
1Tibble H, et al. BMJ Open 2019;9:e028375. doi:10.1136/bmjopen-2018-028375

Open access�

Predicting asthma attacks in primary 
care: protocol for developing a machine 
learning-based prediction model

Holly Tibble,  1,2 Athanasios Tsanas,1,2 Elsie Horne,1,2 Robert Horne,2,3 
Mehrdad Mizani,1,2 Colin R Simpson,  2,4 Aziz Sheikh1,2

To cite: Tibble H, Tsanas A, 
Horne E, et al.  Predicting 
asthma attacks in primary 
care: protocol for developing 
a machine learning-based 
prediction model. BMJ Open 
2019;9:e028375. doi:10.1136/
bmjopen-2018-028375

►► Prepublication history and 
additional material for this 
paper are available online. To 
view these files, please visit 
the journal online (http://​dx.​doi.​
org/​10.​1136/​bmjopen-​2018-​
028375). 

Received 7 December 2018
Revised 2 April 2019
Accepted 4 June 2019

1Usher Institute of Population 
Health Sciences and Informatics, 
Edinburgh Medical School, 
College of Medicine and 
Veterinary Medicine, University 
of Edinburgh, Edinburgh, UK
2Asthma UK Centre for Applied 
Research, Edinburgh, UK
3University College London, 
London, UK
4School of Health, Victoria 
University of Wellington, 
Wellington, UK

Correspondence to
Holly Tibble;  
​holly.​tibble@​ed.​ac.​uk

Protocol

© Author(s) (or their 
employer(s)) 2019. Re-use 
permitted under CC BY. 
Published by BMJ.

Abstract 
Introduction  Asthma is a long-term condition with rapid 
onset worsening of symptoms (‘attacks’) which can be 
unpredictable and may prove fatal. Models predicting 
asthma attacks require high sensitivity to minimise 
mortality risk, and high specificity to avoid unnecessary 
prescribing of preventative medications that carry an 
associated risk of adverse events. We aim to create a risk 
score to predict asthma attacks in primary care using a 
statistical learning approach trained on routinely collected 
electronic health record data.
Methods and analysis  We will employ machine-learning 
classifiers (naïve Bayes, support vector machines, and 
random forests) to create an asthma attack risk prediction 
model, using the Asthma Learning Health System (ALHS) 
study patient registry comprising 500 000 individuals 
across 75 Scottish general practices, with linked 
longitudinal primary care prescribing records, primary care 
Read codes, accident and emergency records, hospital 
admissions and deaths. Models will be compared on a 
partition of the dataset reserved for validation, and the 
final model will be tested in both an unseen partition of 
the derivation dataset and an external dataset from the 
Seasonal Influenza Vaccination Effectiveness II (SIVE II) 
study.
Ethics and dissemination  Permissions for the ALHS 
project were obtained from the South East Scotland 
Research Ethics Committee 02 [16/SS/0130] and the 
Public Benefit and Privacy Panel for Health and Social 
Care (1516–0489). Permissions for the SIVE II project 
were obtained from the Privacy Advisory Committee 
(National Services NHS Scotland) [68/14] and the National 
Research Ethics Committee West Midlands–Edgbaston 
[15/WM/0035]. The subsequent research paper will be 
submitted for publication to a peer-reviewed journal and 
code scripts used for all components of the data cleaning, 
compiling, and analysis will be made available in the open 
source GitHub website (https://​github.​com/​hollytibble).

