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Abstract

Topoisomerase II (TOP2) poisons as anticancer drugs work by trapping TOP2 cleavage complexes 

(TOP2cc) to generate DNA damage. Repair of such damage by tyrosyl DNA phosphodiesterase 2 

(TDP2) could render cancer cells resistant to TOP2 poisons. Inhibiting TDP2 thus represents an 

attractive mechanism-based chemosensitization approach. Currently known TDP2 inhibitors lack 

cellular potency and / or permeability. We report herein two novel subtypes of the deazaflavin 

TDP2 inhibitor core. By introducing an additional phenyl ring to the N-10 phenyl ring (subtype 

11), or to the N-3 site of the deazaflavin scaffold (subtype 12) we have generated novel analogues 

with considerably improved biochemical potency and / or permeability. Importantly, many 

analogues of both subtypes, particularly compounds 11a, 11e, 12a, 12b and 12h, exhibited much 

stronger cancer cell sensitizing effect than the best reported previous analogue 4a toward the 

treatment with etoposide (ETP), suggesting that these analogues could serve as effective cellular 

probes.
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Introduction

Topoisomerase II (TOP2) manages DNA topology during essential DNA transactions such 

as transcription and replication.1–2 Mechanistically, TOP2 cleaves DNA using its tyrosine 

residue to generate a transient TOP2 cleavage complexes (TOP2cc) in which TOP2 is 

covalently linked to the 5′ terminus of the DNA break via a tyrosyl phosphodiester bond. 

The TOP2cc is typically re-ligated at the end of each catalytic cycle, creating a dynamic 

DNA equilibrium between the resealed form and the TOP2cc. However, when the normally 

transient TOP2cc is trapped it becomes abortive and the DNA is damaged. Clinically 

important TOP2 poisons work by this exact mechanism as they bind to and stabilize the 

TOP2cc to prevent DNA re-ligation, resulting in the accumulation of abortive TOP2cc.3–4 

Multiple lines of recent evidence demonstrated that tyrosyl DNA phosphodiesterase 2 

(TDP2) repairs TOP2-mediated DNA damages, including the abortive TOP2cc trapped by 

TOP2 poisons, and causes cellular resistance to TOP2 poisons: 1) in cultured cells and 

animal models the lack of TDP2 led to enhanced cellular sensitivity to DNA breaks induced 

by TOP2 poisons;5–9 2) up-regulation of TDP2 transcription through a gain-of-function p53 

mutation was linked to TOP2 poison resistance in human lung cancer.10 TOP2 poisons, such 

as etoposide (ETP), teniposide and doxorubicin, are widely used for treating a wide range of 

cancers, including lung cancer, testicular cancer, breast cancer and as a second line treatment 

option for platinum-resistant ovarian cancers.11 Inhibiting TDP2 represents a mechanism-

based sensitizing approach which could allow these poisons to be used at lower and safer 

doses and against cancers that are resistant to TOP2 poisons.

In addition, TDP2 could be involved in the genome repair of certain DNA and RNA viruses, 

such as hepatitis B virus (HBV)12 and picornaviruses.13–14 The genome replication of these 

viruses is protein-primed via a tyrosine residue, which results in protein tyrosine-nucleic 

acid adducts similar to the TOP2cc. The repair to remove the viral proteins at the 5′ end of 

the viral genomes is believed to be carried out by host DNA repair machineries, possibly 

TDP2. Therefore, inhibiting TDP2 could also represent a novel antiviral approach.

A few compounds have recently been reported as TDP2 inhibitors (Figure 1), including 

benzopteridine-2,4-dione (1, Ro 08–2750),15 diaminoquinoline-2,8-dione (2, NSC111041),
16 isoquinoline-1,3-diones (3),17 deazaflavins (4),15, 18–19 benzylidenepyrazolone (5, 

NSC375976),20 phenylacetylcystine (6, n = 0, NSC114532; n =1, NSC3198),20 

quinazolinylaminopyrimidinone (7),21 triazolopyridine (8),22 indenoisoquinolines (9),23–24 
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and furoquinolinediones (10)25 (Figure 1). Most of these inhibitors were identified through 

random screening of compound libraries using biochemical assays.26 A few of them, such as 

1 (reactive group), 2 (redox cycler), 5 (Michael acceptor), and 6 (redox cycler), fit the 

profiles of pan-assay interference structure (PAINS)27 and may not be appropriate for further 

development as TDP2 inhibitors. Compound 9 was reported as triple inhibitors of TOP1/

TDP1/TDP2.24 More importantly, these compounds generally inhibit TDP2 only moderately 

with IC50 values in micromolar range. The exception is the deazaflavin chemotype (4) which 

inhibited TDP2 in nanomolar range with a genuine structure-activity relationship (SAR)15 

and a defined binding mode,18 and sensitized cancer cells to TOP2 poison ETP,19 

representing by far the most potent and the best characterized TDP2 inhibitor type. The 

challenge, however, is that the SAR revealed a strong dependence of TDP2 inhibition on the 

H-bond donating ability of the substituent on N-10 phenyl, rendering potent compounds 

poorly permeable.15 This is consistent with the observation that the sensitizing effect by the 

most potent analogue 4a (R = meta-tetrazole, chemotype 4) on DT40, chicken lymphoma 

cells, toward ETP treatment was not as pronounced as predicted based on its nanomolar 

potency in biochemical assays.19 Therefore, as potent as some of the reported 4 analogues 

are in biochemical assays, their use as cellular probes to study cellular functions of TDP2 is 

limited.

Ideally, molecular probes enabling cellular studies should have balanced profiles of potent 

inhibitory activity, good permeability and low cytotoxicity within the concentration range of 

studies. Interestingly, Raoof et al. also reported that an inactive compound of the same 

deazaflavin core exhibited good permeability and reduced efflux,15 suggesting that it is 

possible to develop the deazaflavin core into useful probes. We report herein our medicinal 

chemistry efforts toward this end. By chemically modifying the N-10 and N-3 sites (Figure 

2), we have generated novel deazaflavin subtypes with enhanced potency, both 

biochemically and in cancer cells, and improved permeability.

Results and Discussion

Chemistry

Deazaflavin scaffold 4 was prepared according to reported procedures (Scheme 1A).15 The 

synthesis involved reaction of 6-chlorouracil (13) with substituted amines (14) to provide 6-

amino intermediate 15 which upon reacting with 4-cyano-2-fluorobenzaldehyde (16) yielded 

the deazaflavin core (4). The key to the synthesis of subtype 11 was the preparation of amine 

intermediates 20-21 (Scheme 1B). Intermediates 20 were synthesized from an N-Boc 

protected 3 or 4-aminophenol (17) which was treated with substituted benzyl bromides (18) 

to yield corresponding O-benzyl derivatives (19). The subsequent deprotection of the N-Boc 

with TFA gave the aniline derivatives (20). On the other hand, amine intermediates 21 was 

synthesized via an SNAr reaction of phenolic alcohol 22 with 4-nitrophenyl fluoride 23 
followed by the reduction of the nitro group. To advance the synthesis, amines 20 or 21 were 

reacted with 6-chlorouracil (13) to give intermediate 25 which upon condensation with 4-

cyano-2-fluorobenzaldehyde (16) furnished subtype 11 (Scheme 1B).
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N3-substituted deazaflavin subtype 12 was efficiently synthesized in one step from scaffold 

4 via a modified Chan-Lam coupling28–30 with substituted boronic acids 26 under the 

catalysis of Cu(OAc)2 (Scheme 1C).

It is important to note that most of our analogues of subtype 12 bear a phenolic alcohol off 

phenyl ring A, which could complicate their synthesis from the corresponding 4 via the 

Chan-Lam coupling as both the NH at 3 position and the phenolic alcohol can be arylated 

under the Chan-Lam condition (Figure 3). However, in all our synthesis the N-arylated 

compounds of subtype 12 were obtained as the sole products, and the formation of the O-

arylated subtype 11 was not observed (Figure 3). This complete chemoselectivity of N-

arylation over O-arylation31 under Chan-Lam condition was confirmed by synthesizing 

analogue 12b, 12j-k via an alternative linear synthesis (Scheme 2). In this synthesis, phenyl 

ring B was introduced at the very beginning of the synthesis as part of the starting urea 27. 

Cyclocondensation of 27 with diethylmalonate produced the 1-phenylpyrimidine-trione (28) 

in excellent yield under reflux which upon treatment with POCl3 in the presence of 

BnEt3NCl yielded the key intermediate 3-phenylpyrimidine-2,4-dione (29).32–33 Reaction of 

6-chloro intermediate (29) with anilines afforded 6-amination products in moderate to 

excellent yields. The desired deazaflavin subtype 12 was constructed in moderate yields by 

the subsequent amination and condensation reaction sequence.15 12b synthesized from this 

linear route was found identical to that obtained via the Chan-Lam coupling. It is also 

noteworthy that analogues 12j-k and 31 were synthesized via the linear route only.

