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Abstract

The production of all blood cells from hematopoietic stem cells (HSC) is highly sensitive to 

reactive oxygen species (ROS). Cumulating evidence suggests that mitochondria are critical for 

HSC fate determination. FOXO are known regulators of antioxidant response and key to the 

maintenance of HSC. Recent works indicate that FOXO3 is implicated in the control of 

mitochondrial function beyond regulating levels of ROS in HSC. Here we review these findings 

and discuss implications for homeostatic blood formation and stem cell fate determination.
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Mitochondrial regulation of stem cell fate

Increasing evidence suggest that mitochondria are implicated in regulating stem cell fate by 

multiple paths. For instance, hematopoietic stem cells (HSC) have relatively high numbers 

of mitochondria that are overall metabolically inactive and produce limited ATP (Simsek et 

al. 2010; Norddahl et al. 2011). As a result mitochondrial respiration is lower in HSCs 

relative to downstream progenitors (Simsek et al. 2010; Norddahl et al. 2011). In their 

quiescent state, HSC rely on glycolysis to maintain their pool and the role of mitochondria 

had been mostly associated with oxidative phosphorylation in committed stem cells. 

However, functional mitochondria are required for adult stem cells’ proper maintenance 

(Chen et al. 2008; Gan et al. 2010; Gurumurthy et al. 2010; Nakada et al. 2010; 

Maryanovich et al. 2012; Tai-Nagara et al. 2014). The need to constantly survey and 

maintain the health and numbers of mitochondria within stem cells may be central to stem 
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cell biology. Growing evidence raise the possibility that mitochondria might reach far 

beyond oxidative phosphorylation and be implicated in sustaining the delicate balance 

between maintaining adult stem cell pool and preventing stem cell exhaustion and, stem cell 

differentiation to continually replenish downstream lineages.

Dormant stem cells including HSC are highly sensitive to oxidative stress that is the 

imbalance in the generation versus detoxification of ROS (Ito et al. 2004; Ito et al. 2006; 

Tothova et al. 2007; Miyamoto et al. 2007; Yalcin et al. 2008; Miyamoto et al. 2008). 

Unbalanced elevated ROS is frequently but not always associated with impaired HSC 

function in vivo (Ito et al. 2004; Kocabas et al. 2012; Zheng et al. 2014) and with HSC 

differentiation and increased production of their immediate progenitors (Jang and Sharkis 

2007). In many of these models, the in vivo administration of N-acetyl-cysteine (NAC) - a 

glutathione precursor that reduces ROS levels - rescues HSC ability to reconstitute all blood 

cells for a long period of time in a mouse in which blood is ablated (Rimmele et al. 2015), 

also known as long-term competitive repopulation ability, restores quiescence and reduces 

DNA damage. These findings suggest that ROS modulations might constitute a stem cell 

sensing mechanism for gauging mitochondrial health and activity.

Transcription factors FOXOs (Forkhead Box O 1/3/4) and specifically FOXO3 are essential 

for controlling ROS levels in HSC. The evolutionary conserved functions of FOXOs in 

stress response including oxidative stress are implicated in organismal longevity (Lin et al. 

1997). FOXO3 is key for the maintenance of HSC pool. FOXO3 loss is associated with 

compromised HSC long-term repopulation ability, loss of HSC quiescence, accumulation of 

DNA damage, myeloid biased production of progenitors, lymphocyte defects and reduced 

red blood cell production (Miyamoto et al. 2007; Miyamoto et al. 2008; Yalcin et al. 2010; 

Marinkovic et al. 2007). FOXO3 regulation of HSC has been attributed to its ability to 

inhibit oxidative stress in quiescent cells at least partly by direct transcriptional control of 

expression of anti-oxidant genes including superoxide dismutase (SOD2) and catalase (Kops 

et al. 2002; Nemoto and Finkel 2002; Oh et al. 2005; Murakami and Johnson 2001; Ookuma 

et al. 2003; Murphy et al. 2003; Lee et al. 2003). However evidence suggests that FOXO3 

might coordinate a number of fundamental processes beyond oxidative stress to regulate 

stem cell fate. Among these the regulation of ATM that is key in coordinating stem cell 

cycling with ROS levels (Yalcin et al. 2008), regulation of autophagy (Warr et al. 2013; 

Liang et al. 2015), control of pentose phosphate pathway (Yeo et al. 2013) and 

mitochondrial metabolism are noteworthy (Rimmele et al. 2015).

Despite elevated ROS involvement in many of Foxo3−/− hematopoietic stem and progenitor 

cell (HSPC) defects (Yalcin et al. 2008; Yalcin et al. 2010; Marinkovic et al. 2007; Bigarella 

et al. 2017), the compromised Foxo3−/− HSC ability to reconstitute all blood cells for a long 

(in contrast to short) period of time in a mouse in which blood is ablated is ROS-

independent (Rimmele et al. 2015). Instead, loss of FOXO3 is associated with reduced 

oxygen consumption (by half) and ATP depletion (by half) in long-term HSC (LT-HSC) 

suggesting that mitochondrial respiration is reduced in Foxo3−/− LT-HSC (Rimmele et al. 