Introduction
Asthma is a long-term lung disease character-
ised by inflammation of the airways, which 
may manifest as episodic wheezing, chest 
tightness, coughing, and shortness of breath. 
An asthma attack is the sudden worsening of 
symptoms, which may prove fatal.1 In 2017, 
asthma was estimated to affect 235 million 

people worldwide.2 In 2015 alone, 1434 
people died from asthma attacks in the UK—a 
rate of 2.21 deaths per 100 000 person-years.3 
Asthma attack incidence is reported to be 
between 0.01 and 0.78 events per person-year, 
depending on the definition of attacks and 
the population (eg, primary care, secondary 
care).4–6 

Asthma therapy typically follows a fairly 
linear path—beginning with a short-acting 
bronchodilator in the individuals  without 
persistent asthma symptoms and adding 
preventative treatments and long-acting 
bronchodilators in the individuals with more 
persistent asthma symptoms.7 8 The  individ-
uals with persistent troublesome symptoms 
and/or considered to be at very high risk 
may be prescribed biologicals and/or oral 
steroids.9 Oral steroids are often consid-
ered a last resort due to their undesirable 
safety profile including increased risk of 
diabetes,10–12 osteoporosis,13–15 and affective 
and psychotic disorders.15–18

It follows that the determination of those 
at high risk for asthma attacks is crucial in 
order to prevent attacks and minimise the 
risk of unnecessary side  effects. Further-
more, the 2014 National Review of Asthma 

Strengths and limitations of this study

►► This analysis is based on a large, representative 
dataset comprising over 500 000 individuals recruit-
ed from 75 general practices across Scotland.

►► We will employ novel applications of established 
machine learning and training data enrichment 
methodologies.

►► The prediction model we develop will be tested in 
unseen large external dataset, namely the SIVE II 
dataset.

►► This derivation and validation work will be undertak-
en in NHS Scotland; there will therefore be a need 
for further validation work in other UK nations and 
international contexts.
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Deaths found that 45% of asthma deaths in the study year 
occurred without the patient requesting medical help 
or before help could be provided.5 Increased awareness 
of the risk could prevent the patients with asthma from 
delay in seeking medical care and preventing fatality.

While it might seem intuitive that the  patients with 
most severe daily symptoms exhibit greater risk of severe 
morbidity and mortality, research suggests that these 
symptoms may be a suboptimal clinical marker of asthma 
attack risk.19 Indeed, some people with asthma are more 
prone to asthma attacks than others, with asthma attack 
history being the strongest risk factor for future asthma 
attacks.20–23 Other commonly identified risk factors for 
asthma attacks include poor asthma control24–27 (often 
a result of poor adherence to preventative therapy28–31), 
smoking,24 27 32–34 history of hospital admission,21 24 
history of oral steroid use,24 obesity,27 34–38 access to medi-
cines,39 40 socioeconomic status,41 42 and viral respiratory 
infections.43–45

Despite the identification of many risk factors, iden-
tifying high-risk individuals has proven a challenging 
task. Logistic regression, the most commonly used statis-
tical method for event prediction, is known to predict 
outcomes poorly when there is class imbalance (event and 
no event),46 and we expect the problem investigated in 
this study assessing asthma attacks will be highly imbal-
anced. For example, a model could predict that a very 
rare event would never occur, and it would be correct in 
the vast majority of cases. As such, most prediction models 
report high specificity (correctly predicting low attack risk 
to those who did not have attacks), but low sensitivity 
(correctly predicting high risk in those who did go on to 
have attacks),4 24 41 47–51 which results in less reliable risk 
prediction for patients at high risk.

In a recent study by Finkelstein and Jeong,52 sensitivity 
(and specificity) in excess of 75% was achieved for all clas-
sifiers (adaptive Bayesian network, naïve Bayes classifier, 
and support vector machine) predicting asthma attacks a 
week in advance using a sample of just over 7000 records 
of home tele-monitoring data. They found substantial 
improvements in model sensitivity using training enrich-
ment methods, pre-processing the training data to improve 
the performance in the testing data—for example, by 

increasing the prevalence of the rare outcome in the 
training data to balance the classes.