Biology

To assess TDP2 inhibitory activity all final compounds were tested in dose-response fashion 

using our recently developed fluorescence-based biochemical assay.21 Most analogues were 

also evaluated for both the toxicity and sensitizing effect on chicken lymphoma DT40 cells 

toward treatment with ETP. Permeability was measured for all final compounds in Parallel 

Artificial Membrane Permeation Assay (PAMPA).34 Additional cytotoxicity studies were 

carried out in HepG2 cells for all final compounds, and in HeLa cells for most analogues. 

These cells are widely used for the infection of HBV and picornavirus, respectively.

The first series of compounds (Table 1) served as a control series centered around analogue 

4c. IC50 values from our own biochemical assay largely agreed with reported values15 (Table 

1 footnote) and followed similar SAR trends in that 1) potent TDP2 inhibition by 

deazaflavin subtype 4 generally required a polar substituent with H-bonding ability on 

phenyl ring A (4a-c); removal (4d) or etherification (4e-h) of the OH group led to activity 

drop by 2–10 fold; 2) analogues with a meta polar group on phenyl ring A demonstrated 

better potency than those with a para polar group (4b vs 4c). Unfortunately, the polar group 

(OH or tetrazole) critical for target binding also conferred extremely low PAMPA 

permeability (4a-c) with the effective permeability coefficient (Pe) in the range of 0.003–

0.01 (a Pe of ≥ 1.5 is considered indicative of high permeability). PAMPA permeability was 

substantially improved upon removal (4d) or etherification (4e-h) of the polar OH group 

(Table 1). Notably analogue 4f was designed to achieve balanced potency and permeability 

based on the concept of lipophilic H-bond donor.35 Because the H of the difluoromethoxy 

group (–OCHF2) is rendered acidic by strong electron-withdrawing O and F atoms, 
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presumably this functionality could provide the key H-bonding for potency while improving 

permeability. However, significantly improved TDP2 inhibition was not observed with 4f 
when compared with other ether analogues, particularly 4e. On the other hand, methylation 

of the 3-NH group (31 vs 4c) led to significantly improved permeability (13 fold) with only 

a moderate loss of inhibitory activity (2 fold).

These observations prompted us to explore more drastic structural modifications over the 

original deazaflavin inhibitor type 4. Specifically, we decided to derivatize the polar group 

on phenyl ring A and / or the NH group at 3 position of the deazaflavin core with a second 

phenyl ring (ring B, Figure 2). We expected that such derivatization would improve 

permeability and hypothesized that the added phenyl ring (B) could provide additional 

interactions with TDP2 to possibly compensate for the loss of the polar interactions. As for 

the polar group on phenyl A, we chose the OH group (4b-c) mainly due to its ability to 

confer high potency and easy synthetic accessibility.

We first explored the derivatization of the OH group on phenyl ring A. Toward this end, we 

synthesized a panel of benzyl ethers and phenyl ethers (subtype 11, Table 2). The most 

prominent SAR with this series was that benzyl ethers exhibited considerably higher 

inhibitory potency than the corresponding phenyl ethers (11a, IC50 = 0.196 μM vs 11g, IC50 

= 1.13 μM; 11b, IC50 = 1.60 μM vs 11h, IC50 > 10 μM; 11e, IC50 = 0.153 μM vs 11j, IC50 = 

0.934 μM; 11f, IC50 = 0.131 μM vs 11k, IC50 = 0.186 μM). Particularly intriguing are 11a 
and 11e which inhibited TDP2 with essentially the same potency as 4c but exhibited 

drastically improved permeability over 4c (75 and 150 fold, respectively). Direct comparison 

between compounds with an ester functionality and a carboxylic acid functionality (11e vs 

11f; 11j vs 11k) further confirmed that a polar H-bond donor benefits target binding but 

compromises permeability. These results validate our approach of derivatizing the polar 

group, particularly the phenolic OH, for balanced potency and permeability. In addition, the 

two analogues (11l-m) synthesized based on the meta phenolic analogue 4b also showed 

strong TDP2 inhibition and markedly improved permeability, though the IC50 values were 

much higher than 4b (8–10 fold).

Next, we probed the impacts of introducing phenyl ring B to the N-3 site while retaining the 

OH group on phenyl A. For this purpose, Chan-Lam products from both 4c (para phenolic 

OH, 12a-f) and 4b (meta phenolic OH, 12g-i) were obtained. Comparing with subtype 11, 

analogues of this series all showed considerably better TDP2 inhibition. As far as SAR is 

concerned, for analogues (12a-f) derived from para phenolic alcohol 4c, the R′ group on 

phenyl ring B or its position of substitution did not significantly impact the inhibitory 

potency, with all analogues showing 2–4 fold of improved potency over 4c. Similar level of 

potency improvement (2–6 fold) was observed with analogues 12g-i over the meta phenolic 

alcohol 4b, though the site of Cl substitution (3′ vs 4′) seems to have a more significant 

impact on potency. Moderate improvement on the permeability (3–13 fold) over 4b-c was 

also observed with all analogues of subtype 12, with the single exception of 12f. 
Nevertheless, the N-3 arylation generated a novel deazaflavin subtype with improved TDP2 

inhibition and PAMPA permeability.
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Finally, with the N-3 arylated with a para-chlorophenyl group, we examined the impact of 

different phenyl ring A substituents for subtype 12 (Table 4). First of all, removing the polar 

phenolic OH group of ring A resulted in a compound (12l) with much reduced inhibitory 

activity (12l vs 12b /12g, Table 4), though the permeability of 12l was among the best of all 

compounds tested. Secondly, replacement of the phenolic alcohol by another polar and H-

bond enabling NHSO2Me group generated analogues (12j-k) showing the highest potency 

of all compounds tested so far, with IC50 values in single digit nM range for both para and 

meta substitution (Table 4). Although permeability remains poor for both, the values still 

reflect a moderate improvement over 4b-c (3–6 fold). Overall, our data suggest that the N-3 

arylation can be a highly productive and desirable modification, and that the resulting 

subtype 12 represents the most active inhibitor type of TDP2 to date.

High permeability conferred cytotoxicity.—To gauge their potential as probes for 

cell-based studies, all final compounds were evaluated in two cell lines for cytotoxicity: the 

HepG2 cells commonly used for HBV infection36 and the HeLa cells permissible to 

picornavirus infection13–14 (Table 5). Overall, a strong correlation between cytotoxicity and 

PAMPA permeability was observed. For subtypes 4 and 11 no significant cytotoxicity was 

observed at concentrations up to 100 μM for compounds with a PAMP Pe ≤ 0.5, with 4f 
being the only exception; whereas compounds with a PAMP Pe > 0.5 all showed cytotoxicity 

(Table 5). For subtype 12 only analogue 12l exhibited high permeability, and hence, 

cytotoxicity. A few other analogues (12b-c, 12d, 12i) also demonstrated cytotoxicity despite 

their low permeability, although their extraordinary TDP2 inhibitory potency indicates that 

cellular testing of these compounds most likely will not require a concentration range close 

to the CC50. Therefore, their potential as molecular probes for cellular studies should not be 

overlooked.

Novel inhibitors strongly sensitized DT40 cells toward ETP treatment.—The 

efficacy of TDP2 inhibitors in potentiating the cytotoxic action of TOP2 poison ETP was 

evaluated in DT40 chicken lymphoma cells.37 Cell viability was assayed using the ATPlite 

luminescence assay (PerkinElmer). DT40 cells were treated with combinations of ETP and 

TDP2 inhibitors.19 Treatment with only the TDP2 inhibitor was used as control. It is 

expected that TDP2 inhibition alone should not elicit cytotoxic effect. On the other hand, 

supplementation with a TDP2 inhibitor should amplify the cytotoxic effect associated with 

TOP2 poison ETP. Therefore, the decrease of cell viability with increasing concentrations of 

the TDP2 inhibitor at constant ETP dose would reflects the cooperative interaction of ETP 

and the TDP2 inhibitor in inducing toxicity. As shown in Figure 3, previously reported 

deazaflavin analogue 4a and our compounds 12a and 12b were non-cytotoxic up to 25μM. 

Although showing toxicity at 25 μM, compound 12h reached plateau in enhancing ETP 

action at concentrations below 10 μM. As far as subtype 11 is concerned, compounds 11a 
and 11e both showed general cytotoxicity at μM concentrations (see supporting information) 

which corroborated their cytotoxicity observed in HepG2 and HeLa cells. However, at 

concentrations much lower than the cytotoxic concentrations (<25 nM), 11a and 11e both 

sensitized DT40 to ETP treatment. This extraordinary sensitizing effect likely reflects their 

balanced properties between TDP2 inhibition and PAMPA permeability (Table 2). 

