
Behavioral/Systems/Cognitive

Local Connections of Excitatory Neurons to Corticothalamic
Neurons in the Rat Barrel Cortex

Yasuhiro R. Tanaka,1 Yasuyo H. Tanaka,1 Michiteru Konno,1 Fumino Fujiyama,1,2 Takahiro Sonomura,3

Keiko Okamoto-Furuta,1 Hiroshi Kameda,1 Hiroyuki Hioki,1 Takahiro Furuta,1 Kouichi C. Nakamura,1

and Takeshi Kaneko1

1Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan, 2Japan Science and Technology
Agency (JST), Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0075, Japan, and 3Department of Anatomy for Oral Sciences,
Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan

Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal
circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local
excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an
adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus
vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retro-
gradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the
labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic
neurons, we intracellularly stained single pyramidal/spiny neurons of L2– 6. We examined the spatial distribution of contact sites
between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corti-
cothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous
nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves
and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of
local excitatory inputs in shaping the cortical modulation of thalamic activity.

Introduction
The primary sensory cortex, consisting of six layers, receives
thalamocortical projections principally in layer (L) 4 and sends
corticothalamic projections mainly from L6, constituting the
thalamocortical reciprocal circuit with the corresponding tha-
lamic nucleus (Jones, 1984; Deschênes et al., 1998; Douglas et al.,
2004; Sherman and Guillery, 2006; Shipp, 2007; Fox, 2008;
Thomson, 2010). In this reciprocal circuit, L6 corticothalamic
projection neurons (CTNs) are considered to enhance and tune

thalamic responses to peripheral stimuli (Yuan et al., 1986; Yan
and Suga, 1996; Przybyszewski et al., 2000; Alitto and Usrey,
2003; Temereanca and Simons, 2004; Thomson, 2010). Local
connections between cortical layers are well developed (Briggs
and Callaway, 2001; Mercer et al., 2005; Zarrinpar and Callaway,
2006; West et al., 2006; Lefort et al., 2009; Llano and Sherman,
2009; Lam and Sherman, 2010; Hooks et al., 2011), and in addi-
tion to external inputs, local translaminar inputs are involved in
shaping CTN activity. Therefore, the laminar organization of lo-
cal excitatory inputs to CTNs may be important for cortical mod-
ulation of thalamic activity.

It is widely accepted that columnar modules serve as elemen-
tary units of information processing in the cerebral cortex, espe-
cially in the primary sensory cortices (Mountcastle, 1997). The
rodent primary somatosensory (S1) barrel cortex, where L4 neu-
rons assemble barrel-like structures, processes sensory informa-
tion from facial whiskers (Fox, 2008). Neurons in the L4 barrel
(300 – 400 �m in diameter) and those in the other layers respond
primarily to a single whisker, thus congregating in a vertical col-
umn extending across the cortical layers. Furthermore, recent
studies have revealed that a single barrel includes several neuro-
nal clusters (�100 �m in diameter) that contain neurons show-
ing similar preferences for the direction of whisker deflection,
suggesting that a barrel column is further divided into functional
substructures (Bruno et al., 2003; Andermann and Moore, 2006).
Because cortical local connections often spread tangentially or
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horizontally beyond these structures, it is important to examine
the horizontal organization of local excitatory inputs to CTNs, in
addition to laminar organization.

Here, we retrogradely labeled CTNs with a newly developed
adenoviral vector expressing a somatodendritic membrane-
targeted green fluorescent protein (GFP), which was useful in
visualizing CTNs from their cell bodies to fine dendritic spines.
Combining the retrograde labeling method with an intracellular
recording/staining technique in brain slices, we examined the
distribution of contact sites between the axons of single pyrami-
dal/spiny neurons and the dendrites of a multitude of CTNs in
the rat barrel cortex. Finally, we made a morphological estima-
tion of the interlaminar and horizontal organization of local ex-
citatory connections to CTNs.

Materials and Methods
All procedures in the experiments were conducted in accordance with the
Committee for Animal Care and Use and that for Recombinant DNA
Study in Kyoto University. One hundred and two male Wister rats
(weight, 250 –350 g; age, 8 –12 postnatal weeks; Japan SLC) were used in
the present study. All efforts were made to minimize the number of
animals used and their suffering.

Adenoviral vector
The adenoviral vector plasmid (Fig. 1 A) was constructed and produced
according to Virapower adenoviral promoterless gateway expression kit
(Invitrogen). Enhanced human synapsin I promoter (E/SYN) (Hioki et
al., 2007), GFP with an N-terminal myristoylation site of Fyn protein and
with a C-terminal portion of low-density lipoprotein receptor (myrGFP-
LDLRct) (Kameda et al., 2008), woodchuck hepatitis virus posttranscrip-
tional regulatory element (WPRE; nucleotides 1093–1684 of gb: U57609;
a gift from Dr. Hope, Department of Cell and Molecular Biology, North-
western University Medical School, Chicago, IL) (Zufferey et al., 1999),
and polyadenylation signal from bovine growth hormone (BGHpA)
were subcloned into pENTR1 vector (Invitrogen). The insert (E/SYN-
myrGFP-LDLRct-WPRE-BGHpA) was transferred to the adenoviral
backbone ( pAd/PL-DEST) by homologous recombination by LR clon-
ase (Invitrogen), resulting pAd-E/SYN-myrGFP-LDLRct-BGHpA. Ad-
enoviral vector was produced according to the manufacture’s protocol
and purified as described previously (Tomioka and Rockland, 2006).
Obtained viral stocks in 0.6 M NaCl were stored in �80°C until use. The
final viral stocks typically have the titer of 10 10–10 11 gene transfer
unit (GTU)/ml. For titration of the viral stocks, we disseminated
serially diluted viral solutions to 90% confluent HEK cells in 6 well
plates. Two days after dissemination, cells were fixed and immuno-
stained with anti-GFP antibody. The titer was determined by count-
ing GFP-immunopositive cells.

Surgery
Rats were anesthetized through an intraperitoneal injection of 7%
(w/v) chloral hydrate. For the analysis of the connection of single
pyramidal neurons to corticothalamic neurons, 2 �l of 0.6 M NaCl
containing adenoviral vector (Tomioka and Rockland, 2006) was in-
jected very slowly for 30 min into the right ventrobasal thalamic
complex by pressure through a glass micropipette equipped with a
picospritzer III (Parker Hannifin Corporation, General Valve Divi-
sion). Air pressure, duration, and frequency were set at 40 psi, 5–10
ms, and 0.1–1.0 Hz, respectively. For the assessment of the labeling
efficiency by retrograde tracers, 1 �l of 0.6 M NaCl containing adeno-
viral vector (Tomioka and Rockland, 2006), 0.2 �l of 1% (w/v) Chol-
era toxin B subunit (List Biological Laboratories) in 10 mM PBS, pH
7.4, or 0.2 �l of 4% (w/v) Fluorogold (Fluochrome) in distilled water
was injected.

Assessment of the efficiency of retrograde labeling
Methods for fixation and immunofluorescence were described previ-
ously (Kuramoto et al., 2007) and antibodies/reagents/filter sets used in
the detection of retrograde tracers and NeuN, a neuron-specific marker,

are summarized in Table 1. Under a confocal laser-scanning microscope
(LSM 5 Pascal; Carl Zeiss), images were serially taken through the thickness
of sections (30 �m) with the optical thickness of 1.8 �m (corresponding to
pinhole of 1 Airy unit), using an oil-immersion �63 objective lens (Plan-
NEOFLUAR, numerical aperture 1.40). We divided the number of NeuN/
GFP (or other tracers) double-positive cells by the number of NeuN-positive
cells, to obtain the rate of the retrograde labeling. Cells were counted stereo-
logically in all cases (Howard and Reed, 1998).

