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Abstract

G protein-coupled receptors (GPCRs) represent important drug targets, as they regulate pivotal 

physiological processes and they have proved to be readily druggable. Natural products have been 

and continue to be amongst the most valuable sources for drug discovery and development. Here, 

we surveyed small molecules and (poly-)peptides derived from plants, animals, fungi, and 

bacteria, which modulate GPCR signaling. Among naturally occurring compounds, peptides from 

plants, cone-snails, snakes, spiders, scorpions, fungi, and bacteria are of particular interest as lead 

compounds for the development of GPCR ligands, since they cover a chemical space, which 

differs from that of synthetic small molecules. Peptides, however, face challenges, some of which 

can be overcome by studying plant-derived compounds. We argue here that the opportunities 

outweigh the challenges.

G Protein-Coupled Receptors and Natural Products: A Magic Dyad

In the beginning of the 19th century, the German pharmacist Friedrich Sertürner extracted 

opium (i.e., the dried latex of the poppy Papaver somniferum) and isolated for the first time 

a pharmacologically active compound from a plant [1]. The most active opium component, 

which he named morphine, became a precedent for the exploration of natural products for 

medicinal purposes. Since then, many drugs from plants and other organisms, including 

fungi, bacteria, and animals, have been discovered. In fact, these compounds were 

instrumental for the emerging discipline of pharmacology. This can be gauged from the 

nomenclature of receptors: acetylcholine receptors, for instance, are still classified based on 

their prototypical agonists, nicotine (from the herbaceous plant Nicotiana tabacum) and 

muscarine (from the mushroom Amanita muscaria). Because of their very large structural 

and chemical diversity, natural products still continue to be powerful and invaluable sources 

of compounds with drug-like properties (see Glossary) [2]. For instance, a recent 
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systematic survey demonstrated that between 1981 and 2014, 34% of the 1562 new drugs 

approved by the FDA were derived from natural products and their derivatives [3].

G protein-coupled receptors (GPCRs), also referred to as seven-transmembrane receptors 

[4], represent the largest family of membrane proteins: the human genome encodes 

approximately 800 members [5] (i.e., GPCRs account for about 13% of all membrane 

proteins). The seven-transmembrane core of these receptors, in combination with variable N-

terminal extensions, allows for recognition of chemically diverse ligands ranging from ions, 

small amines and organic acids (including volatile odorants), nucleosides and nucleotides to 

lipids, peptides, and large proteins. The extracellular ligand binding pocket represents the 

input side; the helical bundles of the hydrophobic core allow for translating the 

conformational change induced by ligand binding to the output side on the intracellular face: 

this results in both G protein-dependent and G protein-independent cellular signals [4,6,7]. 

Apart from the orthosteric site, where the cognate agonists are bound, GPCRs also harbor 

additional binding sites, which support allosteric modulation of their activity [5,7]. Because 

structures of more than 50 distinct GPCRs have been solved, it is possible to combine 

computational approaches, combinatorial chemistry, and high-content screening to identify 

new GPCR ligands [8]. It is thus likely that, in the foreseeable future, GPCRs will remain a 

prime target of approved and marketed drugs [5].

Considering GPCRs as today’s most exploited drug targets and the utmost importance of 

natural products for drug discovery, in this review we provide an overview of natural 

products from plants, animals, fungi, and bacteria that have been discovered as GPCR 

ligands throughout the past seven decades. For the sake of clarity, we define a natural 

product as any unmodified compound either: (i) isolated from a plant, an animal, a fungus, 

or a bacterium; or (ii) identified in any of these organisms via in silico approaches, followed 

by its chemical synthesis and pharmacological characterization. Further, we present a 

compilation of nature-derived ligands that are available as approved drugs (past and present) 

acting on GPCRs. Nature-derived peptides cover a chemical space, which is not readily 

accessible to synthetic combinatorial chemistry. Hence, we will summarize recent findings 

on nature-derived peptides as GPCR ligands and point out the opportunities provided by 

plant-derived cysteine-rich peptides, venom-derived peptides from cone-snails, snakes, 

spiders, and scorpions, as well as peptides from marine fungi and bacteria, as novel drug 

leads. Finally, we will discuss challenges and opportunities of nature-derived peptides for 

GPCR ligand discovery. Overall, this review provides a brief historical overview and 

summary about the discovery of natural products as GPCR ligands and highlights the 

emerging potential of nature-derived peptides as a toolbox and treasure-trove of GPCR drug 

discovery and development.

Diversity of Natural GPCR Ligands

As a starting point for a comprehensive overview of natural products targeting GPCRs, we 

performed database searches using PubMed and Science Direct to mine the published 

literature from September 1954 until August 2018. The common Medical Subject Heading 

terms including natural product, GPCR, plant, bacteria, fungi, and venom in various 

combinations were used in the database search engines. Our analysis focused on the known 
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GPCRs of all five major families in humans, including class A (rhodopsin), class B 

(secretin), class C (glutamate), class F (frizzled/taste), and the adhesion receptor family. In 

total, there are 643 unmodified natural products that act on GPCRs. Figure 1A (Key Figure) 

illustrates the ratio and number of natural GPCR ligands that have been identified in the four 

kingdoms of life, namely plants, animals, fungi, and bacteria. Among these, plants represent 

the most eminent source, accounting for 66% (424) of all nature-derived GPCR ligands 

(643) (Figure 1A). Furthermore, we determined that secondary metabolites represent the 

majority of natural GPCR ligands isolated from plants.

