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Abstract

Genetic regulation of gene expression is dynamic, as transcription can change during cell 

differentiation and across cell types. We mapped expression quantitative trait loci (eQTLs) 

throughout differentiation to elucidate the dynamics of genetic effects on cell type specific gene 

expression. We generated time-series RNA-sequencing data, capturing 16 time points from 

induced pluripotent stem cells to cardiomyocytes, in 19 human cell lines. We identified hundreds 

of dynamic eQTLs that change over time, with enrichment in enhancers of relevant cell types. We 

also found nonlinear dynamic eQTLs, which affect only intermediate stages of differentiation, and 

cannot be found by using data from mature tissues. These fleeting genetic associations with gene 

regulation may represent a new mechanism to explain complex traits and disease. We highlight 

one example of a nonlinear eQTL that is associated with body mass index.

One Sentence Summary:

We provide a high-resolution analysis of temporal dynamics of genetic effects on gene expression 

throughout cardiomyocyte differentiation.
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Genetic variants that alter gene regulation play an essential role in the genetics of human 

disease and other complex phenotypes (1, 2). Large studies have identified thousands of 

genetic loci associated with complex diseases, most of which are in non-coding regions of 

the genome and therefore are putatively involved in gene regulation (2). Expression 

quantitative trait locus (eQTL) analysis has shown that many disease-associated loci 

influence the regulation of nearby genes (3, 4) but still, a substantial fraction of disease-

associated loci remain unexplained (5, 6).

Much effort has been dedicated to map and identify eQTLs across tissues and cell types, as 

regulatory impact of disease-associated loci may be most evident in cell types relevant to 

each disease. Regulatory genetic effects can be also timepoint-specific or environment-

dependent (7, 8), and may influence temporal programs of gene regulation. Yet, almost all 

studies of the genetics of gene regulation, including the multi-tissue GTEx project (7), 

involve data collected at a single time point, usually from adult individuals. Dynamic gene 

expression data can add another dimension to eQTL analysis, allowing identification of 

genetic variants with transient effects that may not have been found in analysis of static data.

We took advantage of a panel of induced pluripotent stem cell (iPSC) lines from 19 

individuals to investigate high-resolution temporal genetic effects on gene regulation over 

time during cardiomyocyte differentiation. Specifically, we collected gene expression data 

throughout the differentiation from iPSCs to cardiomyocytes in 19 well-characterized, 

human Yoruba HapMap cell lines (9). For each cell line, RNA was extracted and sequenced 

every 24 hours for 16 days, to capture the entire differentiation process; in total, we 

sequenced 297 RNA samples (Figs. S1–S2). Combined with available whole genome 

sequences and genotype data for each cell line, these data provide a resource with which to 

investigate how gene expression and genetic regulation change throughout cardiomyocyte 

differentiation with high temporal resolution.

During iPSC culturing, differentiation, RNA extraction, and processing for sequencing, we 

recorded extensive metadata on each sample (Table S1). Quality controls and filtering 

yielded 16,319 genes for downstream analysis (10). Following standardization and 

normalization of the RNA sequencing data (10), we evaluated the contribution of potential 

confounders to overall variation in our data, confirming that our study design was effective 

(Fig. S3). We also used replicates from an independent differentiation to confirm that the 

gene expression patterns we observed in our iPSCs and iPSC-derived cardiomyocytes are 

robust with respect to variance that may be associated with the differentiation procedure 

(Fig. S4) (9, 10).

We evaluated the efficiency of our differentiation by FACS (Table S2), and by considering 

the time course expression of known cell type specific marker genes (11, 12) (Fig. S5). As 

expected (12), cardiomyocyte purity and the expression of lineage marker genes are variable 

across our samples. This variability between cell lines was observed across the entire time 

course, though the effect of differentiation time is the primary source of variation in the data 

(Figs. 1A, S3, S6).
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We characterized global patterns of gene expression across time by applying split-GPM, an 

unsupervised probabilistic model that infers time course trajectories of gene expression 

using Gaussian processes, while simultaneously performing clustering of genes and cell 

lines (10). Using this approach, we identified two clusters of cell lines that displayed broad 

differences in the expression patterns of multiple clusters of genes; within each gene cluster, 

genes exhibit shared expression changes over time. The assignment of cell lines to clusters is 

robust with respect to the parameters we tested, such as the number of gene clusters we infer 

(Fig. S7).

The two cell line clusters we identified differ in the efficiency of cardiomyocyte 

differentiation. Cell lines in the first (larger) cluster display greater Troponin expression 

levels in the final six timepoints of differentiation (p=.014, Wilcoxon rank-sum test). The 

expression of a group of genes enriched for myogenesis also increases by a greater 

magnitude over time in cell lines in the first cluster (Bonferroni p=9.29e-14; gene cluster 2 

in Fig. 1B) (13). Cell lines in the second, smaller cluster, show high expression of genes 

related to KRAS activation (Bonferroni p=0.005; gene cluster 4 in Fig. 1B), which is 

associated with increased self-renewal of undifferentiated iPSCs and decreased neuronal 

differentiation propensity (14). Other gene clusters illuminate broad changes in gene 

expression over time such as a transient rise in MYC and E2F target genes in the early days 

of differentiation (gene cluster 13 in Fig. 1B; Table S3). Together, this analysis documents 

patterns of gene expression trajectories over time and captures differences among our cell 

lines that are not obvious from the individual time point data alone.