Nevertheless, all analogues of subtypes 11–12 shown in Figure 3 demonstrated stronger 
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sensitizing effect when compared with 4a, the best analogue previously reported. The 

improved sensitizing effect over 4a was also observed with many other analogues (see 

supporting information). These results strongly validate analogues of our new subtypes 11–
12 as effective cellular probes.

The overall profiles of TDP2 inhibitory activity, permeability and cytotoxicity for selected 

analogues of subtypes 11–12 are summarized in Table 6. These properties, along with their 

superior cancer cell sensitizing effects as shown in Figure 3 and supporting information, 

strongly validate our novel analogues as improved cellular probes over the best previous 

analogue 4a.

Molecular modeling

The co-crystal structure18 of humanized mouse TDP2 catalytic domain bound to 4c (PDB 

code: 5J42) elucidated the binding mode and mechanism of inhibition of deazaflavin 

inhibitors. Key to inhibitor binding is an extensive H-bonding network involving i) the 

pyrimido-dione ring of deazaflavin and the guanidine group of R266 and R268 ii) the 

phenolic hydroxyl group and the backbone carbonyl of N264 via water molecule (Figure 

4A).18 The structure also revealed empty spaces within the binding pocket to accommodate 

an additional phenyl ring in pointed directions (Figure 4B) to generate two novel subtypes: 

subtype 11 via the O-substitution (left arrow, Figure 4B) and subtype 12 via the N-

substitution (right arrow, Figure 4B). Importantly, representative analogues 11k and 12b are 

both docked nicely into the crystal structure and are predicted to interact extensively with 

the side chains of R266 and R268 using its nitrogen and carbonyl oxygen atoms within the 

pyrimido-dione core (Figure 4C–D), a binding feature also observed with compound 4c 
(Figure 4A). In addition, the ether linker of 11k allows the molecule to extend the added 

phenyl group into the active site and engage with active site residues H226, N264 and H349 

of TDP2 using its phenyl substituent, the carboxylate group (Figure 4C). Additional docking 

with analogues 11a and 11e generated similar poses (SI, Figure S1), except that the 

additional methylene group extends phenyl ring B further to be in closer contact with H349 

(pi-pi interaction) and D262 (pi-anion interaction) than phenyl ring B of 11k. The methyl 

carboxylate group in 11e also forms an H-bond with R206. On the other hand, docking of 

12b reveals a water mediated H-bond interaction between the phenolic hydroxyl group and 

the side chains of N264 and R266 as observed for 4c. Nevertheless, unique to subtype 12 is 

that the phenyl ring at N-3 position of pyrimido-dione is oriented parallel to the R268, which 

could enable cation-π interactions (Figure 4D). Cation-π interactions38 are considered vital 

in several physiological processes which could influence biological structures and molecular 

recognition.39–40 These interactions are widely observed in protein-protein41 or protein-

ligand40, 42 and protein-DNA43 complexes. In the biochemical assay, all analogues with an 

N-3 aryl group (12a-i) showed much improved potency (2–6 fold) over 4c or 4b, whereas 

compound 31 (N-Me analog) lacking the N-3 aryl ring was found to be 2-fold less active 

over 4c. These SAR observations strongly reflect the critical binding benefits gained via the 

predicted cation-π interaction between the N-3 aryl of subtype 12 and the R268 residue of 

TDP2.
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Conclusion

We have generated two novel deazaflavin subtypes (11 and 12) as inhibitor types of TDP2. 

The synthesis of the N-3 aryl subtype featured a chemoselective Chan-Lam coupling. Most 

analogues of these chemotypes showed improved biochemical potency and / or PAMPA 

permeability. Many analogues of our new subtypes 11–12, particularly 11a, 11e, 12a, 12b 
and 12h, demonstrated stronger cancer cell sensitizing effect than the best previous analogue 

4a toward ETP treatment. Molecular modeling revealed critical binding interactions 

provided by the added aryl group, particularly the cation-π interaction between the N-3 aryl 

and the guanidinium head of R268. Further characterization of these improved deazaflavin 

analogues in expanded human cancer cell lines, including ETP-resistant cell lines, is 

currently underway and data will be published in due course.

Experimental section

Chemistry.

General procedures.—All commercial chemicals were used as supplied unless otherwise 

indicated. Flash chromatography was performed on a Teledyne Combiflash RF-200 with 

RediSep columns (silica) and indicated mobile phase. All moisture sensitive reactions were 

performed under an inert atmosphere of ultrapure argon with oven-dried glassware. 1H and 
13C NMR spectra were recorded on a Varian 600 MHz or Bruker 400 spectrometer. Mass 

data were acquired on an Agilent 6230 TOF LC/MS spectrometer capable of ESI and APCI 

ion sources. Analysis of sample purity was performed on a Varian Prepstar SD-1 HPLC 

system with a Phenomenex Gemini, 5 μm C18 column (250 mm × 4.6 mm). HPLC 

conditions: solvent A = H2O, solvent B = MeCN; flow rate = 1.0 mL/min; compounds were 

eluted with a gradient of 20% MeCN/H2O to 100% MeCN for 30 min. Purity was 

determined by total absorbance at 254 nm. All tested compounds have a purity ≥ 97%.

Deazaflavin analogues (4a-d) were reported earlier by Raoof et al.15

General procedure for the synthesis of deazaflavin derivatives 4, 11, 12j-k, and 
31.15: To a suspension of 15, 25, or 30 (0.1 g, 1.0 eq) in DMF (2 mL) was added 4-cyano-2-

fluorobenzaldehyde (16, 1.2 eq) and heated by microwave irradiation at 110 °C for 30 

minutes. Water (10 mL) was added to the reaction mixture, and the resulting precipitate was 

filtered, washed with excess water and dried under vacuum. The crude product was purified 

by combiflash using 0–2% methanol in DCM and the obtained compound was triturated 

with methanol to furnish the desired compound. Compounds 4 (Scheme 1A), 11 (Scheme 

1B), 12j-k (Scheme 2), and 31 (Scheme 2) were synthesized starting with intermediate 15, 

25, 30, and 30 respectively.

10-(3-Hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (4b).15: Yellow solid, 75% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.22 (s, 

1H), 10.04 (s, 1H), 9.13 (s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 7.87 (dd, J = 8.2, 1.5 Hz, 1H), 7.49 

(t, J = 8.0 Hz, 1H), 7.08 (s, 1H), 7.04 (dd, J = 8.2, 1.5 Hz, 1H), 6.86 – 6.77 (m, 2H). HRMS-

ESI (+) m/z calculated for C18H11N4O3, 331.0831 [M+H]+; found: 331.0832.
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10-(4-Hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (4c).15: Yellow solid, 68% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.21 (s, 

1H), 10.03 (s, 1H), 9.13 (s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H), 7.20 (d, J 
= 8.6 Hz, 2H), 7.12 (s, 1H), 7.03 (d, J = 8.6 Hz, 2H). HRMS-ESI (+) m/z calculated for 

C18H11N4O3, 331.0831 [M+H]+; found: 331.0834.

2,4-Dioxo-10-phenyl-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-carbonitrile (4d).15: 
Yellow solid (70% yield). 1H NMR (600 MHz, DMSO-d6) δ 11.25 (s, 1H), 9.17 (s, 1H), 

8.42 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.72 (t, J = 7.6 Hz, 2H), 7.67 (t, J = 7.4 

Hz, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.00 (s, 1H). HRMS-ESI (+) m/z calculated for 

C18H11N4O2, 315.0877 [M+H]+; found: 315.0876.

2,4-Dioxo-10-(4-(trifluoromethoxy)phenyl)-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (4e).: Yellow solid, 72% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 11.27 (s, 1H), 9.16 (s, 1H), 8.41 (d, J = 7.8 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 

7.6 Hz, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.19 (s, 1H). 13C NMR (150 MHz, DMSO-d6) δ 
161.0, 158.7, 155.8, 148.5, 140.9, 140.8, 135.2, 132.1, 130.4, 126.2, 123.3, 122.5, 120.6, 

117.8, 117.4, 115.5. HRMS-ESI (+) m/z calculated for C19H10F3N4O3, 399.0705 [M+H]+; 

found: 399.0707.

10-(4-(Difluoromethoxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (4f).: Yellow solid, 62% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 11.25 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.56 (t, 

J = 78 Hz, 1H), 7.52 – 7.48 (m, 4H), 7.15 (s, 1H). 13C NMR (150 MHz, DMSO-d6) δ 161.4, 

159.1, 156.2, 151.7, 141.4, 141.2, 133.4, 132.5, 130.3, 126.5, 123.6, 121.0, 120.2, 118.2, 

118.1 (t, J = 256.5 Hz), 117.8, 115.8. HRMS-ESI (+) m/z calculated for C19H11F2N4O3, 

381.0799 [M+H]+; found: 381.0800.