Research aim
We aim to create a personalised risk assessment tool to 
assist primary care clinicians in predicting asthma attacks 
over a period of 1, 4, 12, 26, and 52 weeks, employing 
machine-learning methodologies such as naïve Bayes 
classifiers, random forests, and support vector machines, 
as well as ensemble algorithms. The model will build on 
previous research4 24 41 47–52 to improve the sensitivity of 
our event prediction, without unduly compromising the 
specificity. This is crucial in order to reduce prescribing 
steroid, diminish the long-term effects of high steroid use 
over a lifetime, which have adverse effects,10–18 and reduce 
patient anxiety when risk of an asthma attack is low.

Primary care consultations provide the opportunity for 
patients and clinicians to assess changes to asthma attack 
risk, which can be used to promote patients to seek emer-
gency care if there is a significant deterioration in their 
symptoms and to promote risk-reducing lifestyle choices.

Methods
Data sources and permissions
The derivation dataset used for training, validating, and 
testing the model will be the Asthma Learning Healthcare 
System (ALHS) dataset, created in order to develop and 
validate a prototype learning health system for asthma 
patients in Scotland.53 The ALHS study aims to increase 
understanding of variation in asthma outcomes and 
create benchmarks for clinical practice in order to reduce 
suboptimal care by repurposing patient data to create a 
continuous loop of knowledge  generation, evidence-
based clinical practice change, and change assessment. 
The study dataset contains patient demographics from 
the patient registry, primary care prescribing records, 
primary care encounters, Accident and Emergency 
(A&E) records, hospital inpatient admissions and deaths, 
linkable by an anonymised unique identifier. Datasets 
were extracted between November 2017 and August 2018 
for the period January 2000 to December 2017, as shown 

Table 1  Metadata for clinical data sources in derivation dataset (ALHS)

Data Source
Number of 
Records

Number of 
Individuals Extraction Date Data Specification Date Range

Primary Care Prescribing* 4 709 231 47 095 October 2018 January 2009–April 2017

Primary Care Encounters* 11 766 100 49 307 March 2018 January 2000–November 2017

Accident & Emergency 1 831 789 500 321 November 2017 June 2007–September 2017

Hospital Inpatient 
Admissions

1 668 957 342 838 August 2018 January 2000–March 2017

Mortality NA 91 758 May 2018 January 2000–March 2017

*Records available for subset of study population with asthma diagnosis only.
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in table 1, along with the number of records and unique 
individuals before data cleaning.

In order to verify that the prediction model perfor-
mance is not limited to the development dataset and 
that it generalises well in new, unseen data presented 
to the classifier in the training process, we will evaluate 
its performance using an external cohort study dataset, 
the second Seasonal Influenza Vaccination Effectiveness 
(SIVE II) cohort study,54 55 which used a large national 
primary care (1.25 million individuals from 230 Scottish 
general practices) and laboratory-linked dataset to eval-
uate live attenuated and trivalent inactivated influenza 
vaccination effectiveness. The SIVE II dataset contains 
records from the same sources (primary and secondary 
care) and modalities (diagnosis and date) as the ALHS 
dataset (extraction and specification dates are shown in 
table 2), and can be harmonised such that variables and 
value sets are aligned. In Appendix A, we detail the data 
harmonisation plan, that is, we list the key variables to 
be used in the following analyses, their format in each 
dataset (for example, whether age is pre-coded into 
5-year bands), and the common denominator format that 
will be used in the analyses to ensure the highest degree 
of concordance during the validation stage.

Patient and public involvement
This analysis plan was constructed with the assistance of 
the Asthma UK Centre for Applied Research (AUKCAR) 
Patient and Public Involvement (PPI) group. The partic-
ular importance of avoiding a substantial decrease in 
specificity in order to gain higher sensitivity was a result 
of discussions within this group about the burden of 
side effects from preventative treatment.

Inclusion criteria
We will identify our study population as all adults (aged 
18 and over) with asthma being  identified by clinical 
diagnoses (Read codes), without a chronic obstructive 
pulmonary disease (COPD) diagnosis, and with relevant 
prescribing records in primary care. Patients with missing 
sex or age information will be removed; this and any other 
patient exclusions from further analysis will be explicitly 
detailed.