In vitro intracellular recording
Rats were allowed to survive for 6 –14 d after operation, again anesthe-
tized deeply by ether inhalation, and decapitated. Slices were prepared as
described previously (Cho et al., 2004a) with slight modifications. To
retain neuronal viability in slices, we used N-methyl-D-glucamine-based
cutting solution (Tanaka et al., 2008), which contained (in mM) 147
N-methyl-D-glucamine, 20 HEPES, 1 KCl, 1.3 KH2PO4, 2.5 MgSO4, 1
CaCl2, 10 glucose ( pH was adjusted to 7.4 by HCl). The brains were
removed quickly and cut frontally into 500-�m-thick slices in the cutting
solution saturated with 95% O2 and 5% CO2. The cutting direction was
optimized in the preliminary experiments to be parallel to the apical
dendrites of pyramidal neurons.

Cortical slices were placed at 34 –35°C in an interface chamber and
perfused with ACSF, which was composed of (in mM) 124 NaCl, 3.3 KCl,
1.3 KH2PO4, 26 NaHCO3, 1 MgSO4, 2.5 CaCl2, and 10 glucose (pH was
7.4 when saturated with 95% O2 and 5% CO2 gas). Glass microelectrodes
were made with a puller (P-97; Sutter) and filled with 3% (w/v) biocytin
(Sigma) dissolved in 2 M KCH3SO4 and 50 mM Tris-HCl, pH 7.4. The
resistance of the electrodes was typically 80 –100 M�. To maximize the
morphological recovery of neuronal processes, we recorded neurons in
the middle two fifth of the slice thickness (150 –350 �m from the slice cut
surface) in the cortical slices where successful retrograde labeling of L6
was checked by an epifluorescence microscopy.

With the help of the fluorescence microscope and stereomicro-
scope, we moved the recording electrode into the region containing
many retrogradely labeled neurons. After impalement, the response
of the pyramidal neuron to current injection was recorded with a
current-clamp amplifier (IR-183; Cygnus Technology) and stored in
a computer through an analog-digital converter (PowerLab; ADInstru-
ments). Before releasing the impaled neuron, biocytin was injected by
passing 200-ms-long, 0.1– 0.5 nA positive pulses at 2.0 Hz. In most cases,
only one neuron was impaled in a slice to avoid an overlap of dendritic or
axonal arbors of two or more neurons. After recording, the slices were
further incubated for 1– 4 h and fixed for 20 h at 24 –25°C in 0.1 M sodium
phosphate, pH 7.4, containing 3% (w/v) formaldehyde, 0.01% (w/v)
glutaraldehyde, and 75%-saturated picric acid.

Double peroxidase staining
After cryoprotection with 30% (w/v) sucrose in PBS, the slices were
further cut into 25-�m-thick sections on a freezing microtome. In the
following procedures, each section was separately incubated in a well at
room temperature. All the reagents of the following incubations were
resolved in PBS containing 0.3% (v/v) Triton X-100 and 0.02% (w/v)
sodium merthiolate unless otherwise stated, and an incubation was fol-
lowed by several rinses with PBS containing 0.3% (v/v) Triton X-100.
The sections were: (1) soaked for 30 min in 1% (v/v) H2O2 in PBS to
suppress endogenous peroxidase activity in the tissue, (2) incubated for
30 min with 10% (v/v) normal donkey serum (Millipore), (3) incubated
for at least 12 h with a mixture of avidin-biotinylated peroxidase complex
(ABC; 1:50; PK-6100, Vector Laboratories), 0.5 �g/ml Alexa Fluor 594-
conjugated StreptAvidin (Invitrogen) and 0.5 �g/ml affinity-purified
anti-GFP rabbit antibody (Tamamaki et al., 2000; Nakamura et al.,
2008), (4) observed under an epifluorescence microscope (Axiophot;
Carl Zeiss) to determine which section contained the cell body of the
biocytin-injected neuron, (5) incubated for 30 – 60 min with 0.02% (w/v)
diaminobenzidine-4HCl (DAB; Dojindo Laboratories), 10 mM nickel
ammonium sulfate, and 0.0001% (v/v) H2O2 in 50 mM Tris-HCl, pH 7.6,
for visualization of the intracellularly labeled neuron followed by rinses
with 50 mM Tris-HCl, (6) incubated for 30 min with 2% (w/v) NaN3 in 50
mM Tris-HCl to inactivate peroxidase attached to biocytin, (7) incubated
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for 1 h with 10 �g/ml biotinylated anti-rabbit IgG goat antibody (Vector
Laboratories), (8) incubated for 1 h with ABC (1:150), (9) incubated for
30 min with 0.6 �M biotinylated tyramine in 50 mM sodium phosphate
buffer, pH 7.4, containing 3 �g/ml glucose oxidase (259 U/mg; Nacalai
Tesque) and 2 mg/ml �-D-glucose (Nacalai Tesque) for further signal
enhancement of GFP immunoreactivity (Furuta et al., 2009; Kuramoto
et al., 2009), (10) incubated for 1 h with ABC (1:10,000) again, (11)

incubated for 30 – 60 min with 0.02% DAB and 0.001% (v/v) H2O2 in 50
mM Tris-HCl, pH 7.6 for visualization of retrogradely labeled neurons,
and (12) mounted on gelatin-coated glass slides, dehydrated with an
ethanol series, cleared in xylene, and coverslipped with organic mount-
ing medium MX (Matsunami).

After the step (4), the section containing the cell body of the impaled
neuron was incubated with 5 �g/ml Alexa Fluor 488-conjugated anti-

Figure 1. Retrograde labeling of corticothalamic neurons with adenoviral vector. A, Construction of the adenoviral vector expressing somatodendritic membrane-targeted GFP. ITR, Inverted
terminal repeat; �, packaging signal; E1–5, early regions 1–5; L1–5, late regions 1–5; pA, poly-adenylation signal. B, C, L6a neurons of the barrel cortex were retrogradely immunolabeled 1 week
after injection of adenoviral vector expressing somatodendritic membrane-targeted GFP into the ventrobasal thalamic nucleus. GFP immunoreactivity was visualized either with Alexa Fluor 488 (B)
or with DAB (C). NeuN immunoreactivity was also visualized with Alexa Fluor 647 (B�,B�) to clarify the cortical cytoarchitecture. D–H, At higher magnification, immunolabeling of GFP successfully
visualized cell bodies (D), basal dendritic branches (E, F ), apical dendritic shafts (G), and apical dendritic tufts (H ) of CTNs. Note that no obvious axonal fibers were found. (I,I�) Dense neuronal and
glial processes were found in and around the injection site (I ) and cells in reticular thalamic nucleus (Rt) were also labeled (I,I�). The photograph in I� was taken 300 �m anterior to that in I. Po,
Posterior thalamic nuclei; VPM, ventral posteromedial thalamic nucleus; VPL, ventral posterolateral thalamic nucleus; Rt, thalamic reticular nucleus. Scale bars: (in B�) B–B�, 500 �m; C, 500 �m;
D, 10 �m; (in H ), E–H, 5 �m; (in I�) I, I�, 500 �m.
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rabbit IgG goat antibody (Invitrogen) and 1 �g/ml 4�,6-diamidino-2-
phenylindole (DAPI; Invitrogen) for 1 h. This section was observed again
under the epifluorescence microscope with filter sets for DAPI (359 –371
nm excitation and 397– 490 nm emission), Alexa Fluor 488 (450 – 490 nm
excitation and 515–565 nm emission), and Alexa Fluor 594 (530 –585 nm
excitation and �615 nm emission) to determine which layer the impaled
neuron was located at, whether it expressed GFP or not, and how dense
the retrograde labeling was in this slice. The section was then incubated
for 1 h with 0.5 �g/ml anti-GFP rabbit antibody again, to recover GFP
immunoreactivity that had been reduced by the incubation with the
fluorescent-conjugated secondary antibody. After these additional steps,
the section returned to the step (5).