Based on published knowledge it is evident that aminergic, opioid, and cannabinoid 

receptors are primary GPCR targets of natural products (Figure 1B). Additionally, taste 2 
GPCRs and its diverse receptors were identified as one of the major families targeted by 

nature-derived compounds (Figure 1B). However, according to our analysis based on 

published knowledge, only 119 GPCRs (out of an estimated >800 receptors) have been 

targeted by natural products. This further highlights that more than 600 GPCRs remain to be 

discovered as targets of naturally occurring ligands. In this context it is noteworthy to 

emphasize that small molecules account for the majority of GPCR ligands, which we 

identified (539; 84%), while 104 ligands (16%) are peptides. Most small molecules were 

found in plants, whereas animals, fungi, and bacteria represent the most abundant sources of 

peptide GPCR ligands.

It is interesting to note that at least 16 FDA-approved drugs (past and present) that target 

GPCRs, are natural products (Table 1); this list is largely a compilation to provide an 

overview. Among those drugs, exendin-4 isolated from the Gila monster (Heloderma 
suspectum) is an example of a nature-derived peptide drug (BYETTA®). It was introduced 

in 2005 to treat diabetes mellitus type 2 and acts as an agonist of the glucagon-like peptide-1 

receptor [9].

Nature-Derived Peptides as GPCR Ligands

Naturally occurring small molecules have had an important role in the history of GPCR drug 

discovery. In many instances, this can be traced to their superior drug-like properties, most 

notably high stability and good oral bioavailability [10]. Besides, small molecules are 

associated with further advantages, such as low production costs and lipophilicity, a 

characteristic that confers them the ability to penetrate cells and cross membranes. Small 

molecules currently dominate the drug market mainly for these reasons [5,11]. However, 

several drawbacks limit their usefulness in drug development. For instance, limited target 

specificity and hence increased probability for off-target effects remain a persistent problem 

[12]. By contrast, over the past few years peptides have gained remarkable interest and 

significance in drug discovery. They are recognized as reliable alternatives for small 

molecules, owing to their high selectivity and low toxicity [11]. In addition, peptides may be 

metabolized and cleared without accumulation in body tissues, thereby minimizing the 

occurrence of side effects [13]. This explains why there are currently more than 60 peptides 

approved as drugs, over 150 peptides under clinical investigation for a variety of indications 

[13], and many more in preclinical development.
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It is safe to conclude that naturally occurring small molecules will remain important 

templates for GPCR drug discovery. However, our analysis demonstrates that the discovery 

of small molecules reached an apparent peak in 2010 (Figure 1C). By contrast, starting from 

1980, the number of identified peptide GPCR ligands has been continuously rising, with a 

notable boost between 2015 and 2018 as nature-derived peptides were starting to be 

recognized for their potential in drug development. We predict this trend will continue with 

the help of emerging peptide-mining and -chemistry technologies and because of the steadily 

increasing importance of peptides for drug development.

An exhaustive list of 103 GPCR-targeting nature-derived peptides, including their natural 

sources, targets, mode-of-action, and structural properties is illustrated in Table 2 [one 

peptide GPCR ligand, exendin-4 has already been approved (Table 1)]. This number would 

be considerably larger if one were to consider human endogenous or protein-embedded 

GPCR ligands that become activated by proteases, for instance upon viral infection (Box 1). 

Representative examples of these nature-derived peptide classes will be discussed in detail in 

the sections below.

Plant-Derived Cyclotides as Starting Points for GPCR Drug Discovery

Cyclotides are disulfide-rich plant peptides characterized by a head-to-tail cyclized 

backbone and six conserved cysteine residues, which form three knotted disulfide bonds. 

This unique topology, referred to as cyclic cystine-knot motif, provides them with a tightly 

packed 3D fold resulting in exceptional stability against thermal, chemical, and enzymatic 

degradation [14,15]. Hitherto, cyclotides have been identified in several plant families, 

including violet (Violaceae), coffee (Rubiaceae), cucurbit (Cucurbitaceae), pea (Fabaceae), 

potato (Solanaceae), and grass (Poaceae) [16]. Cyclotides exhibit manifold bioactivities, 

such as uterotonic [17] and immunomodulatory properties [14]. Their endogenous function 

appears to be as plant defense molecules: they modulate insect GPCRs [18] and exhibit 

antiherbivore effects towards plant pests [19]. Intriguingly, a single species can express over 

150 distinct cyclotides and the number of cyclotides to be discovered in plants has been 

predicted to exceed 150 000 [16]. They comprise one of the most abundant classes of 

ribosomally synthesized peptides in plants [20] and display substantial structural plasticity 
and sequence diversity around the conserved cystine-knot motif [16,21]. Owing to their 

outstanding stability, cyclotides constitute interesting starting points for peptide-based 

GPCR drug discovery.