10-(Benzo[d][1,3]dioxol-5-yl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (4g).: Yellow solid, 66% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.24 (s, 

1H), 9.14 (s, 1H), 8.39 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.29 (s, 1H), 7.19 (d, J = 

8.2 Hz, 1H), 7.04 (d, J = 1.5 Hz, 1H), 6.88 (dd, J = 8.1, 1.6 Hz, 1H), 6.21 (d, J = 1.9 Hz, 

2H). 13C NMR (100 MHz, DMSO-d6) δ 161.3, 159.0, 156.1, 148.5, 148.0, 141.5, 140.9, 

132.2, 130.0, 126.2, 123.3, 121.6, 121.1, 117.9, 117.6, 115.6, 109.0, 108.9, 102.0. HRMS-

ESI (+) m/z calculated for C19H11N4O4, 359.0780 [M+H]+; found: 359.0783.

10-(2,2-Difluorobenzo[d][1,3]dioxol-5-yl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (4h).: Yellow solid, 73% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 11.28 (s, 1H), 9.17 (s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.1, 1.2 Hz, 1H), 7.71 

(d, J = 8.5 Hz, 1H), 7.59 (d, J = 1.9 Hz, 1H), 7.49 (s, 1H), 7.29 (dd, J = 8.5, 2.0 Hz, 1H). 13C 

NMR (100 MHz, DMSO-d6) δ 161.2, 159.0, 156.0, 143.7, 143.3, 141.3, 141.2, 132.6, 132.1, 

126.5, 124.8, 123.3, 121.3, 117.8, 117.6, 115.8, 111.3, 111.0. HRMS-ESI (+) m/z calculated 

for C19H9F2N4O4, 395.0592 [M+H]+; found: 395.0596.

10-(4-(Benzyloxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (11a).: Yellow solid, 75% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.23 (s, 
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1H), 9.14 (s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 7.87 (dd, J = 8.1, 1.2 Hz, 1H), 7.53 (d, J = 7.4 

Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.37–7.33 (m, 3H), 7.31 (d, J = 9.0 Hz, 2H), 7.12 (s, 1H), 

5.23 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.3, 159.0, 158.8, 156.1, 141.5, 140.8, 

136.5, 132.3, 129.3, 129.2, 128.3, 127.84, 127.7, 126.1, 123.4, 120.9, 118.0, 117.6, 116.1, 

115.5, 69.6. HRMS-ESI (+) m/z calculated for C25H17N4O3, 421.1301 [M+H]+; found: 

421.1303.

10-(4-((4-Chlorobenzyl)oxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (11b).: Yellow solid, 58% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 11.23 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 

8.1 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 7.11 

(s, 1H), 5.24 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.1, 158.8, 158.4, 155.9, 141.3, 

140.6, 135.4, 132.2, 132.1, 129.3, 129.2, 128.2, 125.9, 125.1, 123.2, 120.7, 117.8, 117.4, 

115.9, 115.3, 68.5. HRMS-ESI (+) m/z calculated for C25H16ClN4O3, 455.0911 [M+H]+; 

found: 455.0912.

10-(4-((4-Bromobenzyl) oxy) phenyl)-2, 4-dioxo-2, 3, 4, 10-tetrahydropyrimido [4, 5-b] 
quinoline-8-carbonitrile (11c).: Orange solid, 69% yield; 1H NMR (600 MHz, DMSO-d6) δ 
11.23 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 7.5 Hz, 1H), 7.88 (d, J = 7.4 Hz, 1H), 7.64 (d, J = 7.3 

Hz, 2H), 7.50 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 7.8 Hz, 2H), 7.31 (d, J = 7.0 Hz, 2H), 7.11 (s, 

1H), 5.22 (s, 2H). 13C NMR (150 MHz, DMSO-d6) δ 161.8, 159.5, 159.1, 156.5, 142.0, 

141.4, 141.2, 136.5, 131.6, 130.4, 130.2, 129.8, 129.7, 123.9, 121.4, 118.5, 118.1, 116.8, 

116.4, 115.9, 69.2. HRMS-ESI (+) m/z calculated for C25H16BrN4O3, 499.0406 [M+H]+; 

found: 499.0407.

10-(4-((3-Chlorobenzyl)oxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinolone −8-carbonitrile (11d).: Yellow solid, 52% yield; 1H NMR (600 MHz, DMSO-

d6) δ 11.24 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.88 (dd, J = 8.2, 1.2 Hz, 1H), 

7.61 (s, 1H), 7.52 – 7.44 (m, 3H), 7.37 (d, J = 9.0 Hz, 2H), 7.32 (d, J = 9.0 Hz, 2H), 7.12 (s, 

1H), 5.26 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 162.2, 159.9, 159.4, 156.9, 142.4, 

141.7, 140.0, 133.8, 133.1, 131.1, 130.2, 128.6, 128.2, 127.1, 126.9, 124.3, 121.7, 118.9, 

118.4, 117.0, 116.3, 69.5. HRMS-ESI (+) m/z calculated for C25H16ClN4O3, 455.0911 [M

+H]+; found: 455.0915.

Methyl-3-((4-(8-cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-yl)phenoxy) 
methyl)benzoate (11e).: Yellow solid. 82% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.23 

(s, 1H), 9.14 (s, 1H), 8.40 (d, J = 7.4 Hz, 1H), 8.13 (s, 1H), 7.97 (d, J = 7.4 Hz, 1H), 7.88 (d, 

J = 7.5 Hz, 1H), 7.82 (d, J = 7.4 Hz, 1H), 7.65 – 7.58 (m, 1H), 7.38–7.34 (m, 4H), 7.11 (s, 

1H), 5.33 (s, 2H), 3.88 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 166.3, 161.7, 159.4, 

159.0, 156.5, 142.0, 141.3, 137.8, 132.8, 132.7, 130.1, 129.8, 129.3, 129.0, 128.6, 126.5, 

123.8, 121.3, 118.4, 118.0, 116.6, 115.9, 69.3, 52.5. HRMS-ESI (+) m/z calculated for 

C27H19N4O5, 479.1355 [M+H]+; found: 479.1357.

3-((4-(8-cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-yl)phenoxy) 
methyl)benzoic acid (11f).: Yellow solid. 52% yield; 1H NMR (600 MHz, DMSO-d6) δ 
13.05 (s, 1H), 11.23 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 8.11 (s, 1H), 7.95 (d, J = 
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7.7 Hz, 1H), 7.88 (dd, J = 8.2, 1.1 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 

7.37 (d, J = 8.9 Hz, 2H), 7.33 (d, J = 9.0 Hz, 2H), 7.12 (s, 1H), 5.31 (s, 2H). 13C NMR (100 

MHz, DMSO-d6) δ 167.5, 161.9, 159.6, 159.3, 156.7, 142.2, 141.4, 137.7, 132.9, 132.6, 

131.5, 130.0, 129.3, 129.0, 126.7, 124.0, 121.5, 118.6, 118.2, 116.8, 116.1, 69.6. HRMS-ESI 

(+) m/z calculated for C26H17N4O5, 465.1199 [M+H]+; found: 465.1202.

2,4-Dioxo-10-(4-phenoxyphenyl)-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (11g).: Yellow solid, 79% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.25 (s, 

1H), 9.15 (s, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.42 (d, J = 8.6 Hz, 2H), 

7.26 (t, J = 7.9 Hz, 5H), 7.22 (s, 1H). 13C NMR (150 MHz, DMSO-d6) δ 161.4, 159.2, 

157.9, 156.3, 155.4, 141.6, 141.1, 132.4, 131.3, 130.3, 130.1, 126.4, 124.5, 123.6, 121.1, 

119.9, 119.1, 118.2, 117.8, 115.8. HRMS-ESI (+) m/z calculated for C24H15N4O3, 407.1144 

[M+H]+; found: 407.1146.

10-(4-(4-chlorophenoxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (11h).: Yellow solid, 79% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.25 (s, 

1H), 9.16 (s, 1H), 8.41 (d, J = 8.2 Hz, 1H), 7.90 (dd, J = 8.2, 1.3 Hz, 1H), 7.57 – 7.50 (m, 

2H), 7.50 – 7.40 (m, 2H), 7.32 – 7.28 (m, 4H), 7.24 (s, 1H). 13C NMR (150 MHz, DMSO-

d6) δ 161.2, 158.9, 157.2, 156.0, 154.2, 141.3, 140.8, 132.2, 131.4, 129.9, 129.8, 128.0, 

126.2, 123.4, 121.3, 120.8, 119.1, 117.9, 117.5, 115.5. HRMS-ESI (+) m/z calculated for 

C24H14ClN4O3, 441.0754 [M+H]+; found: 441.0756.