Data analysis
Analyses of neuronal processes and bouton distribution. Slices collected for
analyses met all the following criteria: (1) CTNs in the posteromedial
barrel subfield were sufficiently labeled (�50% of L6a neurons), (2)
stained axons of the intracellularly labeled cell did not fade, and (3) slices
did not show clear damage, except at the slice cut surface. Because �60%
of L6a neurons were labeled after massive injections of retrograde tracers
into the thalamus (see Results), the condition (1) ensures that �80% of
L6 CTNs were labeled in the analyzed region (50/60 � 0.83). Five neu-
rons from each of L2/3, L4, L5b, L6 GFP-positive (L6�), and L6 GFP-
negative (L6�) groups and three neurons from L5a group were analyzed
(see also Results). First, neuronal processes of an intracellularly stained
neuron projected onto the frontal plane were reconstructed using the
camera lucida method with a light microscope and an attached drawing
tube. After 2D-reconstruction of neuronal processes, we plotted the cell
body and boutons of intracellularly labeled neurons by using Neurolu-
cida (MBF Bioscience) installed on a microscope (VANOX; Olympus)
with an oil-immersion �100 objective lens (PLAN Apo, numerical ap-
erture 1.35) and 30 inch monitor (resultant magnification was �5000).
When axon varicosities were �1.5-fold thicker than intervaricose fibers,
they were presumed to be presynaptic axon boutons in the present study.
During plotting, we carefully examined whether or not each bouton was
apposed to a CTN dendrite, while moving the plane of focus up and
down.

The data of three-dimensional distribution of axon boutons were an-
alyzed using IgorPro 5.05 (WaveMetrics). Because z-axis, which is per-
pendicular to the section surface, was shrunken through the poststaining
procedure (i.e. mounting, dehydration, and clearing), we corrected the
z-axis depths by dividing them with the shrinkage factors (� [the actual
thickness of mounted sections in �m]/[25 �m]). We measured horizon-
tal distance (x) between each axon bouton and the cell body of its origin.
Horizontal distance was measured after projection onto the L4/5 bound-
ary plane, compensating for the curvature of the rat cerebral cortex.
Relative frequency histograms for x of apposed boutons were fitted with
a mixture of gamma distributions, x�exp(�x/�). Fitting was performed
by maximum likelihood estimation and the model (i.e., how many

gamma distributions were mixed) was selected by the Bayesian informa-
tion criterion (Schwarz, 1978). All histograms were best fitted with a
single gamma distribution, except in the case of three L4 neurons and
three L5b neurons. The vertical location of boutons was transformed in a
linear normalized scale in which the pia mater was set to 0.0 and the white
matter border was to 1.0.

For analysis of the distance between descending axons and dendritic
bundles, we plotted descending axons of L2/3 and L4 neurons as well as
dendritic bundles around those descending axons with Neurolucida. The
three-dimensional Euclidian distance between the center of the nearest
dendritic bundle and the axon was measured and the minimal value was
used as the distance to the nearest dendritic bundle center.

Morphological estimation of local excitatory inputs to L6 CTNs. We
counted apposed boutons located in the hollow cylindrical interval be-
tween horizontal distances x and x � 1 (�m) from the cell body of a single
pyramidal/spiny neuron and divided this number by the area of this
cylindrical interval, �{(x � 1) 2 � x 2}. The obtained density was defined
as a(x, y), where y is the normalized vertical location at which the pyra-
midal/spiny neuron’s cell body was located. The density a(x, y) can also
be seen as a density of apposed boutons originating from a pyramidal/
spiny neuron at (x, y), where horizontal distance x is measured from CTN
dendrites receiving these apposed boutons (see also Results for underly-
ing suppositions). Multiplying a(x, y) by n( y), the density of pyramidal/
spiny neurons at y, we obtained i(x, y), which indicates how many
numbers of apposed boutons on CTN dendrites in a slender square prism
(1 � 1 �m 2 base; located at x � 0) are originating from neurons within
a small cube at (x, y) as shown in Figure 8 B. To compensate the effect of
slice cutting, when x is �250 (�m), we corrected a(x, y) by dividing it

with the correction factor, 2

sin�1�250

x �
x

. n( y) was determined by stereo-

logical counting (Howard and Reed, 1998) of vesicular glutamate trans-
porter 1-positive cells in each layer that were labeled by in situ
hybridization (Nakamura et al., 2007) with the counterstain of neuronal
cell bodies. n( y) was 52,340 	 4831/mm 3 for 0.06 
 y 
 0.23 (L2/3),
78,364 	 2680 for 0.23 
 y 
 0.38 (L4), 26,706 	 6198 for 0.38 
 y 

0.45 (L5a), 37,350 	 2145 for 0.45 
 y 
 0.62 (L5b), and 51,755 	 5840
for 0.62 
 y 
 0.91 (L6a) (mean 	 SD, N � 3). We discretized y into 15
segments and allocated a(x, y) obtained from 25 neurons. For segments
with two or more neurons, a(x, y) was obtained by averaging the sets of
a(x, y) of contained neurons.

IL[x1, x2] represents how many apposed boutons on CTN dendrites
in a slender prism (1 � 1 �m 2 base) are originating from a group of
pyramidal/spiny neurons (L � L2/3, L4, L5a, L5b, L6�, or L6�)
located in the hollow cylinder whose internal and external radii are x1

and x2, respectively (see Fig. 9A). IL[x1, x2] could be obtained as IL[x1,
x2] � �Vi(x, y)dv, where V was the volume of the hollow cylinder

Table 1. Summary of antibodies/reagents/filters used for the detection of retrograde tracers

GFP Cholera toxin B subunit Fluorogold NeuN

Primary antibody
Host Rabbit Goat Rabbit Mouse
Concentration 1 �g/ml 1:500 1:500 2 �g/ml
Source (Nakamura et al., 2008; Tamamaki et al., 2000) List Biology Millipore Millipore

Secondary antibody
Target Rabbit IgG Goat IgG Rabbit IgG Mouse IgG Mouse IgG
Host Goat Donkey Goat Goat Donkey
Label Biotin Cy3 Alexa Fluor 546 Alexa Fluor 647 Cy5
Concentration 10 �g/ml 10 �g/ml 5 �g/ml 10 �g/ml 10 �g/ml
Source Vector Jackson ImmunoResearch Laboratories Invitrogen Invitrogen Jackson ImmunoResearch Laboratories

Other reagents Streptavidin
Label Alexa Fluor 488
Concentration 5 �g/ml
Source Invitrogen

Excitation beam 488 nm 543 543 633
Emission filter set 505–530 nm 560 – 615 nm 560 – 615 nm �650 nm
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between distances x1 and x2 in each layer or sublayer. However, to
assess the variability of the data, we first integrated a(x, y)�n( y) ob-
tained from single pyramidal/spiny neurons and then averaged within
each group. To obtain n( y) for L6� and L6� neurons, we estimated
that 69% of excitatory neurons in L6a were corticothalamic neurons

because 59% of L6a neurons were retrogradely labeled following a
massive injection of retrograde tracer, and because 85% of neurons
were positive for vesicular glutamate transporter 1 in L6a. On the
other hand, 31% of L6a excitatory neurons were considered as corti-
cocortical neurons (see also Results).

Figure 2. Combining intracellular staining with retrograde labeling of CTNs. A–E, Double immunoperoxidase staining of an intracellularly labeled neuron in L2/3 (A), L4 (B), L5 (C), or L6 (D, E)
(black, nickel-enhanced DAB) and retrogradely labeled CTNs (brown, DAB). Intracellularly labeled L6 neurons were also visualized with fluorescence (red, biocytin; green, GFP; blue, DAPI) and
classified as GFP-positive CTNs (L6�; D, D�), or GFP-negative neurons (L6�; E, E�). Scale bars: (in E) A–E, 100 �m; (in E�) E�, D�, 10 �m.