All records from the derivation dataset (ALHS) will 
be left-censored on January 2009 in order to align with 

the primary care prescribing data and right-censored on 
March 2017 in order to align with the mortality, primary 
care, and inpatient hospital admission records, as 
presented in table 1. Similarly, records from the external 
dataset (SIVE II) will be left-censored on January 2003 
in order to align with the primary care prescribing data 
and right-censored on August 2016 to align with the A&E 
records, as shown in table 2. There is a high probability 
that some individuals will have been recruited into both 
studies, and therefore those individuals will be flagged in 
the external testing dataset and removed from the study 
pool.

Outcome ascertainment
We will identify asthma attacks, defined by the Amer-
ican Thoracic Society/European Respiratory Society,56 
as  a prescription of oral corticosteroids, an asthma-re-
lated A&E visit, or an asthma-related hospital admis-
sion. Additionally, deaths occurring with asthma as the 
primary cause will be labelled as asthma attacks. Instances 
of multiple attack indicators occurring within a 14-day 
period were coded as a single attack.

Patient characteristics, confounders, and missing data
Patient characteristics at baseline will be reported and 
included as time-varying confounders in analyses. For all 
characteristics derived from Read codes, full code lists 
will be provided as online supplementary materials.

Demographics: Age, sex, rurality, and social deprivation 
will be extracted from the primary care registry. Social 
deprivation is measured using quintiles of the Scottish 
Index of Multiple Deprivation (SIMD), a geographic 
measure derived using data on income, employment, 
education, health, access to services, crime, and housing.57 
Rurality is defined using the Scottish Government Urban 
Rural Classification Scale (6-fold scale).58 While missing 
age and/or sex are exclusion criteria for the study sample, 
absence for rurality and social deprivation will be coded 
as ‘missing.'

Practice Location: Practice location will be included in 
order to account for clustering of patients by region. 
Location will be coded using the Nomenclature of Terri-
torial Units for Statistics59 (NUTS 3) codes, linked from 
the registered practice data zone (2001).

Table 2  Metadata for clinical data sources in external dataset (SIVE II)

Data Source
Number of 
Records Number of Individuals Extraction Date

Data Specification Date 
Range

Primary Care Prescribing 29 360 448 1 073 377 May 2017 January 2003–March 2017

Primary Care Encounters 31 878 423 1 887 957 May 2017 January 2000*–March 2017

Accident & Emergency 4 116 561 1 247 314 April 2017 June 2007– August 2016

Hospital Inpatient 
Admissions

3 549 174 794 937 April 2017 January 2000–March 2017

Mortality NA 215 466 April 2017 January 2000– March 2017

*Diagnosis codes entered in this period, but post-dated from 1940 onwards retained.

https://dx.doi.org/10.1136/bmjopen-2018-028375
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Asthma Severity: Asthma severity will be categorised using 
the British Thoracic Society’s 2016 5-step treatment clas-
sification.60 Severity will be considered time-dependent 
and will be determined using prescribing records at any 
change in regimen.

Smoking Status: Smoking status will be derived from 
primary care data and presented as a 3-level variable, 
namely current, former, and non-smoker, using the most 
recent smoking Read code at any day. Smoking status will 
be considered time-dependent and determined using the 
most recent Read code records, and the individuals with 
unknown smoking status will be coded as non-smokers.61 62

Blood Eosinophil Count: Blood eosinophil count will be 
derived from primary care Read codes and will be dichot-
omised at  ≥400 cells/μL. The individuals  with non-re-
corded blood eosinophil count will be coded as missing. 
Blood eosinophil count will be considered time-depen-
dent and determined using the most recent Read code 
record.