In 1994, preliminary experiments with cyclopsychotride A isolated from a tropical 

Psychotria species demonstrated the ability of cyclotides to interfere with neurotensin 

receptor binding [83]. The field of cyclotide GPCR ligand discovery received a breakthrough 

by Koehbach et al., who provided an evidence-based explanation for the use of cyclotide 

plants as traditional uterotonic medicine [17]. A bioactivity-guided fractionation approach 

was used to analyze an herbal extract from the African medicinal plant Oldenlandia affinis. 

This led to the identification of peptide-enriched fractions, which stimulated contractions of 

human uterine smooth muscle cells. Peptidomics analysis of these fractions allowed the 

isolation of kalata B7 (kB7) as active compound. This cyclic peptide was shown to bind to 

human oxytocin (OXT) and arginine-vasopressin (AVP) V1A receptor [17] with an affinity in 
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the low μM range. Additional experiments confirmed that kB7 acts as a partial agonist of the 

OXT receptor (OXTR) (EC50 = 12 μM) and V1AR (EC50 = 4 μM). To gain more insights 

into receptor–ligand interaction, the structure of kB7 was determined by nuclear magnetic 

resonance spectroscopy. This uncovered high similarity between loop 3 of kB7 and human 

OXT, explaining the properties of kB7 to act as a GPCR agonist. Since cyclotides are larger 

and bulkier than the nonapeptides OXT and AVP, four OXT-like peptides were designed by 

using the structure of loop 3 of kB7 as a template. This approach yielded the nonapeptide 

[G5,T7,S9]-OXT with improved affinity (Ki = 218 nM) and increased potency as a full 

agonist with an EC50 of 145 nM [17]. Intriguingly, the plant-inspired ligand had improved 

receptor subtype selectivity for the human OXTR over its three AVP receptor counterparts 

(V1AR, V1BR, and V2R). The development of selective ligands is of relevance in this area: 

lack of receptor selectivity limits their use as therapeutic drugs or chemical probes [22]. This 

study provided a proof-of-concept that plant-derived cyclotides can be exploited as 

templates for peptide-based GPCR ligand design [17]. Knowing that cyclotides are capable 

of modulating GPCRs of class A family, in a more recent study Fahradpour and colleagues 

explored modulatory properties of cyclotides, isolated from an ipecac root extract 

(Carapichea ipecacuanha), on corticotropin releasing factor type I receptor (CRFR1), a 

prototypical class B GPCR [23]. Herein, they provided an ipecac root extract that 

antagonized CRFR1 signaling (IC50 = 2.0 μg ml–1), which was subjected to bioactivity-

guided fractionation to isolate cyclotides responsible for the observed CRFR1 antagonism. 

Further pharmacological analysis of cyclotide-enriched fractions resulted in isolation and 

sequencing of seven cyclotides, referred to as caripe peptides, of which caripe 8 had the 

most pronounced antagonistic effect [23]. This study reported for the first time the ability of 

cyclotides to modulate class B GPCR signaling and highlighted potential of ipecac root-

derived cyclotides as useful tools and templates to design and develop antagonists that target 

the CRFR1 [23].

GPCR Peptide Ligands Derived from Cone-Snails and Snakes

Many animals produce venoms that are unique sources of naturally occurring peptides that 

have evolved to cover a large repertoire of pharmacological properties [24]. Cone-snails 

produce a strikingly diverse collection of peptides, which are referred to as conopeptides or 

conotoxins [25]. Due to their small size, stability, and amenability for synthesis, these 

(often) disulfide-rich peptides constitute valuable drug leads [26]. The majority of 

conotoxins target ion channels; only a minor portion (i.e., 14 venom peptides) act on GPCRs 

[27,28]. For instance, the conopeptide ρ-TIA was identified as an allosteric modulator acting 

on the α1B adrenoceptor (ADRA1B) [29]. Pharmacological analysis of this peptide isolated 

from the crude venom of fish-hunting Conus tulipa revealed a unique mechanism of action; 

ρ-TIA noncompetitively antagonized ADRA1B (IC50 = 2 nM) [29]. In a follow-up study, 

Chen et al. further explored the pharmacological profile of ρ-TIA in radioligand binding 

assays and observed a competitive antagonism at the α1A- (ADRA1A; IC50 = 18 nM) and 

α1D-(ADRA1D; IC50 = 25 nM) adrenoceptors, suggesting that ρ-TIA might be exploited as 

a template for rational design of highly selective adrenoceptor ligands [30]. Other examples 

of conotoxin-derived GPCR ligands have been reported in recent years. These include 

conorphin-T, a κ-opioid receptor (OPRK) ligand (Ki = 80.4 nM; EC50 = 9.8 μM), 

conopressin-T, a ligand with nanomolar affinity for human OXTR (Ki = 100 nM), and V1AR 
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(Ki = 319 nM) and contulakin-G, a neurotensin receptor 1 (NTR1) agonist (EC50 = 960 nM) 

(summarized in [27]). Intriguingly, conotoxins further target gamma aminobutyric acid 

(GABA) B receptors, an attractive therapeutic target for pain management, although the 

exact mechanism remains unclear. Initial studies revealed that conotoxins, in particular 

Vc1.1 and RgIA, inhibit N-type calcium channels Cav2.2 and Cav2.3 via a voltage-

independent mechanism probably mediated by Gαi/o subunit of GABAB receptors and c-Src 

tyrosine kinase activity [27]. By contrast, subsequent studies reported that Vc1.1 and RgIA 

do not compete with orthosteric ligands such as baclofen or GABA, suggesting an allosteric 

interaction to a currently unknown binding site [27]. Hence, further studies are required to 

elucidate a precise mode-of-action of GABAB receptor-provoked Cav inhibition mediated by 

conotoxins.