Table 2. Morphological properties of sampled cortical pyramidal neurons

Pyramidal neuron group

L2/3 (n � 5) L4 (n � 5) L5a (n � 3) L5b (n � 5) L6� (n � 5) L6� (n � 5)

Soma area (�m 2) 98.7 	 8.0 84.0 	 9.6 190.0 	 84.1*,†† 243.8 	 70.8**,††† 95.5 	 23.4 ‡‡,§§§ 100.5 	 7.7 ‡,§§§

Horizontal span of apical dendrite (�m)a 416.6 	 64.2 138.5 	 49.1*** 111.4 	 30.0*** 432.4 	 98.5 †††,‡‡‡ 172.8 	 37.2***,§§§ 206.2 	 83.7***,§§§

Height of apical shaft (�m)a 305.0 	 70.8 362.1 	 121.3 748.0 	 74.4***,††† 944.8 	 91.4***,†††,‡ 708.8 	 81.9***,†††,§§§ 408.7 	 84.8 ‡‡‡,§§§,¶¶¶

Horizontal span of basal dendrite (�m)a 274.8 	 42.6 227.7 	 19.7 361.2 	 27.7 †† 420.6 	 85.0***,††† 214.0 	 34.5 ‡‡‡,§§§ 314.7 	 44.8 †,§§,¶¶

Total length of axon collaterals (mm)b 26.92 	 7.39 25.07 	 11.45 29.5 	 6.3 12.5 	 2.92*,‡ 9.19 	 3.38**,†,‡‡ 26.11 	 11.24 §,¶¶

Total number of boutons (A)c 5918 	 2282 5993 	 3243 5408 	 1636 1695 	 503**,††,‡ 1872 	 1012**,††,‡ 4675 	 2704 §

Bouton density (/mm) 215.5 	 34.5 231.3 	 35.9 181.9 	 36.8 135.0 	 22.5**,††† 195.4 	 36.0 § 168.7 	 37.6 †

Number of boutons apposed to CTN dendrites(B) 167 	 115 327 	 164 529 	 148 374 	 142 612 	 223* 953 	 500***,††,§§

B/A (%) 2.97 	 1.88 5.89 	 2.50 10.17 	 2.74 21.54 	 2.59***,†† 35.41 	 11.76***,†††,‡‡‡,§ 24.75 	 11.22***,†††,‡,¶

*,†,‡,§,¶Significant differences (*,†,‡,§,¶p 
 0.05; **,††,‡‡,§§,¶¶p 
 0.01; ***,†††,‡‡‡,§§§,¶¶¶p 
 0.001 by Peritz’s F test) from the value of L2/3, L4, L5a, L5b, or L6� neurons, respectively.
a The horizontal span and height of dendrites were measured in the frontal plane to which all the dendrites were projected.
bTotal length of axon collaterals was estimated by multiplying the total length of axon collaterals projected onto the frontal plane by �/2.
cTotal number of boutons in L4 – 6 were counted and those in L1–3 were estimated from length of axon collaterals and bouton density in L1–3 (L2/3 neurons, 224.2 	 39.0 /mm; L4 neurons, 269.6 	 38.3 /mm; L5a neurons, 229.8 	 52.7
/mm; L5b neurons, 200.5 	 37.6 /mm).

Table 3. Electrophysiological properties of sampled cortical pyramidal neurons

Pyramidal neuron group

L2/3 (n � 5) L4 (n � 5) L5a (n � 3) L5b (n � 5) L6� (n � 5) L6� (n � 5)

Resting membrane potential (mV) �73.0 	 2.6 �68.0 	 7.4 �61.5 	 7.6 �64.8 	 8.7 �68.4 	 3.7 �66.2 	 7.0
Membrane time constant (ms) 11.5 	 2.6 7.5 	 4.5 11.5 	 4.6 11.7 	 5.1 9.8 	 3.0 7.9 	 2.6
Input resistance (M�) 51.1 	 27.5 68.3 	 28.8 65.3 	 34.4 48.7 	 29.5 62.2 	 18.1 48.1 	 11.8
Action potential (AP) threshold (mV) �47.6 	 7.9 �41.3 	 15.6 �40.2 	 7.2 �50.6 	 10.5 �41.4 	 5.1 �43.1 	 7.1
AP height (mV)a 96.2 	 8.0 103.8 	 10.2 85.9 	 10.0 97.9 	 5.7 89.4 	 6.4 94.0 	 16.8
AP half width (ms) 0.85 	 0.24 0.86 	 0.39 0.88 	 0.18 0.72 	 0.29 0.77 	 0.16 0.71 	 0.13
Fast afterpotential (mV)b 2.7 	 2.8*,‡‡‡ �1.5 	 2.0 ††,‡ �3.9 	 3.0 ††† 4.9 	 2.6 ‡‡‡ �6.1 	 3.3 ††† �1.1 	 3.0 †,‡

Slow afterpotential (mV)b �1.2 	 1.3 �1.6 	 1.0 �4.9 	 0.7 �2.5 	 4.4 �2.4 	 3.3 �3.3 	 1.9

*,†,‡Significant differences (*,†,‡p 
 0.05; ††p 
 0.01; †††,‡‡‡p 
 0.001 by Peritz’s F test) from the value of L5a, L5b, or L6� neurons, respectively.
aAP height was measured from resting membrane potential.
bFast and slow afterpotential was measured from baseline prior to action potential evoked by a short (
 5 ms) depolarizing pulse, at 3.3 ms or 29 ms from action potential onset, respectively. Pulse response without action potential to the
same depolarizing pulse was recorded in another trace and subtracted. Our previous study showed that one type of L6 pyramidal neurons has a peak of fast afterhyperpolarization (AHP) at 3.3 ms on average, and that another type of L6
pyramidal neurons lacks fast AHP and has a peak of medium-range AHP at 29 ms on average (Kaneko et al., 1995).
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Statistics. When we compared all pairs between
the six pyramidal/spiny neuron groups (15 com-
parisons) we used Peritz’s F test (Harper, 1984), a
multiple-comparison test (Tables 2, 3; see Figs. 6,
9). For pairwise comparison in each neuron
group, we used two-sided t test with Bonferroni
correction (see Fig. 7). Differences were accepted
as significant if the family-wise type I error prob-
ability was 
0.05. Each statistic and p value was
calculated with Prism 5.0 or programs written in
Igor 5.05.

Results
Retrograde labeling of CTNs with
adenoviral vector
To visualize CTN dendrites, we developed
an adenoviral vector expressing myrGFP-
LDLRct (Kameda et al., 2008), a somato-
dendritic membrane-targeted GFP, under
the control of an enhanced human synap-
sin I promoter (Hioki et al., 2007) (Fig.
1A). After the adenoviral vector was in-
jected with the vehicle containing 0.6 M