Next, we evaluated the impact of genetic variation on gene regulation in our system. We 

used WASP (15) to identify cis-eQTLs in the data from each time point, independently (10). 

To control for latent confounders in the independent analysis of data from each time point, 

we included the first three expression PCs using data from samples of the corresponding 

time point as covariates (Figs. S8, S9A, S9B). At an empirical false discovery rate (eFDR) 

of 5%, we identified a median of 111 genes (range 71 – 231) with at least one eQTL in each 

time point (Figs. S9C, S10). As expected, the eQTLs we identified early in the time course 

replicated in data from iPSCs, whereas eQTLs from later time points were better supported 

by data from iPSC-derived cardiomyocytes (both p < 0.001, linear regression; Fig. 2A) (9).

We computed the correlation of the significant eQTL summary statistics for each pair of 

time points (Fig. 2B). We observed that correlation between eQTL summary statistics 

increases as the distance between time points decreases (p <= 2e-16, linear regression). 

Though this observation is intuitive, it indicates that the dynamic impact of genetic variation 

on gene regulation in our data is not random, and is related to the temporal process of 

cardiomyocyte differentiation.

To more formally quantify the temporal structure of genetic regulation throughout 

differentiation, we performed sparse non-negative matrix factorization on the matrix of 

significant eQTL summary statistics from all time points (10). The learned factors capture 

genetic signal that is largely specific to a subset of differentiation time (Fig. 2C), a pattern 

that is robust with respect to the number of latent factors or sparse prior choice (Fig. S11).
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Our analysis indicates that temporal structure dominates the patterns of genetic association 

with gene expression in our data. However, the observation that most significant non-

dynamic eQTLs can be identified in only a few time points (median of 2; Fig. S12) is most 

likely explained by incomplete power to identify eQTLs in each time point independently. 

To robustly identify dynamic eQTLs whose effect varies significantly over time, leveraging 

power across all time points (Fig. 3A), we used a Gaussian linear model applied jointly to 

data from the entire experiment. Specifically, we quantified the effect of interactions 

between genotype and differentiation time on gene expression, controlling for linear effects 

of both differentiation time and genotype. In addition, we accounted for the systematic 

differences in differentiation trajectories identified between cell lines (Figs. 1B, S13–S16, 

Table S4) (10), which would otherwise lead to false positives in our analysis. Using this 

approach, we identified 550 genes with a significant dynamic eQTL (eFDR <= .05; Figs. 

S17–S20, Table S5).

We classified the 550 dynamic eQTL as early (eQTL effect size decreasing over time), late 
(eQTL effect size increasing over time), or switch (eQTL effect size exhibiting different 

directions of effect over time; Fig. S21) (10). We found that the early dynamic eQTLs are 

enriched for chromHMM enhancer elements annotated in iPSC Roadmap cell types but not 

in heart-related cell types (16, 17). In turn, late dynamic eQTLs are enriched for 

chromHMM enhancer elements annotated in heart-related Roadmap cell types but not in 

iPSCs (Figs. 3B, S22). These observations indicate that dynamic eQTL mapping can capture 

temporal changes in cellular gene regulation reflecting changes in regulatory element 

activity as the cell cultures differentiate.

The observation that we are able to capture the function of cell-type-specific regulatory 

elements prompted us to consider dynamic eQTLs in other contexts. We found that dynamic 

eQTLs are enriched for genes with roles in myogenesis (Bonferroni p = .0019, Fisher’s 

exact; Table S6) (13), and also show significant enrichment for genes related to dilated 

cardiomyopathy (p = .001, Fisher’s exact; Table S7) (10, 18). Two significant dynamic 

eQTLs in particular, rs7633988 and rs6599234 (in strong LD, R2 = 0.93), are GWAS 

variants for QRS duration and QT interval, respectively (Fig. S23) (19, 20). Both variants 

show an association with the expression levels of SCN5A, which is involved in the creation 

of sodium channels and is in the dilated cardiomyopathy gene set (21). Another dynamic 

eQTL, rs11124033, associated with the expression of FHL2 (Fig. 3A), is also associated 

with dilated cardiomyopathy. This variant lies in a Roadmap chromHMM promoter element 

annotated in heart-related cell types but not in iPSCs (16, 17). Interestingly, none of these 

examples were identified as eQTLs in the non-dynamic QTL analysis of each time point 

from our dataset or in the GTEx heart tissue data (7).