Snakes also produce potent peptides that act as natural GPCR ligands. In our analysis we 

identified published information of about 30 snake peptides that target GPCRs. For example, 

mamba snake venom contains toxins that can modulate GPCRs by distinct modes-of-action: 

MT7 peptide is a negative allosteric modulator of the M1 muscarinic receptor [31]; ρ-Da1a 

and ρ-Da1b antagonize α1A- and α2A-adrenoceptors, respectively [32,33]. Recently, a 

peptide of 57-amino acids, which targets a GPCR, was identified in the venom of a green 

mamba [34]: this peptide, termed mambaquaretin-1, exhibited nanomolar affinity for the 

V2R (Ki = 2.8 nM) but was inactive on nine cardiac ion channels and 155 additional GPCRs. 

mambaquaretin-1 antagonized V2R-dependent cAMP production (Ki = 12 nM), β-arrestin-1 

mobilization (Ki = 110 nM), and mitogen-activated-protein kinase phosphorylation (Ki = 

210 nM) in a competitive manner. Interestingly, mambaquaretin-1 belongs to the family of 

proteins comprising a Kunitz domain; it exerts its inhibitory action on the V2R via its first 

loop (in the same manner that aprotinin inhibits trypsin). Injection of mambaquaretin-1 in 

rodents resulted in an aquaretic effect (i.e., enhanced urine outflow and decreased urine 

osmolality). Moreover, in a juvenile model of polycystic kidney disease, mambaquaretin-1 

inhibited progression of cysts. This highlights its potential usefulness for the treatment of 

polycystic kidney disease [34].

GPCR Peptide Ligands from Arachnids: Scorpions and Spiders

Venoms from spiders and scorpions are best known for their action on ion channels; 

however, they also contain peptides, which act on GPCRs. For instance, α-latrotoxin isolated 

from the black widow spider of the genus Latrodectus is a large polypeptide toxin (128 kDa) 

that binds to the latrophilin 1 receptor (ADGRL1), a member of the class B family of 

GPCRs [35], with high affinity (Kd = 0.54 nM). Additionally, δ-CNTX-Pn1a, a peptide from 

Phoneutria nigriventer spider venom, induced antinociception in in vivo pain models by 

activating cannabinoid 1 (CNR1) as well as the μ-opioid receptor (OPRM) and the OPRK 

[36]. Further, BmK-YA, identified as an enkephalin-like peptide by screening venom 

extracts of Asian scorpion Buthus martensii, activates mammalian opioid receptors with 6.8- 

and 12-fold increased selectivity for δ-opioid receptor (OPRD) over OPRM and OPRK, 

respectively. BmK-YA is a full agonist of OPRD with an EC50 of 2.5 μM [37].
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GPCR Peptide Ligands Derived from Marine Fungi and Bacteria

Marine-derived fungi have further proven to be a rich source of biologically active peptides 

that might be exploited for development of novel GPCR-based drug leads. Recently, in the 

study of Almeida et al., the marine-derived fungus Stachylidium sp. was isolated from the 

sponge Callyspongia flammea, and the culture on a biomalt medium supplemented with sea 

salt enabled the isolation of endolide A and B [38]. These unusual cyclic tetrapeptides 

containing an N-methylation and a very rare 3-(3-furyl)-alanine moiety were studied in 

radioligand binding assays. Here, endolide A was demonstrated to bind to the V1AR (Ki = 

7.04 μM), whereas endolide B showed an affinity to the serotonin 5HT2B receptor (Ki = 

0.77 μM). Intriguingly, endolide B is selective for the 5HT2B receptor, exhibiting no affinity 

towards ten other serotonin receptor subtypes [38].

Additionally, marine cyanobacteria have received increasing attention in recent years as 

another rich source of bioactive peptides with diverse activities. Al-Awadhi et al. isolated 

five novel linear hexapeptides, termed brintonamides A–E, from a marine cyanobacterial 

sample [39]. Following chemical synthesis and their structural determination highlighting 

major differences in the N terminus, they were screened in a panel of 241 GPCR targets to 

uncover their cellular activities. Brintonamides A and B were inactive at all tested GPCRs, 

highlighting the importance of the hydroxy group at the N terminus for activity. By contrast, 

brintonamide C, associated with an N,N-Me2-Phe residue at the N terminus, activated C-X-

C chemokine receptor type 7 (CXCR7) (EC50 = 10.5 μM), while it antagonized somatostatin 

receptor 3 (SSTR3) and tachykinin receptor 2 (TACR2) with similar IC50 values, 6.1 nM and 

