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Abstract
The automatic detection of seizures bears a considerable significance in epileptic diagnosis as it can efficiently lead to a

considerable reduction of the workload of the medical staff. The present study aims at automatic detecting epileptic

seizures in epileptic rats. To this end, seizures were induced in rats implementing the pentylenetetrazole model, with the

electrocorticogram (ECoG) signals during, before and after the seizure periods being recorded. For this purpose, five

algorithms for transforming time series into complex networks based on visibility graph (VG) algorithm were used. In this

study, VG based methods were used for the first time to analyze ECoG signals in rats. Afterward, Standard measures in

network science (graph properties) were made to examine the topological structure of these networks produced on the basis

of ECoG signals. Then these measures were given to a classifier as input features so that the ECoG signals could be

classified into seizure periods and seizure-free periods. Artificial Neural Network, considered a popular classifier, was used

in this work. The experimental results showed that the method managed to detect epileptic seizure in rats with a high

accuracy of 92.13%. Our proposed method was also applied to the recorded EEG signals from Bonn database to show the

efficiency of the proposed method for human seizure detection.
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Introduction

Inflicting around one percent of the total population in the

world, Epilepsy, a neurological disorder associated with

irregular brain tissue activity which causes seizures, is

considered one of the commonest chronic diseases (Firpi

et al. 2007). Electroencephalogram (EEG) reflects the

electrical activity of the brain, providing a mass of physi-

ological and pathological information (Kristiansen and

Courtois 1949). The EEG plays an important role in a

variety of epilepsy-related procedures including epilepsy

diagnosis, and epileptogenic zone determination helpful for

pre-surgical evaluations. The conventional seizure detec-

tion procedures, such as the visual inspection of the EEG

by a trained neurologist, are quite challenging in that the

massive amounts of EEG data involved, and the existence

of myogenic artifacts in the signals make the process of
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recording and checking data extremely demanding time-

consuming (Adeli et al. 2003; Tanq and Durand 2012).

Therefore, automatic seizure detection is valuable for aid-

ing neurologists to inspect EEG recordings. Accurate

detection of seizures can be used to improve the diagnostic

yield during patient monitoring for epilepsy surgery eval-

uation and to improve understanding of epilepsy as a

dynamical disease. Additionally, automatic seizure detec-

tion can be used in automated closed-loop therapy, in

which a therapy such as electrical stimulation, drug infu-

sion, cooling, or biofeedback may be delivered in response

to a seizure detection. The most important advantage of

closed-loop therapy is that, the therapy can be utilized only

when and where needed (Ramgopal et al. 2014).

Recently, several attempts have been reported for

automatic detection of epileptic seizures by using EEG

analysis. Gotman is one of the pioneers of automatic sei-

zure detection whose research in this area dates back to

1976. Gotman and Gloor (1976) proposed a system for

automatic detection of the interictal interval in EEG

recordings using a spike and sharp wave recognition

method. Adeli et al. (2007) proposed a method based on the

nonlinear dynamics analysis of the EEG signal and its

subbands. They classified the EEG signals into healthy,

interictal and ictal. Polat and Günes (2007) used the power

spectrum density (PSD) features to discriminate the healthy

and ictal EEGs and achieved an accuracy of 98.72%. Kabir

et al. (2018) used the combination of the K-mean clustering

method with the support vector machine classifier and they

could obtain an accuracy of 100% for seizure detection.

Siuly et al. (2015) proposed a structure based on samplings

and machine learning techniques for seizure detection and

they could obtain an accuracy of 100%. Cumulants and

higher order spectral features (Acharya et al. 2011; Moh-

sini et al. 2017; Chua et al. 2011; Srinivas et al. 2018), a

series of entropies (Nicolaou and Georgiou 2012; Xiang

et al. 2015; Srinivasan et al. 2007; Zhu et al. 2013) and

Recurrence plot features (Acharya et al. 2011; Yan et al.

2016) were widely applied in epileptic seizure detection.

Recently, the combination of time series analysis and

graph theory has created a new powerful nonlinear

approach without the main deficiencies of common meth-

ods of time series processing (Donner et al. 2011; Nunez

et al. 2012). In one simple approach, called visibility graph

(VG), a time series is converted into a graph, the structure

of which is proved to be related to complexity and frac-

tality of the time series (Lacasa et al. 2008).

Some researchers have obtained promising results using

VG methods, for the analysis of biological signals, such as

EEG and electrocardiogram (ECG) (Ahmadlou et al. 2010;

Nasrolahzadeh et al. 2019; Supriya et al. 2016).

Recently, VG methods have been used with promising

results for automatic epileptic seizure detection. Tang et al.

(Supriya et al. 2016) analyzed natural VG (NVG) from

higher band frequencies of seizure EEGs and showed that

the performance of the VG based approach is better than

that of the simple entropy method in seizure detection. Zhu

et al. (Tang et al. 2013) also extracted VG-based features to

identify the ictal EEGs from healthy EEGs with 100%

accuracy. Zhu et al. (Zhu et al. 2012) proposed a fast

weighted horizontal VG (FWHVG) with an accuracy index

of 100% for the discrimination of ictal from healthy EEG.

In our previous work (Mohammadpoory et al. 2017), a

weighted VG entropy (WVGE) was proposed and an

accuracy index of 97% was obtained for discrimination of

ictal, interictal and healthy groups.