NaCl (Tomioka and Rockland, 2006) into
the ventrobasal thalamic complex of rats,
a band of L6 neurons in the S1 cortex was
retrogradely labeled (Fig. 1B,C). As re-
ported previously (Killackey and Sher-
man, 2003), labeled cells were mostly
found in L6a, the upper part of L6 sepa-
rated from L6b by cell-sparse fibrous zone
(Fig. 1B) (Valverde et al., 1989). L5 corti-
cothalamic neurons mainly projecting to
posterior thalamic nuclei (Bourassa et al.,
1995; Killackey and Sherman, 2003) were
rarely labeled (
1% in all GFP-positive
neurons) and were negligible in subse-
quent analyses when the injection was
confined to the ventrobasal complex.
With this retrograde labeling method, not
only the cell bodies and dendritic shafts of
CTNs but the fine dendritic structures
such as spines were visualized (Fig. 1D–
H). In contrast, almost no axon collaterals
of retrogradely labeled neurons or an-
terogradely labeled thalamocortical ax-
ons were observed in the S1 cortex.
Moreover, �60% of L6a neurons (i.e., 70%
of L6a excitatory neurons) were labeled fol-
lowing vector injection �3 � 106 GTU.
Since this saturation level (59.0 	 3.9%;
mean 	 SD, N � 8) was similar to the
labeling efficiency of other potent retro-
grade tracers such as cholera toxin B subunit and Fluorogold
(58.6 	 11.0%, N � 4 and 57.6 	 8.9%, N � 3; p � 0.96 by
one-way ANOVA), almost all CTNs were considered to be visu-
alized at least in the center of labeling. The labeling efficiency of
adenovirus vector (1 � 10 7 GTU) did not significantly differ
between postinjection survival times of 4, 8, and 16 d (56.1 	
2.6%, 58.1 	 5.6%, and 59.8 	 1.1%, N � 3 each; p � 0.50 by
one-way ANOVA). Furthermore, thalamic neurons in and
around the injection site in the ventrobasal thalamic complex
were labeled, and some neurons in the thalamic reticular nucleus
was labeled retrogradely (Fig. 1 I).

Intracellular labeling of pyramidal/spiny neurons and their
local connections to CTNs
In 500-�m-thick cortical slices containing retrogradely labeled
CTNs, 11, 9, 29, and 41 pyramidal/spiny neurons were sampled in
L2/3, L4, L5, and L6, respectively, for intracellular recording/
staining in the posteromedial barrel subfield of the rat S1 cortex.
All the stained neurons were pyramidal neurons, except for four
spiny stellate cells and one star pyramid of Lorente de Nó (1938)
sampled in L4. We collected five pyramidal/spiny neurons from
L2/3 and L4 and eight from L5 (Fig. 2A–C) that met the criteria
for sufficient retrograde labeling and intracellular staining (see

Figure 3. Two-dimensional reconstruction of intracellularly labeled neurons. Dendrites and axons originating from an L2/3, L4,
L5a, L5b, L6�, or L6� neuron are shown with red and blue lines, respectively. Thick blue lines denote the thick straight axons.
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also Materials and Methods). We also accumulated five each of
GFP-positive and GFP-negative pyramidal neurons located in L6
(Fig. 2D,E). We further divided eight L5 neurons into three L5a
neurons and five L5b neurons according to their cell body loca-
tions (Schubert et al., 2006). As a result, each of the L2/3, L5b, L6
GFP-positive (L6�), or L6 GFP-negative (L6�) pyramidal neu-
ron groups examined in the present study was thus comprised of
five pyramidal neurons and the L5a neuron group contained
three pyramidal neurons. The L4 neuron group involved two
pyramidal neurons, two spiny stellate cells, and one star pyramid.
Finally, all the 28 neurons were located in barrel columns, but not
in septal columns of the posteromedial barrel subfield.

L6� pyramidal neurons were different from thalamus-
projecting L6� neurons in several morphological and electro-
physiological properties, and may represent a type of pyramidal
neuron different from the CTN. All L6� neurons showed tonic
firing responses to a strong current injection, whereas four of the
five L6� neurons displayed phasic firing responses. The fast hy-
perpolarizing afterpotentials of L6� neurons were relatively deep
and significantly different from those of L6� neurons (Table 3).
Morphologically, L6� neurons had narrow basal dendritic
arbors and tufted apical dendrites that extended to L4, whereas
L6� neurons had wide basal dendritic arbors and short apical
dendrites that ended without entering L4. The axon collaterals of
L6� neurons took a direction toward the pia mater and entered
L4 without spreading widely, while those of L6� neurons mainly
spread horizontally through L5/6 (Table 2; Fig. 3). Because these
electrophysiological and morphological properties of L6� neu-
rons were similar to those of L6 corticocortical neurons identified
by single axon tracing (Zhang and Deschênes, 1997) or by the lack
of retrograde labeling after massive injection of retrograde tracer

into the thalamus (Brumberg et al., 2003; Mercer et al., 2005;
Kumar and Ohana, 2008), at least a subset of L6� neurons were
considered corticocortical neurons.

The local axon collaterals of the reconstructed pyramidal/
spiny neurons had many boutons, which were putative presyn-
aptic structures. Some axon boutons of the pyramidal/spiny
neurons were closely apposed to the dendrites of retrogradely
labeled CTNs (hereafter called “apposed boutons”; Fig. 4A,B).
The largest average number of apposed boutons per presynaptic
neuron was observed for L6� neurons, followed by L6�, L5a,
L5b, L4, and L2/3 neurons (Table 2), indicating that on average
single L6� neurons exert a stronger influence on CTNs than
single neurons of any other pyramidal/spiny neuron group.

In a different set of electron-microscopic studies, we ran-
domly chose 35 apposed boutons to examine whether each of
them actually made synaptic contact with an immunolabeled
postsynaptic structure. All the apposed boutons examined were
electron-microscopically confirmed as presynaptic structures. Of
them, 27 were in synaptic contact against GFP-immunopositive
postsynaptic profile (Figs. 4C–F), the rate (77%; 27/35) being
consistent with previous reports (Markram et al., 1997; Kaneko et
al., 2000; Cho et al., 2004b). The other eight apposed boutons
were proved to be presynaptic structures with GFP-negative post-
synaptic targets.

Horizontal distribution of local connections onto CTNs
To clarify the horizontal distribution of local connections in ad-
dition to the laminar distribution, we digitized the positions of
apposed boutons in axons originating from intracellularly la-
beled pyramidal/spiny neurons in a three-dimensional space
(Fig. 5). The distribution of apposed boutons in the horizontal

Figure 4. Analyses of axon boutons and synapses. A, B, Axonal processes of intracellularly labeled pyramidal neurons and dendritic processes are shown in black (nickel-enhanced DAB) and brown
(DAB), respectively. Some axon boutons are closely apposed to CTN dendrites as indicated by single arrowheads. Other boutons that presumably have other targets than CTNs are indicated by double
arrowheads. Boutons are indicated only when they are in the plane of focus. C–F, Electron microscopic observation of randomly selected apposed boutons revealed that 77% of the appositions
formed synapses; arrowheads in C–F indicate asymmetric synapses made between nickel-enhanced DAB-labeled boutons (Btn) and DAB-labeled dendritic spines (Sp in C–E) or dendritic shafts (Den
in F ). Examples of DAB deposits are indicated by arrows. Double arrowheads in C� and D indicate spine necks that connect a spine head (Sp) with a dendritic shaft (Den). Samples for electron
microscopy were obtained by the same method as described by Cho et al. (2004b), except that we used the anti-GFP antibody (2–5 �g/ml) as the primary antibody. Scale bars: (in B) A, B, 2 �m;
(in C) C, C�, 5 �m; C�, 500 nm; (in F ), D–F, 500 nm.
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plane perpendicular to the cortical colum-
nar structures differed between the pyrami-
dal/spiny neuron groups; for example, in
Figure 6, A1 and A2, L6� and L4 neurons
displayed much narrower distributions
than L5 neurons shown in Figure 6A3.