5.5 nM, respectively. The cis and trans isomers, brintonamides D and E, containing a 

cinnamic acid at the N terminus showed moderate agonistic/antagonistic activities. The trans 
isomer brintonamide D was active at CXCR7 (EC50 = 4 μM), OXTR (IC50 = 6.8 μM), 

SSTR3 (IC50 = 3.1 μM), TACR2 (IC50 = 1.8 μM), and C–C chemokine receptor type 10 

(CCR10), at which it exhibited the highest potency with respect to the other brintonamides 

(IC50 = 440 nM) [39]. Compared with brintonamide D, the cis isomer brintonamide E was 

inactive at SSTR3, while it was similarly potent at four other GPCRs, indicating that the 

trans configuration of brintonamides is important for maintaining activity against SSR3. 

Given the role of CCR10 in cancer progression and metastasis, this study further revealed 

that the most potent CCR10 antagonist, brintonamide D, is capable of inhibiting 

proliferation and migration of breast cancer cells in a CCR10-dependent manner [39]. Taken 

together, these examples demonstrate that peptides isolated from venoms of cone-snails, 

snakes, spiders, and scorpions, as well as peptides derived from marine fungi and bacteria, 

constitute important and rich natural sources for the discovery of novel GPCR ligands. Their 

remarkable structural and functional diversity make them valuable templates for the 

development of novel GPCR ligands, with potential drug lead-like properties.

Concluding Remarks and Future Perspectives

The classical workflow for nature-derived drug discovery starts with sample extraction and 

isolation. Samples from various organisms are crude extracts that contain the peptide(s) of 

interest, usually in a low concentration, in a complex mixture with other biological products 

[16]. The peptide GPCR ligands are extracted by extensive fractionation and purification, for 
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instance using solid-phase extraction or chromatography (Figure 2A). The isolated peptides 

are then subjected to structure elucidation methods such as mass spectrometry, nuclear 

magnetic resonance spectroscopy, or X-ray crystallography (Figure 2B). Finally, the purified 

peptides are screened in pharmacological ligand binding and functional assays using cells or 

tissues expressing (endogenous or heterologous) GPCRs [40] (Figure 2). This enables 

analysis of affinity and functional GPCR responses, such as second messenger production or 

arrestin recruitment.

There are multiple challenges and obstacles associated with the classical workflow that must 

be overcome to develop naturally occurring peptides into clinically relevant drugs. For 

instance, extensive separation techniques and structural elucidation methods are time-

consuming and labor-intensive. In addition, the cost of peptide production is high when 

compared with small molecules. Currently, the production of peptides relies on solid-phase 

peptide synthesis, which is limited by the peptide length, and it cannot achieve production 

scales typical of organic synthesis. In addition, oral bioavailability of peptides is, in general 

poor and they do not readily cross membranes, which limits their biodistribution. Due to a 

lack of stability, peptides are in many instances rapidly degraded in biological fluids. These 

drawbacks and limitations must be overcome to make a convincing case for their suitability 

in drug development [41].

Rapid advances in the field of peptide-based drug discovery and development have 

progressed to manage some of these challenges. For instance, the time-consuming and 

laborintensive isolation procedures can be accelerated by relying on the rapidly growing 

number of publicly available genome- and transcriptome data (e.g., 1KPiii and 1KITEiv) 

(Figure 2A′). In fact, in silico mining is a powerful tool in identifying novel and potentially 

bioactive peptides [42]. Limitations associated with in silico mining, such as inaccurate 

prediction of open-reading frames or determination of post-translational modifications, can 

be improved by using it in combination with mass spectrometry-based peptidomics 

[16,43,44]. Further, we believe that advances in GPCR structural biology and computational 

methods (Box 2) will greatly improve discovery and design of nature-derived peptide 

ligands (Figure 2B′). Progress in peptide synthesis (i.e., improved automated workflows and 

native chemical ligation strategies) now enables production of longer peptides of high 

quality [45,46]. In addition, nature-derived peptides can be produced by recombinant 

expression in plants or microbes (Figure 2B′) [15,47,48].

The problem with peptide stability can be tackled in different ways: peptide cyclization [15], 

introduction of unnatural amino acids, or N-methylation may reduce enzymatic degradation 

and potentially increase oral bioavailability. In addition, linear peptides can be stabilized by 

molecular grafting using cyclic disulfide-rich peptides as scaffolds [15,49]. This approach 

has been successfully applied for design and development of peptide-based GPCR ligands 

[50–53]. These grafted peptides have been mainly generated by solid-phase peptide 

synthesis, however synthesis of such constrained peptides with three disulfide bonds is 

challenging: folding problems may occur leading to non-native connectivity of disulfide 

bonds [15]. Several additional strategies have been introduced to enhance membrane 

permeability of peptides, including peptide delivery to the brain: they rely on nature-inspired 

cell-penetrating and shuttle peptides, which can readily cross biological barriers [54,55]. 
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Finally, conjugation of peptides with small molecules or antibodies allows for the 

development of compounds with improved pharmacological properties, including efficacy, 

safety, and tolerability [56]. Peptide–drug conjugates are an important class of oncologic 

imaging probes and therapeutics; for instance, chlorotoxin, a scorpion-derived peptide 

conjugated to a fluorescent dye is an excellent example of how nature-derived peptides 

might serve to target cancer [57].