In all previous studies, NVG and HVG methods have

been used with a few numbers of graph properties. How-

ever, in the present study, all VG based methods were used

with 14 number of graph properties as features used for the

automatic detection of epileptic seizures in the epileptic

rats.

Experimental animal models were widely used

(Dedeurwaerdere 2005) to obtain greater insight into the

pathophysiology underlying epilepsy. The most popular

and widely used models are the subcutaneous (s.c.)

pentylenetetrazole (PTZ) test and the maximal elec-

troshock seizure test (Loscher and Schmidt 1988; Feltane

et al. 2013; Sherman et al. 2011; Mirski et al. 2003;

Klioueva et al. 2001). These two seizure models have been

implemented as a basis to develop various new

antiepileptic drugs. Moreover, the s.c. PTZ test has been

used to develop medications effective against generalized

absence seizures (Loscher and Schmidt 1988). Töllner

et al. (2016) compared the effects of five antiepileptic

drugs on the PTZ seizure threshold in rats. Similarly,

Moxon et al. (Moxon et al. 2001) used seizure-triggered

trigeminal nerve stimulation in order to reduce PTZ-in-

duced seizure activity in awakened rats. In another similar

study, single and multiple stimulations were performed to

examine the feasibility of an automatic seizure control

system in rats with PTZ-induced seizures (Makeyev et al.

2012). However, an automatic seizure detector is needed

before the application of the stimulation. So far, a variety

of algorithms have been suggested for the detection of

PTZ-induced seizures. For example, Besio et al. (2011)

suggested a cumulative sum algorithm for the detection of

such seizures. The detection accuracy index was then

improved by combining this feature with the general like-

lihood ratio test (Makeyev et al. 2012). Moreover, Nik-

nazar et al. (2013) proposed two approaches, thresholding,

and classification, with several features for the detection of

epileptic seizures in the epileptic rats.

There are some other features used for PTZ-induced

seizure detection including cross-correlation variance

(Makeyev et al. 2012) and cross-bicoherence gain
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(Sherman et al. 2011). In addition to ECoG, optical

coherence tomography (OCT) (Harreby et al. 2011),

Laplacian EEG (Feltane et al. 2013) and vaguselec-

troneurogram (VENG) (Makeyev et al. 2012) were also

implemented for the detection of PTZ-induced seizures in

rats.

The purpose of the present study is to detect clonic

seizures induced by injection of PTZ in rats, using VG

based methods.

The rest of this paper is organized as follows: the

experimental data are presented in the next section. Next,

the methods and the quantification analyses used in the

study are presented in ‘‘Methodology’’ section. The simu-

lation results, the evaluation of the performance of the

proposed method, and the discussions are summarized in

‘‘Results’’ and ‘‘Discussion’’ sections respectively. Finally,

the conclusions are provided in ‘‘Conclusion’’ section.

Materials used

Dataset

The necessary data for the present study were collected at

Pasteur Institute of Iran from male Wistar rats weighing

200–250 g. Having free access to food and water, the rats

were kept in a controlled environment (6 am/6 pm light/-

dark cycle; 22 ± 1 �C). Under ketamine (60 mg/kg, i.p.)

and xylazine (10 mg/kg, i.p.) anesthesia, the rats received

two screw electrodes inserted into their skull over the

frontal and occipital cortex. Moreover, a dental acrrylic and

an extra screw were used to fix the epidural electrodes on

the skull. The rats were given a period of 3 days for

recovery and were handled gently so that they could adapt

with the recording procedure. Then, the ECoG was recor-

ded in the control group for 60 min. For the experimental

group, the ECoG signal was recorded a few minutes before

the administration of a convulsive dose of pentylenetetra-

zole (60 mg/kg). While the rats were freely moving

through a polyethylene tube, PTZ was injected s.c. to them.

Next, the electrical activity was then recorded for 60 min.

All the measurements and injections were performed

between 10:00 and 15:00 h. Moreover, an AC differential

amplifier (DAM 80,WPI) with a gain of 1000 and wiThe

necessary data for the present study were collected at

Pasteur Institute of Iran from male Wistar rats weighing

200–250 g. Having free access to food and water, the rats

were kept in a controlled environment (6 am/6 pm light/-

dark cycle; 22 ± 1 �C). Under ketamine (60 mg/kg, i.p.)

and xylazine (10 mg/kg, i.p.) anesthesia, the rats received

two screw electrodes inserted into their skull over the

frontal and occipital cortex. Moreover, a dental acrrylic and

an extra screw were used to fix the epidural electrodes on

the skull. The rats were given a period of 3 days for

recovery, and were handled gently so that they could adapt

with the recording procedure. Then, the ECoG was recor-

ded in the control group for 60 min. For the experimental

group, the ECoG signal was recorded a few minutes before

the administration of a convulsive dose of pentylenetetra-

zole (60 mg/kg). While the rats were freely moving

through a polyethylene tube, PTZ was injected s.c. to them.

Next, the electrical activity was then recorded for 60 min.

