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Forecasting cell fate during antibiotic exposure
using stochastic gene expression
Nicholas A. Rossi1,2,4, Imane El Meouche2,3,4 & Mary J. Dunlop 1,2,3

Antibiotic killing does not occur at a single, precise time for all cells within a population.

Variability in time to death can be caused by stochastic expression of genes, resulting in

differences in endogenous stress-resistance levels between individual cells in a population.

Here we investigate whether single-cell differences in gene expression prior to antibiotic

exposure are related to cell survival times after antibiotic exposure for a range of genes of

diverse function. We quantified the time to death of single cells under antibiotic exposure in

combination with expression of reporters. For some reporters, including genes involved in

stress response and cellular processes like metabolism, the time to cell death had a strong

relationship with the initial expression level of the genes. Our results highlight the single-cell

level non-uniformity of antibiotic killing and also provide examples of key genes where cell-

to-cell variation in expression is strongly linked to extended durations of antibiotic survival.
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Bacteria are killed by antibiotics, but their effect is neither
instantaneous nor uniform. Rather, antibiotic exposure
results in a distribution of killing times, with some bacteria

succumbing to antibiotic exposure quickly while others remain
viable. In population-level experiments this effect is visible in
time-kill assays, which for Escherichia coli typically demonstrate
rapid killing within a window of 1–3 h following antibiotic
exposure1. However, survival of even a small number of cells can
be critical in clinical settings, resulting in chronic infections. A
well-studied example of this is bacterial persistence, where a
subset of the population exists in a temporarily dormant state that
renders those bacteria tolerant to antibiotics2. Time-kill experi-
ments from bulk population studies result in a biphasic killing
curve, with a first phase where the majority of the cells are killed
rapidly, followed by a second phase where death of the remaining
persister cells is much more gradual3. Single-cell studies have
shown that these bacterial persisters can survive and regenerate
populations3,4, potentially leading to recalcitrant infections5.
Besides the discrete persister cell state, populations of bacteria can
also exhibit a continuum of resistance levels. In this case, the
probability of survival under antibiotic exposure changes as a
function of the expression of their stress response genes6. In
addition to the clinical impact in chronic infections, cell-to-cell
differences in antibiotic susceptibility can play a critical role in the
evolution of drug resistance7–9. Temporal differences in survival
times are important, as recent studies have shown that drug
resistance can evolve rapidly under ideal, selective conditions9,10.

Variability in gene expression arising from stochasticity in the
order and timing of biochemical reactions is omnipresent, and
populations of cells can leverage this noise to introduce pheno-
typic diversity despite their shared genetics11. For example, bac-
teria can exhibit heterogeneity in expression of stress response

genes, allowing some individuals in the population to express
these genes more highly, leading to survival under stress6,8,12.
Examples of stress response machinery driven by noise include
sporulation and competence pathways in Bacillus subtilis13–15

and expression of lysis and lysogeny genes in λ phage16. In
addition, we have shown that expression of the multiple antibiotic
resistance activator MarA in E. coli is heterogeneous, which
generates diverse resistance phenotypes within a population6.
Beyond stress response, fluctuations in gene expression can
inform the future outcomes of a variety of cellular states. These
include examples from development, where variability in the
Notch ligand Delta can effectively forecast Drosophilia neuroblast
differentiation17. In addition, in cancer, human melanoma cells
display transcriptional variability that determines if they resist
drug treatment18. Additionally, knowledge of the number of
lactose permease molecules in a cell can predict if individual
E. coli induce lac operon genes19. Moreover, combining infor-
mation from multiple genes may increase the capacity to forecast
future cell fate, as has been shown in a yeast metabolic pathway20.

Antibiotic-resistant infections are a major public health
threat21. Standard population-level approaches such as those
measuring minimum inhibitory concentrations mask single cell
effects that can cause treatment failure22. Therefore, measure-
ments revealing cell-to-cell differences in antibiotic survival times
can be critical in informing how bacteria evade antibiotic treat-
ment. Identifying genes involved in extending survival times has
the potential to lead to new targets, and to reveal stepping stones
in the evolution of drug resistance9.