10-(4-(4-Fluorophenoxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (11i).: Yellow solid, 81% yield; 1H NMR (400 MHz, DMSO-d6) 

δ 11.24 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.1, 1.2 Hz, 1H), 7.41 

(dd, J = 9.4, 2.5 Hz, 2H), 7.35–7.31 (m, 4H), 7.25 – 7.20 (m, 3H). 13C NMR (150 MHz, 

DMSO-d6) δ 161.7, 159.8 (d, J = 238.5 Hz), 159.4, 158.5, 156.5, 151.6, 141.8, 141.3, 132.7, 

131.5, 130.3, 126.7, 123.9, 122.3 (d, J = 7.5 Hz), 121.3, 118.9, 118.4, 118.0, 117.2 (d, J = 24 

Hz), 116.0. HRMS-ESI (+) m/z calculated for C24H14FN4O3, 425.1050 [M+H]+; found: 

425.1052.

Methyl-3-(4-(8-cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-
yl)phenoxy)benzoate (11j).: Yellow solid, 75% yield; 1H NMR (600 MHz, DMSO-d6) δ 
11.25 (s, 1H), 9.15 (s, 1H), 8.40 (d, J = 8.1 Hz, 1H), 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.83 (d, J 
= 7.9 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.65 (t, J = 7.9 Hz, 1H), 7.59 – 7.55 (m, 1H), 7.47 – 7.44 

(m, 2H), 7.32 (dd, J = 9.3, 2.6 Hz, 2H), 7.23 (s, 1H), 3.87 (s, 3H). 13C NMR (100 MHz, 

DMSO-d6) δ 165.3, 161.3, 159.0, 157.1, 156.1, 155.8, 141.4, 140.9, 132.3, 131.8, 131.5, 

130.7, 130.1, 126.3, 124.8, 124.4, 123.4, 120.9, 119.6, 119.5, 118.0, 117.6, 115.6, 52.2. 

HRMS-ESI (+) m/z calculated for C26H17N4O5, 465.1199 [M+H]+; found: 465.1202.

3-(4-(8-Cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-yl)phenoxy)benzoic 
acid (11k).: Yellow solid, 67% yield; 1H NMR (400 MHz, DMSO-d6) δ 11.25 (s, 1H), 9.15 

(s, 1H), 8.41 (d, J = 8.2 Hz, 1H), 7.89 (dd, J = 8.2, 1.0 Hz, 1H), 7.81 (d, J = 7.6 Hz, 1H), 

7.72 (s, 1H), 7.61 (t, J = 7.9 Hz, 1H), 7.51 (dd, J = 7.9, 2.0 Hz, 1H), 7.45 (d, J = 8.8 Hz, 2H), 

7.31 (d, J = 8.8 Hz, 2H), 7.24 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 166.6, 161.3, 

159.0, 157.3, 156.1, 155.5, 141.4, 140.9, 133.5, 132.3, 131.6, 130.4, 130.1, 126.3, 125.0, 
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123.7, 123.4, 120.9, 119.8, 119.4, 118.0, 117.6, 115.6. HRMS-ESI (+) m/z calculated for 

C25H15N4O5, 451.1042 [M+H]+; found: 451.1046.

10-(3-(Benzyloxy)phenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (11l).: Yellow solid, 81% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.25 (s, 

1H), 9.16 (s, 1H), 8.40 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 8.0 Hz, 1H), 

7.48 (d, J = 7.3 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.36 – 7.28 (m, 2H), 7.16 (s, 1H), 7.05 (s, 

1H), 7.01 (d, J = 7.5 Hz, 1H), 5.15 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 161.3, 159.6, 

158.6, 156.1, 141.0, 140.9, 137.7, 136.3, 132.3, 131.1, 128.3, 127.8, 126.2, 123.4, 120.8, 

120.3, 118.0, 117.6, 116.1, 115.6, 114.7, 69.5. HRMS-ESI (+) m/z calculated for 

C25H17N4O3, 421.1301 [M+H]+; found: 421.1305.

2,4-Dioxo-10-(3-phenoxyphenyl)-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (11m).: Yellow solid, 71% yield; 1H NMR (600 MHz, DMSO-d6) δ 11.24 (s, 

1H), 9.13 (s, 1H), 8.39 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.70 (t, J = 8.1 Hz, 1H), 

7.43 (t, J = 7.7 Hz, 2H), 7.26 (d, J = 9.1 Hz, 2H), 7.23 – 7.15 (m, 5H). 13C NMR (150 MHz, 

DMSO-d6) δ 161.3, 158.7, 158.2, 156.1, 155.7, 141.0, 140.9, 137.9, 132.3, 131.6, 130.1, 

126.3, 124.0, 123.5, 122.9, 120.9, 119.2, 119.1, 118.2, 118.1, 117.7, 115.7. HRMS-ESI (+) 

m/z calculated for C24H15N4O3, 407.1144 [M+H]+; found: 407.1148.

N-(4-(3-(4-chlorophenyl)-8-cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-
yl)phenyl)methanesulfonamide (12j).: Compound 12j was synthesized using the general 

procedure described using compound 4a with 27q as a starting material. Yellow solid, 43% 

yield; 1H NMR (600 MHz, DMSO-d6) δ 10.28 (s, 1H), 9.26 (s, 1H), 8.47 (d, J = 8.2 Hz, 

1H), 7.92 (dd, J = 8.2, 1.2 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.41 (d, J 
= 8.8 Hz, 2H), 7.30 – 7.26 (m, 2H), 7.25 (s, 1H), 3.20 (s, 3H). 13C NMR (150 MHz, DMSO-

d6) δ 161.4, 158.4, 155.5, 142.6, 141.8, 140.2, 135.7, 133.0, 132.9, 131.7, 131.0, 129.8, 

129.3, 127.1, 124.1, 121.7, 120.4, 118.4, 118.2, 116.5, 40.5. HRMS-ESI (+) m/z calculated 

for C25H17ClN5O4S, 518.0690 [M+H]+; found: 518.0694.

N-(3-(3-(4-Chlorophenyl)-8-cyano-2,4-dioxo-3,4-dihydropyrimido[4,5-b]quinolin-10(2H)-
yl)phenyl)methanesulfonamide (12k).: Compound 23p was synthesized using the procedure 

described for compound 4a with 27p as a starting material. Yellow solid, 52% yield; 1H 

NMR (600 MHz, DMSO-d6) δ 10.22 (s, 1H), 9.26 (s, 1H), 8.47 (d, J = 8.2 Hz, 1H), 7.92 

(dd, J = 8.1, 1.4 Hz, 1H), 7.68 (t, J = 8.1 Hz, 1H), 7.57 – 7.51 (m, 2H), 7.46 (dd, J = 8.3, 1.4 

Hz, 1H), 7.31–7.29 (m, 2H), 7.28 (d, J = 2.1 Hz, 1H), 7.27 (t, J = 2.1 Hz, 1H), 7.19 – 7.16 

(m, 1H), 3.12 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 161.3, 158.1, 155.5, 142.6, 141.5, 

140.9, 137.7, 135.7, 133.0, 132.9, 131.8, 131.0, 129.3, 127.2, 124.1, 123.5, 121.7, 120.8, 

118.7, 118.5, 118.1, 116.6, 40.5. HRMS-ESI (+) m/z calculated for C25H17ClN5O4S, 

518.0690 [M+H]+; found: 518.0691.

10-(4-Hydroxyphenyl)-3-methyl-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (31).: Yellow solid, 81% yield; 1H NMR (400 MHz, DMSO-d6) δ 10.04 (s, 

1H), 9.19 (s, 1H), 8.43 (d, J = 8.1 Hz, 1H), 7.88 (dd, J = 8.1, 1.2 Hz, 1H), 7.19 (d, J = 8.7 

Hz, 2H), 7.15 (s, 1H), 7.03 (d, J = 8.7 Hz, 2H), 3.22 (s, 3H). 13C NMR (150 MHz, DMSO-

d6) δ 160.7, 158.0, 157.3, 155.5, 141.4, 141.3, 132.2, 129.0, 127.1, 125.9, 123.3, 120.8, 
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117.5, 117.2, 116.5, 115.4, 27.2. HRMS-ESI (+) m/z calculated for C19H13N4O3, 345.0988 

[M+H]+; found: 345.0991.

General procedure for the synthesis of deazaflavin derivatives 12 a-i.: To a suspension of 

compound 4b or 4c (0.1 g, 1.0 eq) in DMF (2 mL) was added phenylboronic acid derivative 

26 (3.0 eq), Cu(OAc)2 (0.06 g, 0.30 mmol, 1.0 eq) and stirred at room temperature under air. 