All the measurements and injections were performed

between 10:00 and 15:00 h. Moreover, an AC differential

amplifier (DAM 80,WPI) with a gain of 1000 and with a

band-pass filter setting of 0.1–1000 Hz was used to boost

the ECoG signals. The sampling rate was 10 kHz, and the

analog-to-digital conversion was performed at 12-bit res-

olution. The dataset for the final analysis were collected

from 12 rats in the test group and 15 rats in the control

group. The data of 6 rats in the test group had some issues

due to sudden rat movements, amplifier saturation, and

severe noise in data acquisition system. Therefore, some

parts of the starting segments or ending segments of data

from these 6 rats have been removed. However, remaining

signals of these six rats were continuous.

A band-pass filter setting of 0.1–1000 Hz was used to

boost the ECoG signals. The sampling rate was 10 kHz,

and the analog-to-digital conversion was performed at

12-bit resolution. The dataset for the final analysis was

collected from 12 rats in the test group and 15 rats in the

control group.

An experienced experimental scientist observed animal

behavior including head nodding and general clonus of the

body (Danober et al. 1998), which corresponded to the

score of 3 (myoclonic jerk) by Racine’s seizures coring

system (Racine 1972) in order to determine the seizure

onset in each experiment. It was observed that PTZ initially

produced myoclonic jerks, which subsequently became

sustained, leading to generalized tonic–clonic seizures (De

Deyn et al. 1992). However, the rats showed normal

behavior again after some minutes, with no behavioral

signs of the Racine scale. The return to normal behavior

Table 1 The time recording of each experiment

Rat no. Injection time Seizure onset Seizure end

1 21:34 29:02 30:35

2 10:33 3:09 16:24

3 6:05 9:18 9:36

4 7:16 20:05 20:36

5 5:55 21:25 22:39

6 5:11 9:59 11:01

The time format is minute: second Starting time is always from 00:00
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was considered as an indication of the end of the seizure.

Table 1 summarizes data related to the injection time,

seizure onset time and seizure end time of experiments for

unsheared data.

Methodology

Preprocessing

At first, he ECoG signals were down sampled to 1 kHz, and

filtered using a 50-Hz notch filter and a 60-Hz low pass

filter. However, the collected data from 6 rats in the test

group were problematic because of either sudden rat

movements, amplifier saturation, or severe noise caused by

the data collection procedures. As a result, the problematic

parts of the starting segments or ending segments were

eliminated from the final dataset. Apart from these prob-

lematic parts, in the remaining parts of the data related to

these 6 rats, the signals were continuous. In other words,

the excluded segments were always at the beginning or the

end of the signals, not in the middle of them.

Feature extraction

The primary purpose behind feature extraction was to

introduce the salient features discriminating seizure periods

from seizure-free periods. In this study, five different VG

based methods were constructed, with 14 graph properties

extracted from these VGs, used as a basis to classify the

two mentioned groups. All of the five VG based methods

used along with the 14 features are described in the next

sections.

Visibility Graph algorithms

Natural visibility algorithm

Let {x(ti)}i = 1… N be a time series of N data. The natural

visibility algorithm (NVG) (Lacasa et al. 2008) maps every

datum of the time series on to a node in the graph. Two

nodes i and j in the graph are connected if one can draw a

straight line in the time series connecting x(ti) and x(tj),

cutting no intermediate data x(tk). Hence, i and j are two

connected nodes if:

xðtkÞ\xðtiÞ þ ðxðtiÞ � xðtiÞÞ
tk � ti

tj � tk
ð1Þ

Figure 1 shows a graphical illustration of the construc-

tion of NVG from a time series. This algorithm constructs

regular graphs from periodic time series, random graphs

from random time series, and scale-free graphs from fractal

time series. Some important properties of these graphs can

be found in (Ni et al. 2009; Lacasa et al. 2009).

Horizontal visibility algorithm

A horizontal visibility graph (HVG) was proposed by

Luque et al. (2009). In HVG, like NVG, every point of the

time series maps onto a node in the graph. Two nodes i and

j in the graph are connected if and only if:

xi [ xk and xj [ xk; for all k such that i\k\j ð2Þ

Figure 2 shows an illustration of the construction of

HVG from a time series. This algorithm is a simplification

of the NVG. In fact, the HVG is always a sub-graph of its

associated NVG for the same time series (comparing

Figs. 1 and 2). Some concrete properties of these graphs

can be found in (Lacasa and Toral 2010; Lacasa et al. 2012;

Luque et al. 2011; Gutin et al. 2011).

Limited penetrable visibility graph (LPVG)

Based on NVG, Ting–Ting et al. (Zhou et al. 2012) pre-

sented LPVG and showed that LPVG has an advantage

over NVG in that it enjoys a good tolerance to noise. Like

NVG, every point in the series corresponds to a node in the

graph, such that two nodes are connected if the straight line

connecting the series data intersects intermediate data

height in maximum N points. NVG is a simplification of

the LPVG algorithm when N = 0. Figure 3 shows LPVG

construction from a time series (N = 1).