2015). Despite the notion that the mitochondrial proton gradient generated by the respiratory 

chain drives ATP synthesis (Chen 1988), the low ATP in Foxo3−/− LT-HSC is associated 

with increased mitochondrial membrane potential (Rimmele et al. 2015). Loss of HSC 
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quiescence – as it is observed in Foxo3−/− HSC – is frequently associated with reduced 

glycolytic flux and increased oxidative phosphorylation. In contrast, Foxo3 mutant HSCs 

exhibit a shift in the ATP production from oxidative phosphorylation to glycolysis. These 

paradoxical metabolic phenotypes in Foxo3−/− HSC are also associated with enhanced 

mitochondrial fragmentation (Rimmele et al. 2015), collectively depicting a picture in which 

loss of FOXO3 is associated with accumulation of faulty mitochondria. Damaged 

mitochondria are removed by mitophagy, a process that involves autophagic recycling of 

mitochondria and compromised in the absence of FOXO3.

Indeed, FOXO (FOXO3) are essential for the process of autophagy (Warr et al. 2013; Liang 

et al. 2015; Sandri et al. 2004; Chiacchiera and Simone 2009; Mammucari et al. 2007; van 

der Vos et al. 2012; Zhao et al. 2010) by regulating the transcription of many autophagy-

related genes. Autophagy mediates the consumption of damaged or old cellular proteins and 

components and serves as a source of energy for maintaining HSC homeostasis during 

cellular stress and starvation (Warr et al. 2013; Yang and Klionsky 2010; Mortensen et al. 

2011). FOXO3 was identified as the main transcription factor regulating autophagy gene 

expression and autophagy in HSC (Warr et al. 2013). FOXO3 is also a critical regulator of 

mitophagy (mitochondrial clearance by autophagy) a process required for HSC self-renewal 

(Ito et al. 2016) at least in some hematopoietic cells (Liang et al. 2015). Accumulation of 

defective mitochondria as a result of impaired mitophagy ( (Liang et al. 2015), Liang and 
Ghaffari, Oct 2015, unpublished findings) in Foxo3−/− HSC may compromise HSC long-

term stem cell activity in vivo, enhances ROS levels and result in apoptosis resistance in 

Foxo3−/− HSC (Bigarella et al. 2017). ROS elevation in Foxo3−/− HSC is however 

responsible at least partially for loss of quiescence and accumulation of damaged DNA in 

HSC (Bigarella et al. 2017).

ROS elevation results also in damage to mitochondrial DNA leading to mitochondrial 

misfolded and protein aggregates in response to which the cells mount mitochondrial 

unfolded protein response (UPRmt). The goal of UPRmt activation is to return to 

mitochondrial protein homeostasis. UPRmt is triggered by mitochondrial-to-nuclear stress-

signaling which is generated by an imbalance between mitochondrial protein production 

from nuclear (n)DNA) versus mitochondrial (mt)DNA. Mitochondrial misfolded proteins 

trigger an increase in anti-oxidant defense that is promoted by activation of both FOXO 

(FOXO3) and sirtuin (SIRT)3 deacetylase (Papa and Germain 2014) and possibly other 

sirtuins. Sirtuins are deacetylase for histones and other proteins that are evolutionary 

conserved in their regulation of healthy aging. Activation of mUPR is also implicated in the 

control of longevity (Mouchiroud et al. 2013; Mohrin et al. 2015).

SIRT1, another sirtuin of the family of seven mammalian sirtuins, is also a deacetylase for 

FOXO3 (Brunet et al. 2004; Motta et al. 2004). SIRT1 deacetylation maintains FOXO3 in an 

active form in HSC and protects HSC from aging-like damages (Rimmele et al. 2014; Liang 

et al. 2016). SIRT3 is also implicated in shielding HSC from stress-induced damages during 

aging (Brown et al. 2013).

In addition to SIRT1 and SIRT3 (Rimmele et al. 2015; Brown et al. 2013), the maintenance 

of longevity and healthy aging of HSCs requires SIRT7 that is also implicated in mUPR 
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activation (Mohrin et al. 2015). It is noteworthy that FOXO3 is implicated in regulating HSC 

longevity. Hematopoietic stem and progenitor cell defects in Foxo3−/− mice are reminiscent 

of defective hematopoiesis generated by old HSC (Miyamoto et al. 2007; Miyamoto et al. 

2008; Rimmele et al. 2014). Collectively these findings suggest that elucidating the precise 

role of mitochondrial function including metabolism, dynamics and mUPR and their 

regulation by FOXO3 in cross talks with sirtuins will be of critical implications for HSC 

health and longevity and for understanding malignancies.
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