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Abstract: Ambulatory voice monitoring is a promising tool for investi-
gating phonotraumatic vocal hyperfunction (PVH), associated with the
development of vocal fold lesions. Since many patients with PVH are
professional vocalists, a classifier was developed to better understand
phonatory mechanisms during speech and singing. Twenty singers
with PVH and 20 matched healthy controls were monitored with a
neck-surface accelerometer–based ambulatory voice monitor. An
expert-labeled ground truth data set was used to train a logistic regres-
sion on 15 subject-pairs with fundamental frequency and autocorrela-
tion peak amplitude as input features. Overall classification accuracy of
94.2% was achieved on the held-out test set.
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1. Introduction

Phonotraumatic vocal hyperfunction (PVH) is defined as excessive and/or imbalanced
muscular forces during phonation in the presence of benign lesions on the medial (con-
tact) surfaces of the vocal folds (e.g., vocal fold nodules, polyps) (Mehta et al., 2015).
These lesions are assumed to be caused by, or associated with, pathological vocal
behaviors in the patient’s daily life; however, the role of habitual vocal behavior in
voice-use-related disorders is not well understood. Currently, speech-language patholo-
gists must rely on the patient’s self-report concerning their own behavior outside of the
clinic; which has been shown to be unreliable (Mehta et al., 2016). Therefore, research-
ers have been developing ambulatory voice monitoring technology to objectively
characterize habitual voice use outside of the clinic and to better understand the rela-
tionship between vocal behaviors and behaviorally based voice disorders (Titze and
Hunter, 2015; Van Stan et al., 2014). Most ambulatory voice monitoring technology
uses a neck-placed miniature accelerometer to record voicing because an accelerometer
is robust to environmental noises, speech is not recorded in the raw signal (confidenti-
ality is maintained), speech and singing in the surrounding environment are not
recorded, and an accelerometer can be worn underneath clothing such as a scarf or
collar [Popolo (2005); for a review, see Hillman et al. (2006)].

Previous studies using data from weeklong, ambulatory recordings have failed
to find differences in average measures of voice use between groups of patients with
PVH and healthy matched controls (age, sex, and occupation) (Van Stan et al., 2015).
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A majority of the subjects in these studies were singers, which is not surprising since
there is an elevated risk of phonotrauma in individuals who sing professionally (Titze
et al., 1997). However, this led to the question of whether better differentiation
between the pathological and normal groups could be attained by separately examining
speech and singing; i.e., does combining speech and singing (as was done in these stud-
ies) mask differences that would be revealed by examining the two modes of phonation
separately? Because the amount of data is so large (on average, 80 h of recording time
per subject), there would need to be a method for automatically separating speech
from singing in the ambulatory recordings.

An ongoing area of study in the field of music information retrieval is singing
voice detection, in which segments of music recordings containing singing are identified
and/or extracted (Humphrey et al., 2019). Previous work has also focused on auto-
matic discrimination of speech and singing from monophonic acoustic recordings using
both mel-frequency cepstral coefficients (MFCCs) and pitch information (Tsai and
Ma, 2014). However, to our knowledge, automatic classification of singing and speech
from ambulatory neck-surface acceleration data has yet to be accomplished. Although
singers could manually indicate singing times, computational analyses of a wearable
sensor allow the user to be monitored passively without interrupting their natural daily
behavior. Therefore, the purpose of this study is to develop and test a computationally
efficient classification algorithm based on a simple decision tree whose nodes utilize a
logistic regression and phrase-based reassignment step.