The reaction was continued until the disappearance of starting material (typically between 

24–48 h) and water (10 mL) was added to it. The resulting solution was extracted with 

EtOAc (3 × 20 mL), washed with brine and evaporated in vacuo to leave the crude product. 

The crude product was purified using Combi flash with 0–100% EtOAc in hexane as an 

eluent to furnish the desired product.

10-(4-Hydroxyphenyl)-2,4-dioxo-3-phenyl-2,3,4,10-tetrahydropyrimido[4,5-b]quinoline-8-
carbonitrile (12a).44: Pale yellow solid, 56% yield. 1H NMR (400 MHz, DMSO-d6) δ 
10.06 (s, 1H), 9.23 (s, 1H), 8.45 (d, J = 8.2 Hz, 1H), 7.90 (dd, J = 8.2, 1.1 Hz, 1H), 7.47 (t, J 
= 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.26–7.22 (m, 4H), 7.19 (s, 1H), 7.05 (d, J = 8.7 Hz, 

2H). 13C NMR (150 MHz, DMSO-d6) δ 161.1, 158.4, 158.1, 155.4, 142.0, 141.8, 136.5, 

132.6, 129.4, 128.9, 128.7, 127.9, 127.5, 126.4, 123.7, 121.3, 118.2, 117.8, 116.9, 115.9. 

HRMS-ESI (+) m/z calculated for C24H15N4O3, 407.1144 [M+H]+; found: 407.1146.

3-(4-Chlorophenyl)-10-(4-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12b).: Yellow solid, 80% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 10.08 (s, 1H), 9.25 (s, 1H), 8.46 (d, J = 8.1 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.54 (d, J = 

8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.6 Hz, 2H), 7.20 (s, 1H), 7.05 (d, J = 8.6 

Hz, 2H). 13C NMR (150 MHz, DMSO-d6) δ 161.0, 158.4, 158.1, 155.2, 142.0, 141.8, 135.4, 

132.6, 132.5, 130.6, 129.3, 128.9, 127.4, 126.5, 123.7, 121.3, 118.1, 117.8, 116.8, 116.0. 

HRMS-ESI (+) m/z calculated for C24H14ClN4O3, 441.0754 [M+H]+; found: 441.0756.

3-(4-Fluorophenyl)-10-(4-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12c).: Yellow solid, 30% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 10.09 (s, 1H), 9.24 (s, 1H), 8.46 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.33 – 7.27 

(m, 4H), 7.24 (d, J = 8.6 Hz, 2H), 7.20 (s, 1H), 7.05 (d, J = 8.6 Hz, 2H). HRMS-ESI (+) m/z 
calculated for C24H14FN4O3, 425.1050 [M+H]+; found: 425.1051.

3-(4-Bromophenyl)-10-(4-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12d).: Yellow solid, 52% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 10.08 (s, 1H), 9.24 (s, 1H), 8.46 (d, J = 8.2 Hz, 1H), 7.91 (dd, J = 8.2, 1.2 Hz, 1H), 7.73 – 

7.63 (m, 2H), 7.25 – 7.21 (m, 4H), 7.20 (s, 1H), 7.06 – 7.03 (m, 2H). 13C NMR (150 MHz, 

DMSO-d6) δ 161.7, 159.1, 158.8, 155.8, 142.5, 136.5, 133.4, 132.7, 131.8, 131.5, 130.2, 

129.9, 128.1, 127.2, 124.4, 121.7, 118.8, 118.5, 117.7, 116.7. HRMS-ESI (+) m/z calculated 

for C24H14BrN4O3, 485.0249 [M+H]+; found: 485.0250.

Methyl-3-(8-cyano-10-(4-hydroxyphenyl)-2,4-dioxo-4,10-dihydropyrimido[4,5-
b]quinolin-3(2H)-yl)benzoate (12e).: Yellow solid, 59% yield; 1H NMR (600 MHz, DMSO-

d6) δ 10.09 (s, 1H), 9.24 (s, 1H), 8.47 (d, J = 7.8 Hz, 1H), 7.99 (d, J = 7.4 Hz, 1H), 7.92 (d, J 
= 7.6 Hz, 1H), 7.85 (s, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.55 (d, J = 6.8 Hz, 1H), 7.29 – 7.18 
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(m, 3H), 7.06 (d, J = 7.8 Hz, 2H), 3.87 (s, 3H). 13C NMR (150 MHz, DMSO-d6) δ 165.9, 

161.4, 158.6, 158.4, 155.6, 142.2, 142.0, 137.2, 134.0, 132.9, 130.7, 129.8, 129.8, 129.6, 

128.9, 127.7, 126.8, 123.9, 121.6, 118.4, 118.1, 117.1, 116.2, 52.6. HRMS-ESI (+) m/z 
calculated for C26H17N4O5, 465.1199 [M+H]+; found: 465.1199.

3-(8-cyano-10-(4-hydroxyphenyl)-2,4-dioxo-4,10-dihydropyrimido[4,5-b]quinolin-3(2H)-
yl)benzamide (12f).: Yellow solid, 72% yield; 1H NMR (600 MHz, DMSO-d6) δ 10.08 (s, 

1H), 9.26 (s, 1H), 8.47 (d, J = 8.2 Hz, 1H), 8.02 (s, 1H), 7.91 (d, J = 8.1 Hz, 2H), 7.74 (s, 

1H), 7.56 (t, J = 7.8 Hz, 1H), 7.44 – 7.39 (m, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.20 (s, 1H), 

7.05 (d, J = 8.7 Hz, 2H). 13C NMR (150 MHz, DMSO-d6) δ 167.3, 161.3, 158.6, 158.3, 

155.5, 142.3, 142.0, 136.7, 135.3, 132.8, 131.8, 129.6, 129.1, 128.2, 127.7, 127.1, 126.7, 

123.9, 121.6, 118.3, 118.0, 117.1, 116.2. HRMS-ESI (+) m/z calculated for C25H16N5O4, 

450.1202 [M+H]+; found: 450.1202.

3-(4-Chlorophenyl)-10-(3-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12g).: Yellow solid, 65% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 10.09 (s, 1H), 9.26 (s, 1H), 8.47 (d, J = 8.2 Hz, 1H), 7.92 (dd, J = 8.2, 1.2 Hz, 1H), 7.56 – 

7.50 (m, 3H), 7.29 (d, J = 8.6 Hz, 2H), 7.17 (s, 1H), 7.07 (dd, J = 8.2, 1.7 Hz, 1H), 6.86 (d, J 
= 7.8 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H). 13C NMR (100 MHz, DMSO-d6) δ 160.8, 158.9, 

157.4, 155.0, 141.9, 140.9, 137.2, 135.2, 132.4, 132.3, 131.1, 130.4, 128.7, 126.3, 123.4, 

121.0, 118.2, 117.9, 117.6, 116.8, 115.8, 115.0. HRMS-ESI (+) m/z calculated for 

C24H14ClN4O3, 441.0754 [M+H]+; found: 441.0749.

3-(3-Chlorophenyl)-10-(3-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12h).: Yellow solid, 51% yield; 1H NMR (600 MHz, DMSO-

d6) δ 10.09 (s, 1H), 9.26 (s, 1H), 8.48 (d, J = 8.2 Hz, 1H), 7.92 (dd, J = 8.1, 1.3 Hz, 1H), 

7.54 – 7.48 (m, 3H), 7.40 (t, J = 1.8 Hz, 1H), 7.25 (dt, J = 7.4, 1.6 Hz, 1H), 7.18 (s, 1H), 

7.07 (dd, J = 8.3, 1.7 Hz, 1H), 6.87 – 6.84 (m, 1H), 6.83 (t, J = 2.1 Hz, 1H). 13C NMR (100 

MHz, DMSO-d6) δ 160.8, 158.9, 157.4, 155.0, 141.9, 140.9, 137.2, 135.2, 132.4, 132.3, 

131.1, 130.4, 128.7, 126.3, 123.4, 121.0, 118.2, 117.9, 117.6, 116.8, 115.8, 115.0. HRMS-

ESI (+) m/z calculated for C24H14ClN4O3, 441.0754 [M+H]+; found: 441.0755.