Obesity: Obesity will be derived from body mass index 
(BMI) or height and weight records in primary care data 
and will be presented as a binary variable (BMI≥30). 
The  individuals with unknown BMI will be coded as 
non-obese. Obesity will be considered time-dependent 
and determined using the most recent Read code record.

Comorbidity: Comorbidity will be defined by 17 dichot-
omous (unweighted) variables representing the diag-
nostic categories of the adapted Charlson Comorbidity 
Index.63 64 Additionally, active diagnoses of rhinitis, 
eczema, gastro-oesophageal reflux disease, nasal polyps, 
and anaphylaxis will be recorded; all identified by Blakey 
et al as contributing characteristics to increased asthma 
attack risk.65 Comorbidities will be considered time-de-
pendent and determined using all prior Read code 
records.

Previous Healthcare Usage: The number of repeat 
prescriptions of preventer medication and the number of 
primary care asthma encounters (days on which at least 
one asthma related code was recorded) in the previous 
year will be derived from primary care prescribing and 
Read code records, respectively. Both will be considered 
time-dependent and determined using records from the 
previous calendar year.

Asthma Control: The mean short-acting beta-2 agonist 
dose per day will be estimated retroactively by examining 
the dates between prescriptions. The most recent peak 
expiratory flow measurement at any time will be recorded 
(categorical, based on percentage of previous maximum) 
or coded as missing if that measurement was more than 
7 days ago. Adherence to preventer therapy will be 
approximated using the medication possession ratio,66 
calculated from primary care prescribing records.

History of Asthma Attacks: Prior asthma attacks will be 
identified solely using primary care prescribing records 
and Read codes. This is because primary care practi-
tioners will not be able to make use of secondary care 
records when utilising this risk score with patients. Both 
the prior number of attacks and the time since the last 

attack will be included as predictors and will be consid-
ered time-dependent and accurate at the weekly level.

Analysis plan
The derivation dataset (ALHS) will be divided into three 
partitions: 60% for training, 20% for model comparison 
(validation), and 20% to assess performance (testing). 
In our training subset, the first partition, we will train 
machine learning models (classifiers) with varying hyper-
parameters, predicting asthma attack occurrence in the 
following 1, 4, 26, and 52 weeks. We will run 100 iterations 
for statistical confidence, each time randomly permuting 
samples prior to determining the three subsets. The no 
free lunch theorem in machine learning suggests that there 
is no classifier (or more generically a machine learning 
tool) which will consistently outperform competing 
approaches across all settings.67 Therefore, given that we 
do not know a priori which classifier will work best in this 
application, we will apply naïve Bayes classifiers for bench-
marking and then employ more advanced state-of-the-art 
principled supervised learning algorithmic tools such as 
support vector machines, random forests, and ensembles 
(classifier combinations) to investigate which algorithm 
leads to more accurate results.

A selection of training enrichment methods will be trialled 
in order to assess how to best overcome poor perfor-
mance as a result of low outcome prevalence. Typically, 
modelling rare events results in reduced sensitivity (the 
proportion of the individuals who had attacks that were 
detected), so the individuals predicted to be at low risk 
will have a high rate of asthma attacks. As such, the start 
of this process (the first 20 iterations of training each 
model) will be repeated five times using:
1.	 the original analysis dataset,
2.	 original data with additional duplicates of the positive 

outcome records (a method known as over-sampling) ,68

3.	 original data, with a selection of the negative outcome 
records removed (under-sampling),68

4.	 original data with additional slightly modified dupli-
cates of the positive outcome records, with a selection 
of the negative outcome records removed (synthetic mi-
nority over-sampling; SMOTE),68 69

5.	 original data, using the outcome classification thresh-
old to maximise the primary metric—the Matthew’s 
correlation coefficient (MCC)70—identified using 
golden-section search optimisation.71

By assessing the average performance by classification 
method class, in each set of iterations, we will determine 
which enrichment method is the most appropriate overall 
for the data and to be continued accordingly.