Parametric natural visibility graph (PNVG)

Based on NVG, Bezsudnov and Snarskii (2014) presented

PNVG and showed that the PNVG approach allows us to

distinguish, identify and describe various time series in

detail. The PNVG algorithm consists of three main steps:

first, the NVG (Lacasa et al. 2008) is built. Then, the

temporal direction is added to every NVG link, and the

weight equal to the angle between the link and the down-

ward directions is set. The weight value between the two

nodes is defined as follows:

aij ¼
xðtjÞ � xðtiÞ

tj � ti
i\j ð3Þ

Finally, PNVG is constructed from NVG links which

have weights less than the given view angle a (a is an

arbitrary changing parameter). PNVG is a directed sub-

graph of the corresponding NVG, and not necessarily a

connected graph. Figure 4 shows the construction of the

PNVG from a time series.
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Markov-binary visibility graph (MBVG)

Ahadpour et al. (Ahadpour et al. 2014) presented MBVG

using a two-state Markov chain and the binary visibility

graph for investigation of time series. Let {x(ti)}i = 1 … N

be a time series of N data. Then, we consider slope

(m) between any two consecutive data in the time series

Fig. 1 An example of the NVG

construction. The upper part

shows time series and lower part

represents the NVG (Lacasa

et al. 2008)

Fig. 2 An example of the HVG

construction. The upper part

shows time series and lower part

represents the HVG (Luque

et al. 2009)

Fig. 3 Illustrates the procedure of converting time series to the LPVG

(N = 1). a Time series: each black line shows the two connected

points can see each other. The red lines are extra connections in

LPVG compared with VG. b Corresponding graph: The LPVG

consists of red and black links and the NVG consists only of black

links (Pei et al. 2014). (Color figure online)
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line diagram (see Fig. 5). Then, a two-state Markov chain

of states 0 and 1is defined as follows

For the stochastic systems,

S ¼ 0 m� 0

1 m[ 0

�
ð4Þ

and for the deterministic systems,

S ¼ 0 m� 0

1 m\0

�
ð5Þ

The Markov-binary visibility algorithm assigns every bit

of the sequence to a node in the MBVG. Two nodes i and j

in the MBVG are connected with the criteria of the NVG.

Fig. 4 The Illustration of the

PNVG algorithm. a Time series

plot for NVG and PNVG

algorithms, b corresponding

graphs, The NVG consists of

red and blue links. The PNVG

(p/2) consists only of red links.

Upper left—the PNVG link

selection criterion for view

angle a = p/2 applied to nodes

(ti) (Bezsudnov and Snarskii

2014). (Color figure online)

Fig. 5 An example of the

Markov-binary visibility graph

construction. The upper part

shows time series and

intermediate part shows the

Markov binary sequence

generated from time series. The

bottom part represents the graph

generated through the visibility

algorithm (Ahadpour et al.

2014)
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Graph properties

After graphs are constructed from data, some measures are

estimated for the analysis of graph structure and topology

to discriminate two groups of seizure and seizure free

signals. All these measures are defined for binary graphs.

Since LPVG is a weighted and directed graph, these

measures are defined in different way for it, and for further

information see ref (Rubinov and Sporns 2010).

Assume that K = k(i), i = 1,…, N (N is the number of

nodes in VG) is the degree sequence (DS) of VG (the

degree of a node is the number of edges incident to the

vertex) and A = ½aij�N�N is the adjacency matrix of VG in

which aij ¼ 1, if node i is connected to node j and aij ¼ 0 if

node i is not connected to node j. The extracted VG based

features are:

1. Mode of the DS values (M1).

2. Mean of the DS values (M2).

3. Median of the DS values (M3).

4. Maximum of the DS values (M4).

5. Minimum of the DS values (M5).

6. Maximum of the DS values divided by Median of the

DS values (M6).

7. The standard deviation of the DS values (S).

8. Number of the nodes having the DS mode value

multiplied by the DS mode value divided by the sum

(K).

9. Graph index complexity: Let kmax be the largest

eigenvalue of the adjacency matrix. GIC is defined as

(Kim and Wilhelm 2008):

IGIC ¼ 4Cð1� CÞ; ð6Þ

where

C ¼ kmax� 2 cosðp=Nþ 1Þ
N� 1� 2 cosðp=Nþ 1Þ ; ð7Þ

10. Characteristic path length (del Sol et al. 2006) (L):

The characteristic path length (L) of a graph is the

shortest path length between two nodes averaged

over all nodes and is given by:

L ¼
P

i

P
j Lij

N(N� 1Þ ; ð8Þ

where Lij is the shortest path length between ith node

and jth node and N is the total number of nodes in the

network.

11. Global efficiency (Wang et al. 2010) (Eg): The

global efficiency is defined as:

Eglob ¼ 1

N(N� 1Þ
X
i6¼j

1

dij
; ð9Þ

where dij is the shortest path length between node I

and node j in graph.

12. Average clustering coefficient (Lenjani and Hashemi

2014) (CL): The clustering coefficient ðcliÞ of a

node, in a graph is given by:

cli ¼
2ei

KiðKi � 1Þ ; ð10Þ

where ei is the total number of the edges really

connecting its nearest neighbors to the ith node and

Ki is the degree of the ith node. The average clus-

tering coefficient of a network is given by

CL ¼
P

i cli

N
; ð11Þ

13. Local efficiency (Wang et al. 2010) (El): The local

efficiency is measured as

Eloc ¼ 1

N

X
i

Eglob(GiÞ; ð12Þ

where Eglob(GiÞ is the global efficiency of Gi, the

sub-graph composed of the neighbors of node i.