2. Methods

Forty female subjects were included in the analysis who self-identified as professional
vocalists, college students majoring in vocal performance, or amateur singers with a
significant background in musical performance. Twenty of the subjects were diagnosed
with vocal fold nodules and were recruited through sequential convenience sampling
at the Massachusetts General Hospital–Center for Laryngeal Surgery and Vocal
Rehabilitation (MGH Voice Center). Snowball sampling was used to recruit the remain-
ing twenty (vocally normal) control subjects, who were each matched to a corresponding
patient according to approximate age (Mean: 22.6 years, SD: 6.7 years) and singing
genre. Only female participants were selected for this study to provide a homogeneous
sample of a group that has a significantly higher incidence of vocal fold nodules
(Herrington-Hall et al., 1988) and comparable values of fundamental frequency (fo).
Diagnoses were based on a comprehensive team evaluation (laryngologist and speech-
language pathologist) at the MGH Voice Center. The normal vocal status of all control
participants was verified via interview and videostroboscopic imaging of the larynx.

Figure 1 shows the smartphone-based ambulatory voice monitor (Mehta
et al., 2012), which incorporated a high-bandwidth accelerometer (BU-27135; Knowles
Corp., Itasca, IL) positioned on the anterior neck surface to assess the voice use of
each participant for one week. Each week of subject data typically contains approxi-
mately 12 h per day of ambulatory data for each of the 7 recording days, amounting
to an average of 8 h of voiced data per subject-week.

2.1 Signal analysis

The daily recordings (raw neck-surface acceleration waveforms) for all subjects were
divided into non-overlapping 50-ms frames, and each frame was considered voiced if four
features passed the following thresholds: (a) vocal sound pressure level was greater than

Fig. 1. (Color online) Ambulatory voice monitor: (A) Smartphone, accelerometer sensor, and interface cable
with circuit encased in epoxy and (B) wired accelerometer mounted on a silicone pad affixed to the anterior
neck surface midway between the thyroid prominence and the suprasternal notch.
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45 dB sound pressure level (SPL) (the accelerometer was calibrated relative to dB SPL at
15 cm from the lips using a linear regression over a loudness glide) (Mehta et al., 2012),
(b) the first (non zero-lag) peak in the normalized autocorrelation exceeded an amplitude
threshold of 0.6, (c) fo (reciprocal of the time lag of that autocorrelation peak) was
between 70 and 1000 Hz, and (d) the ratio of low- to high-frequency energy (boundary
frequency of 2000 Hz) exceeded 22 dB. When a 50-ms frame was considered voiced, all
of the four aforementioned features were saved and all fo data were transformed into
semitones, where the reference frequency was the individual subject’s weekly fo mode.
Contiguous voiced and unvoiced frames were subsequently grouped into phrase groups if
unvoiced intervals between successive voiced segments were less than 0.5 s in duration
(Mehta et al., 2015).

2.2 Expert labeling

A two-step process was used to identify time periods of pure speech and singing to
serve as ground truth. First, one experimenter with a professional singing background
listened to the ambulatory recordings and extracted approximately two minutes of
singing and two minutes of speech (�4800 voiced frames) from the weeklong record-
ings of each subject. The following general guidelines were followed to select segments
of singing and speech from each subject’s weeklong recordings. Using a custom graphi-
cal user interface, the experimenter could visualize the percentage of voicing over slid-
ing five-minute windows during each daily recording. A high percentage of voicing was
indicative of regions containing either heavy voice use or singing. The interface then
allowed the experimenter to zoom in on the high-voice-use segments and listen to an
audio playback of the signal. Even though the accelerometer recordings are unintelligi-
ble, enough information is retained (e.g., pitch characteristics) to differentiate singing
and speech based on listening to the signals. The goal was to extract approximately
two minutes of contiguous singing (uninterrupted by speech) and two minutes of
contiguous speech for each subject. Figure 2 displays example accelerometer segments
containing singing and speech segments for a healthy control subject (see Mm. 1 and
Mm. 2 for longer media files).

Mm. 1. Example of a singing segment from the ambulatory voice recording of a subject
with no history of voice disorders. The signal is from an accelerometer sensor placed on the
anterior neck surface and is sampled at 11025 Hz. This is a file of type “wav” (4473 KB).

Mm. 2. Example of a speech segment from the ambulatory voice recording of a subject
with no history of voice disorders. The signal is from an accelerometer sensor placed on the
anterior neck surface and is sampled at 11025 Hz. This is a file of type “wav” (8642 KB).