In the validation partition, with all 100 iterations for the 
selected enrichment methods, we will identify the highest 
performing model as that with the highest mean MCC 
across iterations; in the event of a tie, the model with the 
highest iteration-minimum MCC will be selected.

Model testing will be conducted on the selected model 
(figure 1) in the derivation testing partitions. Model cali-
bration will be assessed by comparing observed rate of 
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incidence by predicted risk for the full population and 
by exhaustive population subgroups, including asthma 
severity, prior number of asthma attacks, age, and smoking 
status (particularly useful to assess possible contamina-
tion by asthma-COPD overlap syndrome (ACOS)). We 
will also check the calibration between the predicted risk 
and the attack incidence, stratified by the source of the 
asthma attack record (in primary care, A&E presenta-
tion, or inpatient admission). Performance in the testing 
datasets will be assessed using the MCC, and the addi-
tional metrics of sensitivity, specificity, positive and nega-
tive predictive values, and the F1 measure,72 along with 
information criteria such as the Bayesian Information 
Criterion are calculated to obtain a trade-off between 
model complexity and accuracy. Confusion matrices (also 
known as contingency tables) will be made available as 
online supplementary materials.

The derivation dataset will be re-used in its entirety 
to retrain the model based on the final classifier and 
hyperparameter selection. Model testing will then be 
conducted in the external dataset, which consists of data 
unseen in the model derivation, using this trained model. 
Distributions of predictors between the derivation and 
external datasets will be assessed (indirectly) to contex-
tualise the generalisability findings. The aforementioned 
metrics will be reported.

Finally, we will re-train the model using the hyperpa-
rameter specifications from the best performing model, 

with a modified version of the derivation dataset which 
incorporates data extracted from secondary care records 
(such as A&E presentations for asthma attack not 
captured in primary care records) in the determination 
of the risk factors. This allows us to evaluate the added 
value of secondary care data linkage in the prediction of 
impending asthma attacks and will be determined by the 
same metrics used for the primary model evaluation.

All analyses will be conducted in R (though the RStudio 
interface), and details on the functions, the hyperparam-
eter within each classifier, and the ranges assessed herein 
are provided in Appendix B.

Ethics and dissemination
All authors with data access have completed the Safe 
Users of Research data Environment training, provided 
by the Administrative Data Research Network. All anal-
ysis will be conducted in concordance with the National 
Services Scotland Electronic Data Research and Innova-
tion Service (eDRIS) user agreement. This study protocol 
will be registered with the European Union electronic 
Register of Post-Authorisation Studies (EU PAS Register) 
as a non-interventional post-authorisation study (PAS) 
before any data analysis is initiated.

The subsequent research paper will be submitted 
for publication in a peer-reviewed journal and will be 
written in accordance with TRIPOD: transparent reporting 
of a multivariable prediction model for individual prognosis 

Figure 1  Process of selecting the highest performing model from the validation data and the average performance of this 
model across iterations in the testing dataset. In the foreground, we have the first iteration. We will use 100 iterations for 
statistical confidence, randomly permuting the data into training, validation, and testing subsets in each iteration. 

https://dx.doi.org/10.1136/bmjopen-2018-028375
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or diagnosis73 and RECORD: reporting of studies conducted 
using observational routinely-collected health data74 guide-
lines. Code scripts used for all components of the data 
cleaning, compiling, and analysis will be made available 
in the open source GitHub website at https://​github.​
com/​hollytibble.

A lay summary of this protocol paper, and the subse-
quent research results paper, will be made available 
online (via an open source platform) in order to heighten 
the impact and accessibility of this work. A lay summary 
on asthma will be provided as online supplementary 
materials.   

Conclusions
 This project will further advance asthma attack risk 
prediction modelling and will inform on the future direc-
tion of routine data linkage in Scotland, which is likely to 
have additional benefits for other health systems in the 
UK and internationally. 
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