14. Assortative coefficient (Lenjani and Hashemi 2009):

Assortativity, is a preference for a graph’s nodes to

attach to similar nodes in some way. Network

theorists often estimate assortativity in terms of a

node’s degree. The assortative property of a network

is defined by the assortative coefficient. The assor-

tative coefficient is defined as:

r ¼
M�1

P
i jiki � M�1

P
i 0:5ðji þ kiÞ

� �2
M�1

P
i 0:5ðk2i þ j2i Þ � M�1

P
i 0:5ðji þ kiÞ

� � ;
ð13Þ

where ki and ji are the degree of two nodes at the

ends of the ith link, and M is the number of total

links.

All of these features were estimated using the

Matlab software.

Feature selection algorithm

Because the reduction of data generally leads to an

improvement in the classification performance in terms of

speed, accuracy and simplicity, the feature selection has

been used extensively to reduce the data dimensionality

(Schenk et al. 2009). The sequential search algorithms have

attracted extensive attention as a strategy to reduce the

number of features in local search.

In this paper, a feature selection method based on

Sequential Forward Selection (SFS) was implemented to

estimate the prediction error as a selection criterion. Gen-

erally speaking, sequential search algorithms are strategies
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that reduce the number of features applying local search

(Kudo and Sklansky 2000). The SFS method begins with a

set of features and a sequential way adding parameters,

continuing until the criterion of selection has reached a

minimum, or all the parameters are added to the model.

Note that SFS is a bottom-up search procedure starting

from an empty feature set S and gradually adding features

selected by some evaluation functions, that minimizes the

mean square error (MSE) (Last et al. 2001). At each iter-

ation, the feature to be included in the feature set is selected

from among the remaining available features of the feature

set not added to the feature set. Therefore, the new

extended feature set should produce a minimum classifi-

cation error compared with when any other feature is

added. Because of its important characteristics including

simplicity and speed, SFS have been widely used in a

variety of areas (Nakariyakul and Casasent 2009; Muni

et al. 2006).

Classification method

The application of classifiers in medical diagnosis has

increased recently (Siuly et al. 2016). Artificial Neural

Networks (ANNs) are computing systems made up of a

large number of simple interconnected processing elements

called neurons. They have been widely used as classifiers

in diagnostic systems, and as a basis for the analysis of

biological signals (Siuly et al. 2016; Vieira et al. 2013).

The results of the studies reported in the literature show

that ANNs have always been a good classifier in detecting

epileptic seizures (Asadi et al. 2015; Kelwade and Salankar

2016). In the present study, a multilayer perceptron (MLP)

neural networks classifier was used. Note that the network

structure directly influences the performance of the clas-

sifier. After an appropriate structure and a suitable number

of training epochs were found with the aim of validating

the set, the testing patterns were utilized for the evaluation

of the performance of the proposed method. ANN toolbox

of MATLAB software was used to run the MLP.

Results

Figure 6 summarizes the long-term ECoG recordings of a

rat in the test group. The seizure interval is shown in this

figure. For the experiments, the first 5 min from each

recorded signal are considered as seizure-free data. Then

seizure and seizure-free intervals of ECoG signals were

divided into equal epochs. According to Tang et al.

(Supriya et al. 2016), there is no point in using a large

number of data for the conversion of EEG signal into the

graph because the quantification of self- similarity and

complexity of a graph does not need many nodes. The

amount of data can be increased through the segmentation

of a signal as a part of the entire dataset in that it provides

more meaningful information (Supriya et al. 2016). How-

ever, Supriya et al. (Zhu et al. 2014) showed that the use of

segmented versus non-segmented approaches for EEG

signals leads to no significant difference in the performance

accuracy index obtained although the segmentation of EEG

signals makes the computation faster. Therefore, in the

present study, 1000 (1 s) and 2000 (2 s) data point epochs

were used in the analyses in that longer epochs make the

calculation process very tedious and time-consuming. In

the case of 1000 point epoch, 3600 seizure-free and 720

seizure epochs, and in the case of 2000 point epoch, 1800

seizure-free and 360 seizure epochs were obtained.

Then, five VGs were constructed for all the epochs from

the two sets, then the 14 explained features were extracted

from these graphs. Next, a sequential forward feature

selection algorithm was used to select the most informative

features which were then fed into MLP classifier for the

discrimination of the two groups. In this study, 60% of the

input patterns were assigned to the training set, 20% of

them were assigned to the validation set, while the

remaining 20% were assigned to the testing set. Since the

number of seizure-free epochs were much higher than the

seizure epochs, and because classifiers usually tend to

obtain higher accuracy indexes for classes with more

training samples, the number of seizure-free samples of the

training set were reduced by re-sampling so that a balanced

number of samples for the two classes could be attained

(Chawla et al. 2004).

In order to find the suitable structure of the MLP, the

number of hidden layers and their nodes were being

changed until the best network structure was obtained. On

the other hand, the accuracy index for validation set was

calculated in every 1000 training epochs so that the

appropriate structure could be found while over-training

could be avoided. In this study, the sigmoid function and a

linear activation function were applied as the activation

functions of all internal nodes and the output node,

respectively.

After an appropriate structure was found, the testing

patterns were utilized for the evaluation of the performance

of the proposed method. In the present study, some sta-

tistical parameters such as sensitivity, specificity, and total

classification accuracy were used as bases for the evalua-

tion of the performance reliability of the classifier. These

parameters were defined as follows (Nasrolahzadeh et al.