The “horizontal distance” between
each apposed bouton and the cell body of
its origin was normalized by measuring,
after projection of the bouton and the cell
body onto the L4/5 boundary plane to
compensate for the effect of cortical cur-
vature on the horizontal distance (Fig.
6B). In Figure 6C, the horizontal distribu-
tion of the apposed boutons arising from
each neuron was summarized in a relative
frequency histogram showing a single peak
(blue lines and histograms are sample distri-
butions, and black lines are fitting curves for
determining peak positions; see Materials
and Methods). The apposed boutons of L4
and L6� neurons showed peak positions
closer to their cell bodies and narrower half
widths than those of the other neuron
groups. Differences in the peak distance and
half width between L4 neuron group and
L2/3, L5b, or L6� group, or those between
L6� group and L2/3 or L6� group showed
statistical significance (Fig. 6D,E). These re-
sults suggest that L4 and L6� neurons are
more likely to project to nearby CTNs than
are neurons of the other groups. In contrast,
L6� neurons exhibited the most distant
peak position and the broadest half width
(Fig. 6D,E). Consistent with these findings,
the averaged cumulative distributions of the
L4 and L6� neuron groups increased rap-
idly, whereas that of the L6� neuron group
rose slowly as x increased (Fig. 6F).

Connections to apical and basal
dendrites of CTNs
Since apical and basal dendrites may
separately integrate their inputs and dis-
tinctly affect the output of a cortical pyra-
midal neuron (Mel, 2008; Sjöström et al.,
2008; Ledergerber and Larkum, 2010), we further tried to exam-
ine the difference between the horizontal distributions of bou-
tons targeting the apical dendrites of CTNs and those targeting
the basal dendrites. We first examined the histograms of fre-
quency and relative frequency against the vertical location of ap-
posed boutons (Fig. 7A). L2/3, L4, and L5a neurons allocated the
most of their apposed boutons within L4/5, while L6� and L6�
neurons distributed the majority of their apposed boutons in L6.
L5b neurons dispersed their apposed boutons rather evenly in
L4/5 or in L6. For further analyses, we compared the horizontal
distributions of apposed boutons in L4/5 and those in L6 for each
pyramidal/spiny neuron group, as the majority of apical or basal
dendrites of L6 CTNs spread in L4/5 or L6, respectively (Fig. 1B).
In Figure 7B, the histograms show that L6 apposed boutons orig-
inating from a representative L4 spiny stellate cell were concen-
trated near the cell body (green), whereas its L4/5 boutons had
the peak of the distribution at �200 �m from the cell body (or-

ange). A similar distribution was observed in all subtypes of L4
pyramidal/spiny neurons and thus the average cumulative distri-
bution of L6 apposed boutons arising from L4 pyramidal/spiny
neurons was saturated at a clearly smaller x than that of L4/5
apposed boutons (Figs. 7C). Significant differences between the
peak positions of L4/5 and L6 apposed boutons were only found
in the L4 neuron group (p � 0.0008 by t tests with Bonferroni
correction, Fig. 7D), but not in the other neuron groups. This
characteristic distribution of apposed boutons originating from
L4 neurons was mainly ascribed to their axonal arborization. As
shown in Figure 7E, the axon collaterals of L4 neurons were wide-
spread in L2–5 but highly restricted in L6.

Morphological estimation of local excitatory inputs to
L6 CTNs
We next reexamined the present data so that we could estimate
inputs from a mass of neurons to CTN dendrites and obtain a

Figure 5. Three-dimensional distribution of axon boutons. The axon boutons of an L6� pyramidal neuron were plotted
three-dimensionally, and shown in three different views.

18230 • J. Neurosci., December 14, 2011 • 31(50):18223–18236 Tanaka et al. • Local Excitatory Inputs to Corticothalamic Neurons



morphological input map that is comparable to the maps ob-
served in previous photostimulation studies on L6 pyramidal
neurons (Briggs and Callaway, 2001; Zarrinpar and Callaway,
2006; Llano and Sherman, 2009; Lam and Sherman, 2010; Hooks
et al., 2011). For this reexamination, we made the following three

suppositions: (1) The density of CTN dendrites is uniform at a
given cortical depth, (2) the distribution and density of cell bod-
ies of pyramidal/spiny neurons are horizontally constant at a
given cortical depth, and (3) as a group, pyramidal/spiny neurons
at a given cortical depth distribute their apposed boutons to

Figure 6. Horizontal distribution of apposed boutons. A1–3, The density map of apposed boutons in a horizontal plane (Fig. 5, the plane corresponding to “Top view”) is shown after being
smoothed by 2D convolution with a Gaussian kernel (� � 4 �m; a comparable value with the interbouton interval) and normalized (bottom of A3). B, We plotted the boundary of L4 and L5 (L4/5
boundary) and the directions of apical dendrites of corticothalamic neurons every 50 �m (lines PmWm) and determined Om as the intersection of lines PmWm and Pm�1Wm�1. These intersections
were always located in the white matter because of the convexity of the rat cerebral cortex. The locations of the cell body and boutons were then projected onto L4/5 boundary; for examples, S was
projected along line SO2 to S’ and B along line BO1 to B’. Horizontal distance x between S and B is to be measured as the distance between S’ and B’ along the L4/5 boundary (red curve). Because the
rat barrel cortex along the rostrocaudal axis is much flatter, no correction for rostrocaudal direction was performed. C1– 6, Relative frequency histograms (blue histogram, bin size � 30 �m) and
cumulative fractions (insets, blue lines, bin size � 1 �m) for the horizontal distance of apposed boutons originating from a representative cell in each layer. Each distribution was fitted with a
mixture of gamma distributions (black lines). Most distributions were best fitted with a single gamma distribution in terms of the Bayesian information criterion. D, E), The peak position and the half
width of the curves are compared between the neuron groups. F, The cumulative fraction averaged within each neuron group (bin size � 1 �m). Scale bar: (in A1) A1–3, 100 �m. Each bar and error
bar in D, E represents the mean and SD, respectively. *p 
 0.05; **p 
 0.01; ***p 
 0.001 by Peritz’s F test.
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CTNs isotropically but as a function of horizontal distance x.
From the original experimental data (Fig. 6), we obtained the
number of apposed boutons arising from a pyramidal/spiny
neuron as a function of horizontal distance x (an average pyra-
midal/spiny neuron shown as the black neuron in Fig. 8A, top).
Within a neuron group, when a neuron on average sends a certain
amount of axon boutons onto CTN dendrites in a given volume,
depicted as the green rectangular prism in Figure 8A (middle),
these CTN dendrites are expected to receive the same amount of
axon boutons from each neuron located at the same distance
from them in all directions (Fig. 8 A, bottom) according to the
above three suppositions. Therefore, as shown in Figure 8 B,
we cut a slice to see a two-dimensional morphological input
map; in other words, we obtained i(x, y), which indicates the
number of apposed boutons on CTN dendrites in a slender
green square prism (1 � 1 �m 2 base) by neurons within a cube
located at horizontal distance x and normalized vertical loca-
tion y.

The two-dimensional plot of i(x, y) in Figure 8C revealed that
the highest i(x, y) was observed at L4 and the second highest was
found at L6a. The ranges of x with high i(x, y) showing statistical
significance were x � 40 �m in L4 and x � 60 �m in L6a (Fig. 8C,
black lines). This result suggests that L4 and L6a pyramidal/spiny

neurons are important local sources of inputs to CTNs and that at
least a portion of L4 neurons have a strong impact on the CTNs
located in a narrow region underneath these L4 neurons.

Since apposed boutons of L4 neurons targeting the basal den-
drites of CTNs were distributed in a very narrow region just
below these L4 neurons as shown in Figure 7, the focused L4-to-
CTN connections were most likely to be formed between de-
scending axon fibers of L4 neurons and the basal dendrites of
CTNs. To evaluate the contribution of these boutons, we recal-
culated, or simulated, i(x, y) without basal dendrite-targeting L6
boutons originating from L4 neurons. The plot of the simulated
i(x, y) in Figure 8D showed that inputs from L4 were greatly
decreased compared with those found in Figure 8C, and that the
domain associated with statistically significant connections was
only found in L6a (Fig. 8D, black line). This result suggests that
the strong, focused L4-to-CTN connections are mainly due to the
basal dendrite-targeting boutons.