GPCRs continue to represent a class of privileged drug targets, as evident from 475 FDA-

approved drugs targeting 108 unique GPCRs [5]. Natural products from plants, animals, 

fungi, and bacteria have historically played an important role in drug discovery [3,58]. In the 

recent past, many natural products have been appreciated as a largely untapped source of 

GPCR ligands. An analysis of the published literature exemplified that there are now 

approximately 600 nature-derived GPCR ligands, most of which are small molecules 

isolated from plants. There are at least 16 FDA-approved drugs (15 small molecules and 1 

peptide) derived from natural products that target various GPCRs (Table 1). While small 

molecules continue to play an important role in GPCR drug discovery, nature-

derivedpeptides(Table 2) aregaining momentum asimportant compound class for GPCR 

ligand discovery since they cover a distinct chemical space. Challenges of nature-derived 

peptide drug development can be overcome by the vast array of new technologies. Hence, 

we anticipate that nature-derived peptides will provide new opportunities for GPCR drug 

discovery and development (see Outstanding Questions).
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Box 1

Human Protein-Embedded Peptide GPCR Ligands Activated by Proteases

The CXC-motif-chemokine receptor 4 (CXCR4), originally discovered in 1996 as a co-

receptor required for the entry of the human immunodeficiency virus type 1 (HIV-1) [59], 

and its endogenous chemokine CXCL12 are involved in the regulation of cellular 

migration and homing processes, which underlie organogenesis, hematopoiesis, and 

immune responses [60,61]. Aberrant activation of CXCR4 is observed in cancer, 

autoimmune diseases, and atherosclerosis [60–62]. Accordingly, several synthetic 

CXCR4 ligands have been developed to block CXCR4 [63]. Plerixafor/AMD3100 is an 

example of a clinically approved CXCR4 antagonist [64]. Münch et al. recently 

discovered a novel endogenous CXCR4 ligand by screening a human hemofiltrate-

derived peptide library [65,66]. This strategy led to the identification of EPI-X4, a 16-

amino acid peptide fragment that arises from an albumin protein precursor that is cleaved 

by proteases such as cathepsin D and E under acidic conditions, for instance upon viral 

infection. Functional and binding studies demonstrated that EPI-X4 acts as an antagonist 

on CXCR4 by competing with CXCL12. Accordingly, EPI-X4 inhibits Ca2+-

mobilization and receptor internalization. Furthermore, this endogenous antagonist 

inhibits migration and invasion of cancer cells along a CXCL12 gradient. This 

observation suggests that EPI-X4 has anti-invasive and antimetastatic properties [66]. 

Structural studies reveal that EPI-X4 binds to the second extracellular loop of the 

receptor, thereby presumably impeding envelope protein glycoprotein 120 (gp120) 

attachment and HIV-1 entry [66,67]. In addition, EPI-X4 was shown to induce 

mobilization of stem cells and suppress infiltration of immune cells into the lung in a 

mouse model of acute allergic airway hypereosinophilia [66]. Interestingly, EPI-X4 was 

detected in the urine of patients suffering from inflammatory kidney diseases. Thus, EPI-

X4 may represent a biomarker for chronic kidney diseases and related disorders [66,67]. 

These studies describe a novel strategy to identify endogenous and ‘natural’ GPCR 

ligands, namely by exploring peptide libraries derived from human body fluids.
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Box 2

GPCR Structures and Computational Methods to Discover and Characterize 
Nature-Derived Peptide Ligands

Advances in GPCR structural biology and computational methods have provided new 

momentum for the field of GPCR ligand discovery [5,68]. High-resolution GPCR 

structures determined by X-ray crystallography or nuclear magnetic resonance 

spectroscopy increased our understanding of GPCR structure and function [5,68]. 

Recently, cryo-electron microscopy was used to elucidate the active-state structure of the 

human glucagon-like peptide 1 receptor (GLP-1R) in complex with exendin-P5 (ExP5) 

and a Gs heterotrimer [69]. ExP5, an analogue of exendin-4 (see Table 1 in main text), is 

a potent G protein-biased, selective agonist of GLP-1R [70]. Major differences between 

the endogenous ligand glucagon-like peptide 1 (GLP-1) and ExP5-bound GLP-1R 

complexes were discovered in transmembrane helix 1, extracellular portions of helices 6 

and 7, and extracellular loop 3, suggesting that these structural features are important for 

ligand bias [69]. Additionally, ExP5-mediated GLP-1R activation not only induces 

conformational changes of Gαs, but also increases the G protein activation rate via 

distinct flexibility of helix 5 and intracellular loop 3 [69]. These observations provide 

valuable insights into ligand bias that may be exploited for design of novel peptide-based 

therapeutics that target GLP-1R [69]. The availability of GPCR structures may further be 

used as a template for homology modelling and peptide–receptor interaction studies. For 

instance, Di Giglio et al. leveraged this approach to elucidate the pharmacology of 

inotocin, an ant-derived neuropeptide [71]. Structural models of several OXT- and AVP-

type receptors were utilized to identify conserved sequence positions responsible for 

peptide binding, selectivity, and function [71]. Considering the conserved residues of the 

peptide-binding cavity it was possible to explain the binding and functional properties of 

inotocin, and a synthetic D-arginine analog, which might be useful for design of selective 

agonists and antagonists [71]. In addition, emerging computational methods facilitate 

rational design of peptides by using nature-derived peptides as valuable starting points. 