In the second step, two speech-language pathologists specializing in voice
disorders and who had professional singing experience independently listened to all

Fig. 2. Example waveforms and spectrograms for accelerometer segments from a healthy control subject con-
taining (A) singing and (B) speech. See Mm. 1 and Mm. 2 for longer media files.
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extracted voice samples. If one of the two independent raters identified any voicing as
not obviously speech or singing, the vocalization was deleted. Furthermore, all obvious
instances/segments of coughing, throat clearing, burping, laughing, crying, and audible
swallowing were manually removed.

2.3 Classification algorithm

The first step of the classification algorithm used a logistic regression on two singing-
related features computed for each 50-ms voiced frame. The two features were (1) the
first non–zero-lag autocorrelation peak amplitude (normalized by the zero-lag ampli-
tude) and (2) fo in semitones (with reference to each subject’s weeklong fo mode).
These two features were hypothesized to capture singing characteristics related to
enhanced periodicity/resonance and elevated pitch. Each voiced frame was initially
classified as singing if the predicted probability of the logistic regression was greater
than 0.5; the voiced frame was classified as speech if the predicted probability was less
than 0.5. The logistic regression was trained on a training set of 15 patient-control
pairs (30 subjects). Figure 3 shows the distributions of normalized autocorrelation
peak and for each class in the training data.

The second step of the classification algorithm consisted of a reassignment of
labels for each voiced frame based on a majority rule within each phrase group. Thus,
all the voiced frames within each phrase group were re-classified as singing or speech
according to the percentage of voiced frames initially classified as singing or speech,
respectively, within the phrase group. To determine the appropriate singing percentage
threshold on the training set, a cost function was applied that penalized false positives
and false negatives with weights of 0.75 and 0.25, respectively (future work could
explore alternative weighting schemes). The optimal point on the receiver operating
characteristic (ROC) curve for this cost function was calculated using the perfcurve
function in MATLAB 2017a (The MathWorks, Inc., Natick, MA). The imbalanced
penalization was desired for when the algorithm would be used in practice. Since, in
daily life, subjects typically spend significantly less time singing than speaking, speech
frames misclassified as singing could have severe confounding effects when analyzing
long-term, ambulatory data. Therefore, a classifier that weighted the false positive and
false negative rates equally was not desired.

The resulting logistic regression equation and singing percentage threshold for
phrase-based label reassignment were then applied on a held-out test set of the remain-
ing five patient-control pairs (ten subjects).

3. Results

The first classification step on the training set resulted in the following frame-based
logistic regression:

y ¼ 1
1þ e�ð14:42�NPþ0:31�fo�14:2Þ ; (1)

where NP is the normalized autocorrelation peak amplitude and fo is the fundamental
frequency (in semitones) for each voiced frame. For the second, phrase-based frame
reassignment step, the optimal point on the initial ROC curve using the weighted cost
function resulted in a singing percentage threshold of 57%; i.e., voiced frames within

Fig. 3. (Color online) Distributions of (A) normalized autocorrelation peak and (B) fo for ground-truth labeled
singing and speech in training set.
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an entire phrase were all re-classified as singing if at least 57% of the voiced frames
were initially classified as singing, otherwise the frames were re-classified as speech).

Figure 4 shows the predicted probability of the logistic regression, the distribu-
tion of frames per phrase group classified as singing, and the ROC curves for both the
logistic regression and reassignment steps.

Table 1 provides a summary of the results in terms of confusion matrices. For
the training set, the first classification step (top panel of Table 1) resulted in a frame-
based overall accuracy of 86.5%, sensitivity of 85.4% (correct classification of singing),
and specificity of 87.5% (correct classification of speech). The second classification step
(middle panel of Table 1) applied a 57% singing percentage threshold for phrase
groups. This reassignment step resulted in a significantly improved overall accuracy of
93.3%, sensitivity of 90.3%, and specificity of 96.4%. Finally, applying both steps to
the held-out test set (bottom panel of Table 1) resulted in an overall accuracy of
94.2%, sensitivity of 93.5%, and specificity of 95.0%.