We further calculated inputs from a cylindrical mass of neu-
rons and obtained IL[x1, x2] that represents the number of ap-
posed boutons on CTN dendrites in a slender prism (1 � 1 �m 2

base) by the neurons that are classified into each pyramidal/spiny
neuron group (L � L2/3, L4, L5a, L5b, L6�, or L6�) and located
in the hollow cylinder whose internal and external radii are x1 and

Figure 7. Horizontal distribution of apposed boutons onto the apical and basal dendrites of CTNs. A, Frequency (A1) and relative frequency (A2) histograms of apposed boutons against the
vertical axis of the cerebral cortex. The vertical locations of boutons are expressed in a linear normalized scale in which the pia mater is set to 0.0 (Pia) and the white matter border is to 1.0 (WM).
Dashed lines show the boundaries between L2/3 and L4 or between L5 and L6. B, Frequency (B1) and relative frequency (B2) histograms of apposed boutons originating from a representative L4
neuron (bin size � 30 �m). We divided apposed boutons into boutons in L4/5 (orange) and those in L6 (green). The main targets of L4/5 and L6 apposed boutons were the apical and basal dendrites
of CTNs, respectively. C, The averaged cumulative fractions of five L4 neurons (bin size � 1 �m). D, The peak positions of the distributions of L4/5 (orange) and L6 apposed boutons (green) in each
neuron group. The peaks were determined by fitting a mixture of gamma distributions as described in Figure 6, and all distributions were best fitted with a single gamma distribution by the Bayesian
information criterion. Because all the L2/3 neurons and two of three L5a neurons have 
5% of their apposed boutons in L6, we did not perform a similar analysis for L2/3 and L5a neuron groups.
Only L4 neurons showed a significant difference between peak positions of L4/5 and L6 apposed boutons. Each bar and error bar represents the mean and SD (N � 5 neurons per group), respectively.
n.s., Not significant. ***p 
 0.001 by two-tailed t test with Bonferroni correction. E, Representative reconstructions of L4 spiny stellate cells (left) and star pyramids (right). Note that the axons in
L6 go straight down and have only a few branches in L6.
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x2, respectively (Fig. 9A). Considering the size of the barrel in the
posteromedial barrel subfield (
200 �m in radius) (Welker and
Woolsey, 1974; Fox, 2008) and the maximum horizontal distance
found in our samples (1492 �m), we compared I[0, 200] and
I[200, 1500] between the five pyramidal/spiny neuron groups.
IL6�[0, 200] was higher than the IL[0, 200] of any other neuron
group, while IL6�[200, 1500] displayed larger value than any
other IL[200, 1500]. This suggests that CTNs themselves are the
most important nearby/columnar source of connections,
whereas L6 corticocortical neurons are the most crucial distant/
extracolumnar source.

Correlative location of L4 axons and CTN dendritic bundles
The horizontally focused L4-to-CTN connection (Fig. 8) may be
organized with certain vertical structures in the cerebral cortex,
such as apical dendritic bundles of CTNs. The bundles typically
consisted of 2–5 apical dendrites and their interbundle distance
was 56 	 14 �m (mean 	 SD, N � 7 slices). IL4[0, 28] and IL6�[0,
28] were significantly higher than those of the other neuron
groups (Fig. 9D). This result confirms the importance of L4 neu-
rons as a source of inputs to CTNs within a narrow horizontal
range. We further examined the relationship of descending thick
axons of L4 neurons with CTN dendritic bundles, compared with
those of L2/3 neurons. The thick axons of L4 neurons approached

CTN dendritic bundles in the middle of L5 and descended in
close association with CTN bundles (Fig. 9F), whereas those of
L2/3 neurons descended straight to the white matter and did not
come into contact with CTN bundles (Fig. 9E). Consistently, the
thick axons of L4 neurons descended at a closer distance (�7
�m) to the center of the nearest dendritic bundle than axons
originating from L2/3 neurons (p � 0.045 by two-tailed t test;
Fig. 9G). As the diameter of CTN dendritic bundles was �10 �m,
the thick axons of L4 neurons ran alongside the bundles (Fig. 9F).

Discussion
Here, we estimated local excitatory inputs to CTNs (Figs. 8, 9) on
the basis of the distribution of apposed boutons of cortical pyra-
midal/spiny neurons to CTNs (Table 2; Fig. 6). L6 CTNs them-
selves and L4 neurons were the important nearby sources of
connections to CTNs, whereas L6 corticocortical neurons were
the main distant source within the local (
1500 �m) connec-
tions. We further found that CTNs received strong and focused
inputs from L4 neurons just above them and that this focused
L4-to-CTN connectivity was formed between descending axon
fibers of L4 neurons and the basal dendrites of CTNs. (Figs. 7,
8D). These results illustrate which excitatory neurons of the S1
cortical column send information through L6 CTNs to the tha-
lamic compartment corresponding to the column.

Figure 8. Estimation of input from pyramidal/spiny neurons in a cube to CTN dendrites. A, Reexamination of the data under the three suppositions described in the text. An average neuron in each
pyramidal/spiny neuron group distributed its apposed boutons isotropically to CTN dendrites located at a horizontal distance x (green cylinder, top). The red cylinder (middle) represents another
hollow cylinder filled with pyramidal/spiny neurons around a green prism. CTN dendrites in the central prism would then receive the same amount of projections from each average neuron located
at the same distance from these dendrites in all directions (bottom). B, As shown on top, i(x, y) represents the number of apposed boutons projected to CTN dendrites in the prism by neurons in a
cube located at (x, y). The scheme of two-dimensional input map is shown on bottom. C, i(x, y) is displayed in the x–y plane (smoothed with Gaussian kernel; � � 10 �m for x). Color code shows
the magnitude of i(x, y) in normalized value (maximum � 1), and regions encircled by black borders show significantly high i(x, y) (� mean � 2SD; calculated within the range of x � 0 –200 �m).
D, Simulated i(x, y) without basal dendrite-targeting L6 boutons originating from L4 neurons. Magnitude of i(x, y) in D is normalized with the maximum value in C. Note that the signal in L4 is
remarkably reduced.
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Strong local excitatory inputs to L6
CTNs from their own layer were found
in previous studies using laser-scanning
photostimulation by glutamate uncaging
(Zarrinpar and Callaway, 2006; Llano and
Sherman, 2009; Lam and Sherman, 2010;
Hooks et al., 2011). Because photostimu-
lation with a resolution of 50 –75 �m
probably would activate several CTNs
simultaneously (Hooks et al., 2011), large
EPSPs might be evoked in the recorded neu-
ron through dense nearby connections be-
tween CTNs. Similar results were obtained
by our morphological estimation of inputs
to CTNs from neurons in a cube (Fig. 8C) or
in a cylindrical volume (Fig. 9D).

The present results further suggest that
a small population of L4 neurons located
just above a CTN appear to be a main
source of connections to this CTN (Fig. 8).
Interestingly, a photostimulation study re-
ported a case of strong L4 inputs to a puta-
tive L6 CTN [Zarrinpar and Callaway
(2006), their Fig. 4A]. Furthermore, a recent
multiple whole-cell recording study of the
mouse barrel cortex has reported cases of
L4-to-L6 connections (3/93 pairs) and has
also shown that EPSP amplitudes of these
connections are sometimes much larger
(0.17, 0.96, and 5.67 mV) than the typical
EPSP amplitude in postsynaptic L6 neurons
(�0.2 mV) (Lefort et al., 2009). These large
EPSP amplitudes of L4-to-L6 connections
might be well represented by the strong, fo-
cused L4-to-CTN connection revealed in
the present study (Fig. 8C).