2015):

Sensitivity: number of true positive decisions/number of

actually positive cases.

Specificity: number of true negative decisions/number

of actually negative cases.
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Total classification accuracy: number of correct deci-

sions/total number of cases.

Tables 2 and 3 present the classification results obtained

using five different VG methods and two different lengths

of epochs. For LPVG, it was assumed that N = 1 and N = 2

because research studies done so far have shown that the

proper amounts of N are 1 and 2 (Zhou et al. 2012). For

PNVG, it is assumed that a = p/4, 3p/8, and p/2. The

Results showed that all of the methods enjoyed accept-

able accuracies and high sensitivity indexes. The best

accuracy was obtained by the LPVG (N = 2 and epoch

length = 2000) while the worst obtained by the HVG

(epoch length = 1000).Since the LPVG methods were

more robust to noise than the others (Zhou et al. 2012) and

ECoG signal was very noisy, especially in the seizure state,

this method performed better than the others. Also, longer

epoch leads to better accuracies in most of VG based

methods, but more calculations are required. Therefore, the

speeds of the algorithms for different lengths of epochs

were compared.

Table 4 shows the average time cost in seconds for the

calculation of 14 features of eight VG based methods and

the two different lengths of epochs. All algorithms were

run on a 2.4 GHz Intel core i5 CPU processor machine

with4 GB RAM. The operating system was Windows 7 and

64 bits. As can be seen, the PNVG (a = p/4) and the HVG

had the highest speed indexes because of their sparse

adjacency matrixes. But the MBVG had the lowest speed

because, after mapping the time series on the 0 and 1

sequence, the number of visibility links was much higher

than that of the visibility links obtained via original time

series, and thus the adjacency matrix became denser.

Fig. 6 The long-term ECoG

recordings of a rat in the test

group. Seizure interval is

indicated in this Figure

Table 2 The values of statistical parameters for different VG methods

and epoch length of 1000

Statistical parameters (%) Sensitivity Specificity Accuracy

VG method

NVG 95.41 75 85.88

HVG 81.94 54.16 68.54

MBVG 9.32 76.85 84.64

LPVG (N = 1) 96.81 81.97 89.19

LPVG (N = 2) 98.31 84.83 91.54

PNVG (a = p/4) 87.3 66.52 76.71

PNVG (a = 3p/8) 88.11 68.18 77.41

PNVG (a = p/2) 85.93 61.02 74.25

Table 3 The values of statistical parameters for different VG methods

and epoch length of 2000

Statistical parameters (%) Sensitivity Specificity Accuracy

VG method

NVG 96.53 80.94 89.01

HVG 85.96 57.1 71.54

MBVG 96.51 80.22 89.64

LPVG (N = 1) 95.81 76.87 87.19

LPVG (N = 2) 98.94 86.03 92.13

PNVG (a = p/4) 83.45 55.02 70.21

PNVG (a = 3p/8) 92.24 71.98 81.41

PNVG (a = p/2) 91.54 68.69 76.25

Table 4 The average time costing in second of14 VG based measures

calculation foreight VG methods and two different lengths of epochs

Epoch size 1000 2000

VG method

NVG 15.17 42.48

HVG 2.86 5.14

MBVG 75.12 542.32

LPVG (N = 1) 25.42 52.14

LPVG (N = 2) 64.32 148.56

PNVG (a = p/4) 2.45 4.06

PNVG (a = 3p/8) 3.39 5.78

PNVG(a = p/2) 3.97 6.45
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Considering both the speed and accuracy, LPVG and

NVG showed promising results. The PNVGs were fast,

enjoying relatively good accuracy indexes. Although the

HVG was equally fast, it suffered the lowest accuracy

index. Conversely, MBVG had a relatively good accuracy

but it was very slow. As can be seen, the different methods

had different accuracies and speeds, thus the selection of

one over another is a function of the relative importance of

accuracy or speed in a given application.

Since different studies used different databases and

study populations, different number of classes (two, three,

four or five classes), different classifiers and common types

of cross-validation approaches (K-fold or leave-one-out

cross-validation), no cross comparison among them was

possible. Therefore, in this study, several methods of signal

processing were implemented for seizure detection. The

Largest Lyapunov exponent (LLE), Fractal dimension (FD)

and bispectrum based features (BIS) were used as nonlinear

features. Details of these methods are presented in

‘‘Appendix’’.

Table 5 shows classification results obtained using three

mentioned methods and LPVG (N = 2) method. As shown,

the proposed method performs better than three other

methods.

Our proposed method was also applied to the recorded

EEG signals from Bonn (http://www.meb.uni-bonn.de/epi

leptology/science/physik/eeg.data.html) database to show

the efficiency of the proposed method for human seizure

detection. Sets Z (healthy) and S (seizure) from this online

EEG dataset were selected to test the method proposed for

seizure detection. The database was analyzed under the

same experimental conditions, and with the same proce-

dure. Tables 6 presents accuracies obtained using five

different VG methods and two different lengths of epochs.

As can be seen, proposed method can detect seizure with

high accuracy of 100%.

Discussion

This paper presented an innovative method for detection of

seizures in epileptic rats, based on five VG-based algo-

rithms and 14 graph properties with MLP classifier. The

studies proposing the use of NVG and HVG methods for

seizure detection validated their proposed methods on

human database.