4. Discussion

The results of the singing detector developed in this study are encouraging and provide
evidence that an automated algorithm can perform well on ambulatory voice monitor-
ing data. It is acknowledged that the algorithm was optimized on a limited subset of all
the data available from study subjects. The experimental paradigm necessarily consisted
of the manual selection of singing and speech segments from thousands of hours of
recorded data to balance the need for a ground-truth database and the labor-intensive
nature of the expert-labeling process. A more comprehensive analysis is outside of the
scope of the current methodologically oriented study. Additional classifier architectures
were also considered, including support vector machines (SVMs) and neural networks
(NNs), but were not pursued due to the strong performance of the reported logistic
regression. An effective logistic regression classifier with such a minimal feature set is
also well-suited for a clinical research setting, where human-interpretability of classifica-
tion decision rules may be desired.

As is often the case with signal processing, algorithms (e.g., for voice activity
detection) are created with parameter settings that can be modified to suit given hard-
ware configurations and experimental contexts. The particular parameter settings

Fig. 4. (Color online) (A) Predicted probability plot for the first logistic regression step on the training set, with
0.5 cutoff value indicated (vertical line). (B) Percentage of frames within a phrase group classified as singing by
logistic regression, with optimal 57% threshold indicated (vertical line). (C) Receiver operating characteristic
curves for the first logistic regression step and second phrase-group reassignment step, with operating point cor-
responding to the 57% threshold indicated (open circle).

Table 1. Singing/speech confusion matrices showing the percentage of correctly classified frames (bold) for the
training set (before and after applying a phrase group-based reassignment of predictions based on a majority
rule) and test set. Percentages are based on the total number of voiced frames in the data set. Therefore, perfect
classification would be 50% per class instead of 100%.

Logistic regression
(training set)

Post-reassignment
(training set)

Post-reassignment
(test set)

Expert label Speech Singing Speech Singing Speech Singing

Speech frames 88 304 (43.2%) 12 572 (6.2%) 97 218 (47.6%) 3 658 (1.8%) 23 596 (45.6%) 1 253 (2.4%)
(% total frames)
Singing frames 15 103 (7.4%) 88 318 (43.2%) 10 011 (4.9%) 93 410 (45.7%) 1 759 (3.4%) 25 175 (48.6%)
(% total frames)
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chosen for voice activity detection are tuned toward the detection of nearly periodic
vocalizations because of the ambulatory nature of the neck-skin acceleration record-
ings; i.e., to maximize identification of voiced analysis frames and minimize misclassifi-
cation of noise or non-voicing as “voiced.” Since voiced segments exhibiting high levels
of dysphonia or singing growls/screams cannot be identified in ambulatory recordings
without significantly increasing the amount of misclassifications, including phonation
with higher degrees of aperiodicity will require different voice activity detection settings
and a different type of singing detector. Results warrant future analyses of repeatabil-
ity and robustness of the singing detector across other ambulatory voice monitoring
devices, singing styles with high degrees of aperiodicity, and longer time periods of
unstructured ambulatory recordings.

5. Conclusion

The present classification scheme results in highly accurate detection of singing from
ambulatory neck-surface acceleration recordings, providing a promising clinical and
research tool. Although extracting estimates of normalized autocorrelation peak and
fundamental frequency at the frame-based level performed well initially, applying a
phrase-based reassignment based on majority rule yielded a significant improvement in
singing and speech classification. Future work can apply the singing detector to deter-
mine if differences in average voice measures and vocal load between patients with
PVH and matched healthy controls can be detected by separately examining singing
(especially given different singing genres) and speech segments. The singing detector
may also have uses in real-time biofeedback applications where the goal might be to
target vocal behaviors that are specifically associated with either singing or speech.
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