Figure 10. Anatomical organization of local excitatory connections to L6 CTNs and its relationship to thalamic barreloid. Within
a barrel column, the L6 CTNs receive strong, focused connections from L4 neurons located just above them (red). L6 CTNs have
dense recurrent connections of a subcolumnar size within themselves (green), whereas L6 corticocortical neurons provide CTNs
with a considerable amount of horizontal connection beyond the barrel column (black). The projecting axons of L6 CTNs spread out
in the corresponding thalamic compartment (barreloid) and thus show a multitude of overlaps within the barreloid.

Figure 9. Horizontal organization of local excitatory inputs to CTNs. A, An example of IL[x1, x2]. As the scheme shows, IL[x1, x2] represents the number of apposed boutons on CTN dendrites in the
central slender prism (1 � 1 �m 2 base) by the neurons that are classified into each pyramidal/spiny neuron group (L � L2/3, L4, L5a, L5b, L6�, or L6�) and located in the hollow cylinder whose
internal and external radii are x1 and x2, respectively. B–D, Inputs from neurons located at x � 0 –200 �m (B), x � 200 –1500 �m (C), and x � 0 –28 �m (D). E, F, Descending thick axons of a
representative L2/3 neuron (E) and L4 neuron (F ) are indicated by arrows and dendritic bundles of CTNs are indicated by arrowheads. Note that the axon of the L4 neuron changes course and
approaches a CTN dendritic bundle in the middle of L5 and descends along the bundle. G, The minimal distance between the descending axon and the center of the nearest apical dendritic bundle
showed that the descending axons of L4 neurons ran at closer range to the dendritic bundle than those of L2/3 neurons. Scale bar, (in F ) E, F, 50 �m. Each bar and error bar represents the mean and
SD, respectively. *p 
 0.05; **p 
 0.01; ***p 
 0.001 by Peritz’s F test. †p 
 0.05 by two-tailed t test.
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Although strong L4-to-L6 connections were found in a few cases
in photostimulation and multiple whole-cell recording studies (Zar-
rinpar and Callaway, 2006; Lefort et al., 2009; Hooks et al., 2011),
these previous studies generally showed infrequency of L4-to-L6 ex-
citatory connections (Briggs and Callaway, 2001; Zarrinpar and Cal-
laway, 2006; Lefort et al., 2009; Llano and Sherman, 2009; Lam and
Sherman, 2010; Hooks et al., 2011). This seems contradictory to the
present findings that strong morphological connections were con-
stantly found from L4 neurons to CTNs. This contradiction might
be explained by differences in animal age, species, or cortical area
examined, but technical differences should be considered when
comparing present and previous methods. We recorded neurons at
a deep position from the slice cut surface and plotted the apposed
boutons throughout the thickness (500 �m) of the cortical slices.
This might be helpful in observing the focused L4-to-CTN connec-
tions. On the other hand, in laser-scanning photostimulation and in
whole-cell recordings, because neurons near the slice cut surface are
preferentially stimulated by laser beams and recorded by patch pi-
pettes, a vertically aligned, focused connection could be found only
when the focused connection was set appropriately near the surface
of a slice. This may be one of the reasons why strong L4-to-CTN
connections have been reported only infrequently by previous pho-
tostimulation or multiple whole-cell recording studies.

The presence of strong, focused L4-to-CTN connections raises
the possibility that there are functional substructures in a barrel col-
umn. In the measurement of i(x, y), the L4 neurons forming strong
connections to a portion of CTN dendrites were located within 40
�m in horizontal distance from these CTN dendrites (Figs. 8C, 9D).
Recent physiological studies have pointed out that single barrels in-
clude several neuronal clusters (�100 �m in diameter) that contain
neurons showing similar preferences for the direction of whisker
deflection, suggesting that barrel columns are divided into func-
tional substructures (Bruno et al., 2003; Andermann and Moore,
2006) such as orientation columns in the ocular dominance column
of the cat and monkey primary visual cortex (Mountcastle, 1997).
One of the potential anatomical substrates of these functional sub-
structures in the barrel column is dendritic bundles, which are com-
monly found in the mammalian neocortex (Rockland and Ichinohe,
2004). Visualizing CTN dendrites, we observed that CTNs formed
apical dendritic bundles (Fig. 9E,F) and that the interbundle inter-
val was 56 	 14 �m (mean 	 SD). Interestingly, this interval was
very close to that of dendritic bundles formed by L5 pyramidal neu-
rons in the rat S1 cortex [�50 �m in the study by Feldman and
Peters (1974) and 49 	 16 �m in the study by Skoglund et al.
(2004)]. More interestingly, the thick axons of L4 neurons de-
scended in close proximity with CTN dendritic bundles (Fig. 9F,G),
suggesting that L4 neurons around the CTN dendritic bundle focus
their descending axons on CTNs forming the dendritic bundle. Be-
cause more than half of the dendritic length of CTNs (62.1 	 8.2%;
measured from the present intracellularly labeled samples) was in-
cluded within a 56 �m radius cylinder around an apical dendritic
shaft, both axons of L4 neurons and dendrites of L6 CTNs are ar-
ranged in a subcolumnar structure around CTN dendritic bundles.

Previous studies have shown that inactivation of the primary
visual (Przybyszewski et al., 2000), auditory (Yan and Suga, 1996), or
somatosensory (Yuan et al., 1986) cortices generally decreases tha-
lamic responses to sensory stimuli (Alitto and Usrey, 2003). A recent
study has further reported that activation of the barrel column en-
hances the sensory responses of relay neurons in the corresponding
thalamic compartment, or barreloid (Temereanca and Simons,
2004). L6 CTN activation in a barrel column thus has an excitatory/
facilitatory influence on the activity of thalamic relay neurons, which
transfer peripheral information to the cerebral cortex. The facili-

tatory cortical control of thalamic activity by a single L6 CTN pre-
sumably spreads beyond a single barreloid, because a single L6 CTN
in a barrel column spreads its axons throughout the corre-
sponding barreloid (Bourassa et al., 1995) and because the den-
drites of barreloid neurons extend into surrounding barreloids
[33% on average (Varga et al., 2002)]. Together with these struc-
tural and functional properties of CTNs, the local excitatory con-
nections revealed in the present study suggest how finely the
barrel column controls the activity of relay neurons in the corre-
sponding barreloid and its surrounding structures (Fig. 10). In
recent in vivo juxtacellular recordings and whole-cell recordings,
it has been revealed that a single whisker deflection activates only
a small fraction of L4 neurons (Brecht and Sakmann, 2002; de
Kock et al., 2007), which are most likely organized into subco-
lumnar structures (Bruno et al., 2003; Andermann and Moore,
2006). When L4 neurons in a subcolumnar structure are acti-
vated, a limited number of CTNs therein might be activated via
focused L4-to-CTN connections. Because a CTN at least inner-
vates the whole extent of the corresponding barreloid (Bourassa
et al., 1995; Varga et al., 2002), the subcolumnar structures might
provide thalamic relay neurons with an additive or summative en-
hancement mechanism. In other words, when CTNs in several sub-
columnar structures are activated in a barrel column, the activity of
relay neurons in the corresponding barreloid might be facilitated in
a finely additive manner that depends on the number of subcolum-
nar structures containing activated CTNs. With this additive mech-
anism, even on a weak, limited sensory input, the barrel cortex could
provide a commensurate strength of excitatory/facilitatory feedback
to all relay neurons in the corresponding barreloid, and finely con-
trol the thalamic activity to efficiently transfer information from the
corresponding whisker to the cortex.

In conclusion, we have shown a detailed map of local excit-
atory inputs to L6 CTNs based on the morphological data. The
data indicate that L4 pyramidal/spiny neurons have an important
role in shaping the cortical modulation of thalamic relay neurons
through CTNs. To examine whether local connectivity actually
functions as discussed above, it will be of primary importance to
explore the dynamics of neurons in the thalamocortical recipro-
cal circuit in alert animals.
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