3-(3,4-Dichlorophenyl)-10-(3-hydroxyphenyl)-2,4-dioxo-2,3,4,10-tetrahydropyrimido[4,5-
b]quinoline-8-carbonitrile (12i).: Yellow solid, 48% yield; 1H NMR (600 MHz, DMSO-d6) 

δ 10.11 (s, 1H), 9.28 (s, 1H), 8.49 (d, J = 8.2 Hz, 1H), 7.94 (dd, J = 8.2, 1.5 Hz, 1H), 7.77 

(d, J = 8.5 Hz, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.52 (t, J = 8.0 Hz, 1H), 7.32 (dd, J = 8.5, 2.3 

Hz, 1H), 7.19 (s, 1H), 7.07 (dd, J = 8.2, 1.5 Hz, 1H), 6.91 – 6.78 (m, 2H). 13C NMR (100 

MHz, DMSO-d6) δ 161.5, 159.7, 158.2, 155.5, 142.8, 141.7, 138.0, 137.1, 133.2, 131.9, 

131.7, 131.5, 131.4, 130.0, 127.3, 124.2, 121.9, 119.0, 118.6, 118.4, 117.6, 116.7, 115.8. 

HRMS-ESI (+) m/z calculated for C24H13Cl2N4O3, 475.0365 [M+H]+; found: 475.0367.

Biology

14M_zTDP2 fluorescence-based biochemical assay—The reaction buffer used was 

composed of 50 mM Tris-HCl pH 7.4, 10 mM MgCl2, 80 mM KCl, 0.05 % (v/v) Tween-20, 

and 1 mM DTT. To a black 384-well plate, 10 μL of compound solution (in reaction buffer, 
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concentration 2-fold higher than the tested concentration, final DMSO concentration of 

2.5 %) was added, followed by addition of 5 μL of 14M_TDP2 enzyme (25 pM, final 

concentration of 6.25 pM). After a pre-incubation period of 10 minutes, 5 μL of substrate 5’-

(6-FAM-NHS)(5’-tyrosine)GATCT(3’-BHQ-1)-3’ (4 μM, final concentration of 1 μM) was 

added, and the reaction was allowed to proceed at 25 °C for 60 minutes. The fluorescence of 

the product was measured using a SpectraMax M5e (Molecular Devices) (λex 285 nm; λem 

325 nm; λcutoff 315nm) in kinetic-mode at 25 °C for 60 minutes.21 IC50 experiments data 

using 12 concentrations of inhibitor (2-fold dilutions) and vehicle-alone were fitted by 

GraphPad Prism software. IC50 determinations represent the means of three independent 

experiments performed in triplicate.

Sensitizing assay in DT40 cells—Drug cellular sensitivity was measured as previously 

described.19 Cells were continuously exposed to various drug concentrations for 72 h. 

Fifteen hundred DT40 cells/well were seeded into a 96-well white plate (PerkinElmer) and 

treated with drugs as single agents or in combination in 150 μL of medium. Cell viability 

was determined at 72 h by adding 75 μL of ATPlite solution (ATPlite 1-step kit, 

PerkinElmer). After 15 min incubation, luminescence was measured on an EnVision Plate 

Reader (PerkinElmer). The ATP level in untreated cells was defined as 100%, and viability 

of treated cells was defined as ATP level of treated cell/ATP level of untreated cells × 100.

Parallel artificial membrane permeability assay (PAMPA)—The membrane 

permeability of selected compounds were evaluated using the Corning Gentest Pre-coated 

PAMPA Plate System (Cat. No. 353015). The pre-coated plate assembly, which was stored 

at −20°C, was taken to thaw for 30 min at room temperature. The permeability assay was 

carried out in accordance with the manufacturer’s protocol. In summary, the 96-well filter 

plate, pre-coated with lipids, was used as the permeation acceptor and a matching 96 well 

receiver plate was used as the permeation donor. Compound solutions were prepared by 

diluting 10 mM DMSO stock solutions in DPBS to a final concentration of 10 μM. The 

compound solutions were added to the wells (300 μL/well) of the receiver plate and DPBS 

was added to the wells (200 μL/well) of the pre-coated filter plate. The filter plate was then 

coupled with the receiver plate and the plate assembly was incubated at 25 °C without 

agitation for five hours. At the end of the incubation, the plates were separated and the final 

concentrations of compounds in both donor wells and acceptor wells were analyzed using 

LC-MS/MS. Permeability of the compounds were calculated using the following formula Pe 

= {-ln [1-CA(t)/Ceq]} /[A×(1/VD+1/VA)×t], where A = filter area (0.3 cm2), VD = donor 

well volume (0.3 mL), VA = acceptor well volume (0.2 mL), t = incubation time (seconds), 

CA(t) = compound concentration in acceptor well at time t, CD(t) = compound concentration 

in donor well at time t, and Ceq = [CD(t)×VD+CA(t)×VA]/(VD+VA). A cutoff criterion of Pe 

value at 1.5 × 10−6 cm/s was used to classify the compounds into high and low permeability 

according to the literature report of this PAMPA plate system.45

MTT cytotoxicity assay—Hep G2 cells (human liver carcinoma) were maintained in 

growth media: DMEM:F12 supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin (Invitrogen). HeLa cells (human cervical adenocarcinoma) were maintained in 

growth media: DMEM supplemented with 10% fetal bovine serum and 1% penicillin/
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streptomycin (Invitrogen). Cells were plated in 96-well plates at 1 – 2.5 × 104 cells per well 

in growth media. Compounds were added to the plate in 3-fold dilution made in DMSO, 

starting at 20 mM, and 1 μL of compound solution was added to each well. The final volume 

in each well was 200 μL, yielding a final DMSO concentration of 0.5%. Compounds were 

tested at 9, 3x dilutions from 100 uM final concentration in growth media. Control wells 

contained 0.5% DMSO (positive control) or 50% DMSO (negative control) and all reactions 

were done in triplicate. The plate was incubated for 72 h at 37 °C in a 5% CO2/ 95% air 

humidified atmosphere. Measurement of cell viability was carried out using a modified 

method of Mosmann46 based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT). MTT was prepared fresh at 1 mg/mL in serum-free, phenol red-free RPMI 

1640 media. MTT solution (200 μL) was added to each well, and the plate was incubated as 

described above for 3 h. The MTT solution was removed, and the formazan crystals were 

solubilized with 200 μL of isopropanol. The plate was read on a SpectraMax i3 

spectrophotometer (Molecular Devices) at 570 nm for formazan and 650 nm for background 

subtraction. CC50 values were calculated by fitting the data in GraphPad Prism software.

Molecular modeling and docking analysis

Molecular modeling was performed using the Schrodinger small molecule drug discovery 

suite 2015–4.47 The crystal structure of catalytic domain of humanized mouse TDP2 in 

complex with 4c as reported by Hornyak et.al18 was retrieved from the protein data bank 

(PDB code: 5J42). The above structure was analyzed using Maestro48 (Schrodinger Inc.49) 

and subjected to docking protocol which involves several steps including preparing protein 

of interest, grid generation, ligand preparation and docking. The crystal structure was refined 

using protein preparation wizard48 (Schrodinger Inc.49) in which missing hydrogen atoms 

and side chains were added and minimized using OPLS 2005 force field50 to optimize 

hydrogen bonding network and converge the heavy atoms to an rmsd of 0.3 Å. In the 

processed crystal structure, the two chains (A & B) were separated and analyzed separately. 

In both chains, 4c forms a key hydrogen bond interaction between the nitrogen of pyrimido-

dione ring and the side chain of R276 (R266_hTDP2). The side chain of R241 

(R231_hTDP2) was positioned to make a π - π interaction with the face of the tricyclic core 

of 4c and the phenolic hydroxyl group of 4c was observed to make water mediated 

interaction with the catalytic side chain of N274 (N264_hTDP2). The tricyclic core of 

deazaflavin extends in to a hydrophobic pocket lined by W307 (W297_hTDP2), L323 

(L313_hTDP2) and F325 (F315_hTDP2). Chain B was chosen for further docking analysis. 

The receptor grid generation tool in Maestro (Schrodinger Inc.)51 was used to define an 

active site around the native ligand (4c) to cover all the residues within 12 Å. All the 

compounds were drawn using Maestro and subjected to Lig Prep52 to generate conformers, 

possible protonation at pH of 7±3 that serves as an input for docking process. All the 

dockings were performed using Glide XP53 (Glide54, version 6.9) with the van der Waals 

radii of nonpolar atoms for each of the ligands were scaled by a factor of 0.8. The solutions 

were further refined by post docking and minimization under implicit solvent to account for 

protein flexibility. The residue numbers of TDP2 used in the discussion and the figures were 

based on the human TDP2.
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TOP2 topoisomerase II

TOP2cc TOP2 cleavage complex

TDP2 tyrosyl DNA phosphodiesterase 2

ETP etoposide

HBV hepatitis B virus

SAR structure-activity-relationship

PAMPA Parallel Artificial Membrane Permeation Assay
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Figure 1. 
Reported TDP2 inhibitors. Deazaflavin 4 is the most potent and best characterized TDP2 

inhibitor type.
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Figure 2. 
Novel deazaflavin subtypes 11-12 designed to improve lipophilicity by adding a second 

phenyl ring (B) directly off ring A (for subtype 11) or at N-3 site (for subtype 12).
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Figure 3. 
Chemoselectivity of the Chan-Lam coupling reaction. Under reaction conditions, the 

arylation occurred exclusively at the N-3 site to yield subtype 12 with O-arylated products 

11 not observed.
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Figure 5. 
Molecular modeling of 11k and 12b. (A) Binding mode of 4c within the crystal structure of 

catalytic domain of humanized mouse TDP2 (PDB code: 5J4218). (B) Potential vectors for 

designing novel deazaflavin inhibitor types. (C) Predicted binding mode of 11k within the 

catalytic domain of humanized mouse TDP2. (D) Predicted binding mode of 12b within the 

catalytic domain of humanized mouse TDP2. Key residues are highlighted in green sticks. 