To the best knowledge of the authors, the VG based

methods have never been applied for automatic seizure

detection in animals. Also, neither LPVG, PNVG and,

MBVG algorithms nor, GIC, Eg, r, El, C, L and, K features

have been used in the automatic seizure detection methods.

Tables 2 and 3 show that compared to other methods, the

LPVG method had the highest accuracy index along with a

reasonable speed index. This study also investigated the

effect of epoch size on performance, showing that although

longer epochs led to better accuracies, they made the

analyses more time-consuming.

In the literature, two approaches were proposed for the

detection of seizure: thresholding and classification. In the

former approach, a feature is calculated in consecutive

windows, with the resulted index being tracked over time

and compared with a threshold. In this approach, the sei-

zure onset is considered the moment the index crosses the

threshold. In the classification approach, however, features

from seizure and seizure-free periods are extracted and

statistically analyzed. There are significant differences in

the statistical characteristics of some features in these

periods, which can serve as a basis for the detection of

epileptic seizure. Some researchers have used classification

methods to distinguish seizure from seizure-free periods,

using these extracted features. In the first approach, just

one feature can be used for seizure detection while, in the

other, it is possible to use more than one feature. In this

study, the second approach was followed for seizure

detection, and the proposed method was proved successful

Table 5 The values of statistical parameters for the LLE, FD, BIS

and LPVG (N = 2) methods

Statistical parameters (%) Sensitivity Specificity Accuracy

VG method

LLE 83.25 61.47 70.65

FD 79.84 55.48 68.45

BIS 95.23 79.57 87.32

LPVG (N = 2) 98.94 86.03 92.13

Table 6 The classification accuracies for different VG methods and

four different lengths of epochs for human database

Epoch size 1000 2000

VG method

NVG 100 100

HVG 92.31 91.57

MBVG 95.45 98.54

LPVG (N = 1) 100 100

LPVG (N = 2) 100 100

PNVG (a = p/4) 93.52 94.25

PNVG (a = 3p/8) 97.3 95.24

PNVG (a = p/2) 96.87 97.46
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and effective in seizure detection. Several researchers have

used the second approach for automatic seizure detection in

rats, obtaining good results. Bergstrom et al. (Bergstrom

et al. 2013) proposed Spike detection using total signal

variation and wavelet decomposition to detect seizures in

epileptic rats. They used 36 channels ECoG signals and

obtained a high accuracy index of 99%.

Buteneers et al. (2011) used the following features: a

filter bank of Butterworth filters ranging from 1 to 30 Hz

with a bandwidth of 2 Hz, a set of Daubechies 4 wavelet

filters (levels 2–6), the first derivative, the energy of the

signal and the energy in the theta, alpha, beta and gamma

bands with reservoir computing (RC) classification algo-

rithm. They have evaluated their method on data contain-

ing two different seizure types: absence seizures from

genetic absence epilepsy rats from Strasbourg (GAERS)

and tonic–clonic seizures from kainate-induced temporal-

lobe epilepsy rats. Using the one channel ECoG signal, this

method resulted in a sensitivity index of 96% and 94% and

a specificity index of 96% and 99% on the data from

GAERS and kainate rats, respectively.

Makeyev et al. (Besio et al. 2011) proposed the com-

bination of detections from a cumulative sum algorithm

and a generalized likelihood ratio test to analyze Laplacian

electroencephalography (tEEG) signals. An average sei-

zure onset detection accuracy of 76.14% was obtained.

Feltane et al. (2013) proposed three features, namely,

median absolute deviation, approximate entropy and

maximum singular value to be calculated from tEEG data,

and be fed as inputs into two different classifiers: support

vector machines and adaptive boosting. The results showed

an overall accuracy between 84.81 and 96.51%.

The main advantage of the present model is that 14

features were examined. Most of the previous studies in the

area of PTZ-induced seizure detection employed only one,

two or three features. Applying a wide range of features

with different levels of complexity and sensitivity can

reveal suitability of each feature for the detection of PTZ-

induced seizures. Moreover, the present study included

more rats in its dataset compared to the majority of the

studies done so far (Feltane et al. 2013; Sherman et al.

2011; Moxon et al. 2001; Makeyev et al. 2012; Harreby

et al. 2011; Paul et al. 2003; Fanselow et al. 2000).

Further, the proposed method for detecting seizure

segments was robust; it enjoyed a high accuracy index even

though the data were contaminated with artifacts.

In the future studies, we intend to propose a new method

for transforming time series into the graph for faster and

more accurate epileptic seizure detection.

Conclusion

In this study, an approach based on the transformation of

time series onto graph was used for the detection of

induced epileptic seizures. In this study, seizures were

induced in rats using the PTZ model, and ECoG signals

were analyzed. For this purpose, five algorithms for

transforming of time series into complex networks, i.e.,

NVG, HVG, PNVG, LPVG and, MBVG, were used.