Recently, Bhardwaj et al. reported accurate de novo design of conformationally restricted 

peptides [72]. They designed 18–47 residue constrained peptides as either: (i) genetically 

encodable disulfide-rich peptides, (ii) synthetic disulfide crosslinked peptides with non-

canonical sequences, or (iii) heterochiral cyclic peptides associated with non-canonical 

sequences. Each of these peptide categories demonstrated stability against thermal and 

chemical denaturation and all structures that were experimentally determined compared 

well with the computational designed models [72]. This approach has great potential for 

design and development of novel peptide-based GPCR drugs.
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Highlights

Natural products have been and continue to be an important source of GPCRs ligands.

Over 600 natural GPCR ligands have been isolated from plants, animals, fungi, and 

bacteria; they predominantly target aminergic, opioid, cannabinoid, and taste 2 receptors.

At least 16 FDA-approved drugs targeting GPCRs are natural products, mainly small 

molecules from plants.

Nature-derived peptides isolated from bacteria, fungi, plants, and venomous animals, 

such as cone-snails, snakes, spiders, and scorpions are an emerging compound class for 

GPCR ligand discovery. They represent valuable starting points for GPCR drug 

development.

New technologies in peptide discovery and peptide chemistry allow for reliable 

identification of numerous nature-derived peptides and their synthesis to advance 

pharmacological screening, lead discovery and optimization, and eventually clinical 

applications.
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Glossary

Aquaretic effect: increase in urinary volume with no loss of electrolytes.

Cyclic cystine-knot motif: conserved structural motif of cyclotides comprising a head-

to-tail cyclic backbone and a cystine-knot in which an embedded ring formed by two 

disulfide bonds is threaded by a third disulfide bond.

Drug-like properties: specific characteristics of a given molecule such as size, shape, or 

solubility shared with other molecules, which are considered as precursors of drugs (lead 

compounds).

EC50/IC50: measure of ligand potency; it defines the ligand concentration that produces 

50% of the maximum effect (Emax) or reduces the response/binding by 50%, respectively.

Enkephalin-like peptide: peptide that resembles sequence or structure of enkephalin, a 

neuropeptide that binds to opioid receptors.

Grafting: insertion of a bioactive peptide epitope into a naturally occurring stable 

peptide scaffold, thereby generating a more stable peptide while retaining biological 

activity.

Hypereosinophilia: persistent elevation of peripheral blood eosinophilic leukocytes 

greater than 1.5 × 109 l–1.

Kd/Ki: measure of ligand affinity; it is the equilibrium dissociation constant that indicates 

the concentration at which 50% of the receptor binding sites are occupied by the ligand.

Kunitz domain: domain of Kunitztype protease inhibitors consisting of about 60 amino 

acid residues stabilized by three disulfide bonds.

Ligand bias: ligand-dependent selectivity for activating a certain signaling pathway of a 

receptor relative to a reference (e.g., the endogenous peptide ligand).

Polycystic kidney disease: genetic disorder associated with occurrence of numerous 

cysts within the kidneys as well as other organs.

Secondary metabolites: biologically active small chemicals produced by microbes or 

plants, which are not directly required for normal growth, development, and 

reproduction. They are often involved in interspecies communication or defense.

Sequence diversity: variety of amino acid sequences within peptides or proteins likely 

evolved due to natural selection.

Structural plasticity: the ability of biomolecules such as peptides or proteins to tolerate 

amino acid substitutions, insertions, or deletions within the backbone chain that do not 

change the overall fold.

Taste 2 GPCRs: referred to as T2Rs or TAS2Rs, belong to a family of ~25 human 

GPCRs that enable perception of bitter taste, or more generally are activated by ‘bitter’ 

substances, not only in the tongue.

Uterotonic: agents which induce tone and contractions of the uterus muscle.
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Venom: mixture of toxic substances produced by an animal for prey capture and defense.
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Outstanding Questions

Can we develop more accurate genome-mining tools/software to predict coding 

sequences of nature-derived peptides?

Is homology-based modeling an alternative to labor intensive methods to define the 

native 3D structure of nature-derived peptides?

Can we improve synthesis and folding yields (chemistry and recombinant) to lower 

production costs (scale-up) in comparison with organic synthesis of small molecules?

Will it be possible to systematically increase the oral bioavailability of peptides without 

negatively affecting efficacy or tolerability of the peptide drugs?

Can we rely on nature-derived peptide scaffolds to improve stability, oral bio-availability, 

and biodistribution of active peptide epitopes, including delivery of peptide drugs into the 

brain?