H-bond interactions are depicted as black dotted lines. Cation- π and π-π interaction are 

represented as double headed arrow in black. Water molecule and magnesium ion were 

represented as red and blue non-bonded sphere. All the residue numberings are based on the 

human TDP2.
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Scheme 1. 
Synthesis of deazaflavin scaffold 4 and new subtypes 11-12
aReagents and conditions: a) EtOH, 150 °C, 30 min, MW, 60–85%; b) DMF, 110 °C, MW, 

30 min, 40–60%; c) K2CO3, DMF, r. t., 12 h; d) TFA, DCM, r. t., 6h, 60–75% over two 

steps; e) K2CO3, DMF, 110°C, 12h, 59%; f) 10% Pd/C, EtOAc, rt, o. n. 87%; g) EtOH, 

NaOH 1N, reflux, 3h, 85% h) Cu(OAc)2, DMF, air, r. t., 24–48 h, 40–52%.
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Scheme 2. 
Alternative linear synthesis for subtype 12
aReagents and conditions: a) Diethylmalonate, NaOEt, EtOH, reflux, o. n., 86%; b) POCl3, 

BnEt3NCl, 50 °C, 6 h, 70%; c) aniline derivative, EtOH, 150 °C, 30 min, MW, 55–80%; d) 

DMF, 110 °C, 30 min, MW, 50–69%.
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Figure 4. 
Effect of TDP2 inhibitors 4a, 12a, 12b, 12h, 11a and 11e on potentiating toxic action of 

ETP.
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Table 1.

TDP2 inhibitory activity and PAMPA permeability for the control series.

Compd R TDP2 IC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b

4a
c 0.041 ± 0.003 0.003

4b
c 3′ OH 0.042 ± 0.004 0.01

4c
c 4′ OH 0.14 ± 0.01 0.008

4d
c H 0.64 ± 0.02 0.4

4e 4′ OCF3 1.0 ± 0.1 1.1

4f 4′ OCHF2 0.88 ± 0.06 0.3

4g 0.96 ± 0.02 0.5

4h 1.5 ± 0.1 1.1

31 -- 0.32 ± 0.02 0.1

a
IC50: concentration of a compound producing 50% inhibition, expressed as mean ± standard deviation from three independent experiments 

performed in triplicate.
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b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.

c
Previously reported analogues. Reported IC50 values are 0.04 μM (4a), 0.05 μM (4b), 0.09 μM (4c) and 0.50 μM (4d).15
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Table 2.

TDP2 inhibitory activity, PAMPA permeability and cytotoxicity for analogues from phenolic OH 

modifications (11a-m).

Compd R TDP2 IC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b

4c -- 0.14 ± 0.01 0.008

11a H 0.20 ± 0.02 1.2

11b 4′ Cl 1.6 ± 0.2 0.4

11c 4′ Br 1.3 ± 0.0 0.2

11d 3′ Cl 0.99 ± 0.09 0.4

11e 3′ CO2Me 0.15 ± 0.01 0.6

11f 3′ CO2H 0.13 ± 0.01 0.01

11g H 1.1 ± 0.1 2.8

11h 4′ Cl >10 0.8

11i 4′ F 3.8 ± 0.3 2.7

11j 3′ CO2Me 0.93 ± 0.05 0.7

11k 3′ CO2H 0.19 ± 0.01 0.003

4b -- 0.041 ± 0.004 0.01

11l -- 0.38 ± 0.02 1.7

11m -- 0.30 ± 0.00 2.0

a
IC50: concentration of a compound producing 50% inhibition, expressed as mean ± standard deviation from three independent experiments 

performed in triplicate.

b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.
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Table 3.

TDP2 inhibitory activity and PAMPA permeability for analogues from N-3 modifications (12a-i).

Compd R′ TDP2 IC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b

4c -- 0.14 ± 0.01 0.008

12a H 0.033 ± 0.001 0.1

12b 4′ Cl 0.033 ± 0.002 0.08

12c 4′ F 0.070 ± 0.003 0.06

12d 4′ Br 0.065 ± 0.003 0.05

12e 3′ CO2Me 0.038 ± 0.003 0.03

12f 3′ CONH2 0.035 ± 0.000 0.01

4b -- 0.042 ± 0.004 0.01

12g 4′ Cl 0.0073 ± 0.0003 0.04

12h 3′ Cl 0.020 ± 0.002 0.07

12i 3′, 4′ di-Cl 0.014 ± 0.000 0.03

a
IC50: concentration of a compound producing 50% inhibition, expressed as mean ± standard deviation from three independent experiments 

performed in triplicate.

b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.

J Med Chem. Author manuscript; available in PMC 2020 May 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kankanala et al. Page 32

Table 4.

TDP2 inhibitory activity and PAMPA permeability for additional analogues of subtype 12 with N-10 phenyl A 

modifications.

Compd R TDP2 IC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b

12b 4′ OH 0.033 ± 0.002 0.08

12j 4′ NHSO2Me 0.0065 ± 0.0004 0.02

12g 3′ OH 0.0073 ± 0.0003 0.04

12k 3′ NHSO2Me 0.0061 ± 0.0006 0.06

12l H 0.27 ± 0.02 4.4

a
IC50: concentration of a compound producing 50% inhibition, expressed as mean ± standard deviation from three independent experiments 

performed in triplicate.

b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.
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Table 5.

Cytotoxicity evaluation in two cell lines.

Compd
CC50 (μM)

a

PAMPA Pe (10−6 cm/s)
b Compd

CC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b

HepG2 HeLa HepG2 HeLa

4ad >100 >100 0.003 11i 14 12 2.7

4bd >100 -- 0.01 11j 8.7 9.4 0.7

4cd >100 -- 0.008 11k >100 >100 0.003

4dd >100 -- 0.4 11l 25 30 1.7

4e 40 28 1.1 11m 9.0 21 2.0

4f 85 79 0.3 12a 50 >100 0.1

4g >100 >100 0.5 12b 41 45 0.08

4h 42 39 1.1 12c 46 32 0.06

31 >100 >100 0.1 12d 49 67 0.05

11a 14 12 1.2 12e >100 -- 0.03

11b >100 >100 0.4 12f >100 -- 0.01

11c 17 -- 0.2 12g 85 65 0.04

11d 14 12 0.4 12h 82 90 0.07

11e 29 29 0.6 12i 42 62 0.03

11f >100 >100 0.01 12j >100 >100 0.02

11g 29 -- 2.8 12k >100 >100 0.06

11h 5.3 7.4 0.8 12l 33 25 4.4

a
CC50: concentration of a compound causing 50% cell death. ETP was used as control: CC50 = 15 μM (HepG2) and 17 μM (HeLa).

b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.
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Table 6.

TDP2 inhibitory activity, permeability and cytotoxicity profiles of selected analogues.

Compd TDP2 IC50 (μM)
a

PAMPA Pe (10−6 cm/s)
b CC50 (μM)

c

HepG2 HeLa

11a 0.20 ± 0.02 1.2 14 12

11e 0.15 ± 0.01 0.6 29 29

12a 0.033 ± 0.001 0.1 50 >100

12b 0.033 ± 0.002 0.08 41 45

12g 0.0073 ± 0.0003 0.04 85 65

12h 0.020 ± 0.002 0.07 82 90

12j 0.0065 ± 0.0004 0.02 >100 >100

12k 0.0061 ± 0.0006 0.06 >100 >100

4a
d 0.041 ± 0.003 0.003 >100 >100

4b
d 0.042 ± 0.004 0.01 >100 --

4c
d 0.14 ± 0.01 0.008 >100 --

a
IC50: concentration of a compound producing 50% inhibition, expressed as mean ± standard deviation from three independent experiments.

b
Pe: effective permeability coefficients determined using the PAMPA, measured in five replicates.

c
CC50: concentration of a compound causing 50% cell death.

d
Previously reported15 analogues.
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