Moreover, VG based methods were used for the first time

for the analysis of ECoG signals in rats. In addition, for the

first time, LPVG, PNVG and, MBVG along with a number

of graph properties namely GIC, Eg, r, El, C, L and, K were

successfully employed to detect seizures. The highest

accuracy index was obtained by the LPVG method with

N = 2 and an epoch length of 2000 data points. Further-

more, it was shown this method was highly robust in

detecting seizure segments; it achieved a high accuracy

index even though the data were contaminated with arti-

facts. Results show, the proposed method has also better

performance comparing to some other methods. Therefore,

the proposed method was shown to be accurate, robust, and

fast, and can be used for real-time seizure detection.

Appendix

Fractal dimension, largest Lyapunove exponent
and Bispectrum

In this section, three methods used in work are briefly

introduced.

1. FD: fractal systems have self-similarity characteristic.

Self-similarity can be measured by the number of basic

building units that form a pattern, and this measure is

defined as the FD. Several algorithms have been proposed

for FD estimation (Lacasa et al. 2009; Higuchi 1988; Katz

1988; Asvestas et al. 1999), and in this work Higuchi

(Higuchi 1988) method were used.

2. LLE: LE is a measure of the exponential diver-

gence/convergence of initially nearby trajectories in the

phase space (Abarbanel et al. 1993). Since there was only

time series, a pseudo phase space or Reconstructed Phase

Space (RPS) of the system is constructed using Time Delay

Embedding (TDE) method.

Suppose {xi} represents the time series. The RPS is

created with a time delay s and an embedding dimension

m. The RPS matrix is formed as follows (Nasrolahzadeh

et al. 2015):
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x0 xs � � � x n�1ð Þs
x1 x1þs � � � x1þ n�1ð Þs
x2 x2þs � � � x2þ n�1ð Þs

..

. ..
. ..

. ..
.

2
6664

3
7775

Parameter s can be obtained through a number of dif-

ferent methods. In this study, ‘‘finding of the mutual

information function’’ method was used for estimation of s.
After the optimal lag has been selected, the dimension

(m) is estimated by Cao’s method (Nasrolahzadeh et al.

2015).The number of Lyapunov exponents is equal to (that

of) the embedding dimension of the attractor. For a system

to have at least one positive LE (which implies that the

largest Lyapanove exponent (LLE) is greater than zero)

leads to be chaotic.

Consider two nearest neighboring points in the phase

space at time 0 and t, the distances of the points in the ith

direction from these points are shown by dxið0Þ and dxiðtÞ,
respectively. The Lyapunov exponent is defined by the

mean growth rate ki of the initial distance;

dxiðtÞ
dxið0Þ

¼ 2ki t; 8t ! 1; ð14Þ

ki ¼ lim
t!1

1

t
log2

dxiðtÞ
dxið0Þ

; ð15Þ

Two general methods used for the calculation of the LE

from time series are the geometrical and Jacobian

approaches. In this paper, the first method was used. The

first is based on following the time-evolution of nearby

points in the phase space. This algorithm estimates the LLE

only (Nasrolahzadeh et al. 2015).

3. BIS: BIS is the Fourier transform of the third order

correlation of the time series and is defined as:

B f1; f2ð Þ ¼ E X f1ð ÞX f2ð ÞX� f1 þ f2ð Þ½ �; ð16Þ

where X is the Fourier transform of the signal x, X* is the

complex conjugate of X and E[] is an average over an

ensemble of realizations of a random signal (Nasro-

lahzadeh et al. 2016).

Equation (16) shows the bispectrum is a function of two

frequency variables and complex-valued.

Bispectrum can be estimated through various methods

(Chua et al. 2009). In this paper, direct (FFT-based)

(Nasrolahzadeh et al. 2018) is used to estimate Bispectrum.

The extracted bispectral based features in this study are:

1. Mean of bispectral magnitude:

Mavg ¼
1

L

X
X

B f1; f2ð Þj j; ð17Þ

where L is the number of points within the region X:
2. Max of bispectral magnitude within the region.

Max ¼ max
X B f1; f2ð Þj j; ð18Þ

3. Min of bispectral magnitude within the region.

Min ¼ min
X B f1; f2ð Þj j; ð19Þ

4. The sum of the logarithmic amplitudes of the bispec-

trum (Mookiah et al. 2012):

H ¼
X
X

Log B f1; f2ð Þj jð Þ; ð20Þ

5. Bispectral phase entropy (Ph) (Mookiah et al. 2012):

Min ¼ min
X B f1; f2ð Þj j; ð21Þ

where

p wnð Þ ¼ 1

L

X
X

I / B f1; f2ð Þð Þ 2 wnð Þ; ð22Þ

wn ¼ /j � pþ 2pn
N

�/\� pþ 2p nþ 1ð Þ
N

� �
;

ð23Þ

n = 0, 1, …, N - 1where / is the phase angle of the

bispectrum, and l(.) is a function which obtains a value

of 1 when / is within the range bin wn depicted by in

Eq. (23).

6. Bispectrum entropies (Mookiah et al. 2012):

P1 ¼ �
X
k

pklogpk; ð24Þ

where

pk ¼
B f1; f2ð Þj jP
X B f1; f2ð Þj j ; ð25Þ

P2 ¼ �
X
i

qilogqi; ð26Þ

where

qi ¼
B f1; f2ð Þj j2P
X B f1; f2ð Þj j2

; ð27Þ

P3 ¼ �
X
n

rnlogrn; ð28Þ

where

rn ¼
B f1; f2ð Þj j3P
X B f1; f2ð Þj j3

; ð29Þ
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