Can we further utilize nature-derived peptides as (bivalent) ligands and chemical probes 

to study biased signaling and receptor oligomerization of GPCRs?

Are nature-derived peptides suitable ligands for GPCR structural biology to provide 

novel insight into GPCR signaling?

Will it be possible to optimize existing computational methods to advance the field of 

structure-based peptide design (e.g., docking)?

Could nature-derived peptides be used as a template for de novo design of GPCR peptide 

drug leads?
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Figure 1. 
(A) Plants constitute the best source of nature-derived GPCR ligands. (B) Taste 2, aminergic, 

as well as opioid and cannabinoid GPCRs are leading targets of natural products. (C) Trend 

in discovery of small molecules (524) versus peptides (104) as nature-derived GPCR ligands 

from 1980 to 2018. Ligands before 1980 were not included.
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Figure 2. 
Classical and Emerging Approaches of Peptide Drug Discovery to Identify Novel G Protein- 

Coupled Receptor (GPCR) Ligands. Classical approaches used for the isolation and 

characterization of nature-derived peptides from various sources include three major steps: 

(A) isolation and purification methods (e.g., solid-phase extraction and chromatography), 

and (B) structure elucidation by mass spectrometry (MS), nuclear magnetic resonance 

(NMR) spectroscopy, and X-ray crystallography. Emerging discovery strategies of peptides 

will focus on (A′) genome- and transcriptome-mining, and mass spectrometry-based 

peptidomics, (B′) structure-based design utilizing GPCR structures and computational 

methods, as well as (B′) improved peptide synthesis using chemistry methods and 

recombinant production. Both the classical and emerging approaches will be followed by 

pharmacological assays by ligand binding and functional screening (high-throughput if 

applicable).
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Table 1

Natural Products Acting on GPCRs that are Approved (Past and Present) by the FDA
a

Drug name Source Targets Medical use Drug type

Atropine Plant
(Atropa belladonna)

ACM1–ACM5 Control of heart rate; antidote 
for organophosphate 
poisoning; cycloplegia; 
mydriasis

Small molecule (alkaloid)

Caffeine Plant
(Coffea arabica)

AA1R, AA2AR, AA2BR Central nervous system 
stimulant; infant apnea

Small molecule (alkaloid)

Cannabidiol Plant
(Cannabis sativa) GPR55

b Seizures associated with 
epilepsy: Lennox-Gastaut and 
Dravet syndromes

Small molecule (cannabinoid)

Codeine Plant
(Papaver somniferum)

OPRD, OPRK, OPRM Analgesic Small molecule (alkaloid)

Ergonovine Fungus
(Claviceps purpurea)

ADRA1A Antihemorrhagic Small molecule (peptide-alkaloid)

Ergotamine Fungus
(C. purpurea)

5HT1B, 5HT1D, 
ADRA1B, ADRA1D, 
ADRA2A, ADRA2B, 
ADRA2C

Antimigraine Small molecule (peptide-alkaloid)

Ephedrine Plant
(Ephedra sinica)

ADRA1A Hypotension Small molecule (alkaloid)

Exendin-4 Animal; Gila monster
(Heloderma suspectum)

GLP1R Diabetes mellitus type 2 Peptide

Hyoscyamine Plant
(Hyoscyamus niger)

ACM1, ACM2 Antispasmodic Small molecule (alkaloid)

Morphine Plant
(P. somniferum)

OPRD, OPRK, OPRM Analgesic; opioid addiction Small molecule (alkaloid)

Pilocarpine Plant(Pilocarpus microphyllus) ACM1–ACM3 Glaucoma; dry mouth Small molecule (alkaloid)

Pseudoephedrine Plant
(E. sinica)

ADA1A, ADA2A Anti-allergic Small molecule (alkaloid)

Scopolamine Plant
(Datura stramonium)

ACM1 Motion sickness Small molecule (alkaloid)

Tetrahydro-cannabinol Plant
(C. sativa)

CNR1, CNR2 Analgesic: neuropathic pain; 
restless legs syndrome Plant extract

c

Theophylline Plant
(Camellia sinensis)

AA1R, AA2AR, 
AA2BR, AA3R

Bronchodilator; anti-asthmatic Small molecule (alkaloid)

Yohimbine Plant(Pausinystalia yohimbe) 5HT1A, 5HT1B, 
5HT1D, 5HT2B, 
5HT5A, 5HT7R, 
ADRA2A, ADRA2B, 
ADRA2C

Erectile dysfunction Small molecule (alkaloid)

a
We list natural ligands identified as drugs in the Drugs@FDA databasei as well as GPCRdbii, which are considered to function via GPCRs (data 

extracted in January 2019). GPCRs are listed using the protein name according to UniProt. For more details on GPCR nomenclature, see the 
IUPHAR/BPS Guide to Pharmacology.

b
The exact mechanism of action is unknown. Antiseizure activity of cannabidiol is probably mediated by multiple seven-transmembrane receptors, 

ion channels, and neurotransmitter transporters, however GPR55 is suggested to play an important role (see [73] for a recent review).

c
The approved form of this drug is an extract. This has been exemplarily included, however, please note that there may be other pharmacological 

mixture that exist as approved drugs, which are not listed.
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