite arm, the efference copy from the
movement controller of the opposite arm, or both multiplica-
tively influences the internal model of each arm. The assumption

that the contribution of sensory input is negligible can be justified
by the results of a recent study demonstrating that distinct inter-
nal models cannot be established when the opposite arm is pas-
sively moved (Howard et al., 2010). We also assume that the
contribution of the efference copy is relatively weak, because the
trajectory of the right arm was not affected by the adaptation of
the left arm (Fig. 2B). The adaptation to the force field should
change the efference copy, which should influence the controller
of the opposite arm.

It is well known that bimanual neuronal interactions exist
when bimanual actions are performed (Swinnen, 2002; Rokni et
al., 2003; Swinnen and Wenderoth, 2004; Carson, 2005). How-
ever, the functional role of such neuronal interactions remains
unclear. In fact, such interactions are often considered to be a
source of bimanual interference that needs to be overcome
(Swinnen, 2002). The results of the current study provide a novel
interpretation of how these neuronal interactions may play a
crucial role in the flexible control of bimanual movements (Fig.
7). Without such multiplicative interfering effects, the neural
control process for the movement of an arm is unable to take
movement of the other arm into account to compensate for the
mechanical interaction between the movements of both arms.
The present study provides, to our knowledge, the first behavioral
example that gain field encoding is essential for flexible bimanual
movement control and provides a possible clue to how the brain
orchestrates the movements of multiple body parts into a single
unified action.

Notes
Supplementalmaterial forthisarticle isavailableathttp://www.p.u-tokyo.
ac.jp/~nozaki/online_materials/yokoi_gf_suppl.pdf. The supplemental
material provides a detailed derivation of theoretical equations. This
material has not been peer reviewed.
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