Finally, we sought to identify a wider range of dynamic regulatory patterns, including 

nonlinear associations such as when a genetic effect increases in magnitude in the middle of 

the time course before decreasing or disappearing. To identify nonlinear dynamic eQTLs we 

expanded our linear model using a second order polynomial basis function (10). We 

acknowledge that our study is underpowered to expand to a more general class of nonlinear 

dynamic eQTLs that do not assume a continuous effect of differentiation time (Fig. S24) 

(10).
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We identified 693 genes with a nonlinear dynamic eQTL (eFDR <= .05; Figs. S17B, S19B, 

Table S8), 28 of which have their strongest genetic effect in the middle of the differentiation 

time course (middle dynamic eQTLs; Fig. S25) (10). It is worth noting that 25 of these 

middle dynamic eQTL genes and their strongest associated variant are not identified as 

eQTLs in our non-dynamic QTL analysis in either iPSCs (day 0) or cardiomyocytes (day 

15).

In one example of a non-linear dynamic eQTL, rs8107849 is associated with the expression 

of ZNF606 with a larger magnitude of effect during days 4 through 11 (Fig. S26). The 

rs8107849 locus does not lie in iPSC or heart-related chromHMM regulatory regions and 

was not identified in our analysis as a non-dynamic eQTL in any time point. While ZNF606 
is known to have a role in differentiation of chondrocytes (22), it is possible this is a 

conserved process involved in the differentiation of additional cell types, including 

cardiomyocytes. Another nonlinear dynamic eQTL reveals an association between 

rs28818910 and C15orf39. The rs28818910 variant is also associated with BMI (p < 6.07 

e-9, reported; Fig. 3C, 3D) (23) and weakly associated with red blood cell count (p < 1.48 

e-6, reported) (24). This dynamic eQTL and both traits show similar patterns of association 

across the region (Fig. S27). The rs28818910 locus is associated with inter-individual 

differences in gene expression only during intermediate stages of differentiation; it does not 

lie in annotated regulatory elements of either iPSCs or cardiomyocytes and is not identified 

as an eQTL in iPSCs, mature cardiomyocytes, or either of the two GTEx heart tissues. Thus, 

this is an example of a temporary, dynamic regulatory effect that may have phenotypic 

consequences.

In summary, our time course study design allowed us to identify hundreds of dynamic 

eQTLs throughout the differentiation of human iPSCs to cardiomyocytes. Dynamic eQTLs, 

in particular those with nonlinear effects, may often be transient and will not be found in 

studies that only consider gene expression data from either stem cells or mature tissues and 

cell types. Many of our dynamic eQTLs lie in regions without known regulatory annotations, 

as functional studies have focused on static cell types. Thus, these loci are candidates for 

novel regulatory effects, which may be followed up with further functional validation in 

relevant intermediate time points. Dynamic genetic effects identified in our study, or in 

future time series genomic datasets, provide a novel resource for investigating mechanisms 

underlying disease associations that cannot be characterized based on studies of terminal cell 

types.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Gene expression trends throughout cardiomyocyte differentiation.
(A) The first two gene expression principal component loadings for all 297 RNA-seq 

samples across cell lines, where each sample is colored by day of collection. (B) Predicted 

cell line cluster expression trajectories for 20 gene clusters according to split-GPM. Many 

gene clusters (8, 11, 15, 16, and 20) exhibit periodic expression trajectories that correspond 

with cell culture media changes.
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Fig. 2. eQTL patterns during cardiomyocyte differentiation.
We limit to genes with at least one significant eQTL (WASP combined haplotype test; eFDR 

<= .05) across time points. If a gene has more than one significant eQTL, we select a single 

variant for that gene with the smallest geometric mean p-value across all 16 time points. (A) 

Spearman correlation of p-values between eQTLs from each day (x-axis) and existing iPSC 

(grey) and iPSC-derived cardiomyocyte (red) eQTLs. (B) Spearman correlation of eQTL p-

values for each pair of days. (C). Factors identified via sparse matrix factorization of eQTL -

log10 p-values using 3 latent factors and a L1 penalty of .5.
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Fig. 3. Dynamic eQTLs detect genetic regulatory changes caused by cardiomyocyte 
differentiation.
(A) Linear interaction association between genotype (color) of rs11124033 and time point 

(x-axis) on residual gene expression (cell line effects regressed on expression) of FHL2 (y-

axis). (B) Enrichment of dynamic eQTLs within cell type specific chromHMM enhancer 

elements relative to 1000 sets of randomly selected matched background variants. Dynamic 

eQTLs were classified as early or late (C) Nonlinear interaction association between 

genotype (color) of rs28818910 and time point (x-axis) on residual gene expression of 

C15orf39 (y-axis). (D) Nonlinear interaction association significance of all variants tested 

within 50 KB of the C15orf39 transcription start site with expression of C15orf39 (green) 

and GWAS significance for BMI of variants in the same window (blue). Vertical line depicts 

genomic location of the most significant nonlinear dynamic eQTL (rs28818910) for 

C15orf39.
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