Here, we measure single cell killing as a function of time under
antibiotic exposure. By simultaneously measuring expression of
targeted genes within single cells and cell survival, we identified
genes whose instantaneous expression prior to antibiotic
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Fig. 1 Differences in single-cell carbenicillin susceptibility. a Snapshots of cells demonstrate variable lethality of carbenicillin. PgadX-cfp fluorescence (cyan);
propidium iodide is a cell death marker (red). b Cellular populations die progressively after carbenicillin exposure. Line represents mean killing curve as a
function of time. Shaded region represents standard deviation across five replicate microscopy positions containing ~100 cells each. Cartoon schematic
demonstrates how lethality is variable among individuals within the population, but depends on initial PgadX-cfp fluorescence. c Cells die at different times as
a function of their initial PgadX-cfp fluorescence. The x axis shows the cumulative percentage of dead cells at each time point. Initial fluorescence at t= 0 is
split in deciles with equal numbers of cells in each of the ten bins along the y-axis (Supplementary Fig. 2). d Population-level carbenicillin killing curves for
cultures containing a plasmid expressing gadX or cfp. Carbenicillin-killing curves for wild type and ΔgadX cultures. For both data sets, n= 3 biological
replicates and error bars show standard error of the mean
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introduction correlates with the ability to extend survival times
under antibiotic exposure. To do this, we computed the mutual
information between gene expression levels and the life expec-
tancy of the cells expressing them. We found examples where
gene expression can determine when the cell is likely to die, not
simply if the cell is going to die. These results demonstrate the
critical information contained within the stochastic expression of
certain genes in their capacity to forecast cell fate. We analyze
several factors, including mean expression levels, cell size, and
growth rates, and reveal that both expression of certain genes and
growth rate can effectively forecast cell fate, while other features
are at best weakly predictive at informing survival times in the
presence of antibiotics.

Results
E. coli shows single-cell variability in carbenicillin suscept-
ibility. In order to quantify the relationship between stochastic
gene expression and the time to E. coli cell death under antibiotic
exposure, we grew cells with a reporter where the promoter for a
gene of interest controls expression of cyan fluorescent protein
(CFP). At t= 0 we transferred cells with the reporter to agarose
pads containing a lethal dose of carbenicillin and then monitored
cell killing over time (see “Methods”). We selected carbenicillin
because of its clinical relevance23, and its bactericidal activity,
which makes it straightforward to pinpoint the exact time of cell
death24. At t= 0 we observed heterogeneity in gene expression, as
quantified by CFP fluorescence levels (Fig. 1a). We then recorded
the percentage of dead cells in the population at each time point
using propidium iodide, which stains DNA if the membrane is
depolarized25.

As an example, we observed a strong relationship between gene
expression levels and cell killing for the gadX promoter26. GadX is
a positively auto-regulated transcription factor that controls the
expression of pH-inducible genes27,28. Despite the fact that all
imaged cells were isogenic clones, we observed heterogeneity in
PgadX-cfp expression and also in antibiotic lethality over time. The
time-dependent killing curve was consistent across replicates,
with cells with higher expression of PgadX-cfp at t= 0 surviving
for longer than those with low expression (Fig. 1b).

To quantify this, we ranked the cells according to their
fluorescence at t= 0 from low to high expression, then binned
them so that each bin contained 10% of the cells. We tracked lysis
of single cells over time to quantify the difference in time to death
as a function of the initial fluorescence of the PgadX-cfp reporter
(Fig. 1c). We found that the brightest 10% of cells, corresponding
to those with the highest expression of PgadX prior to antibiotic
exposure, survived for longer times under antibiotics than cells
with lower expression (Supplementary Movie 1). To verify the
role of gadX expression in increasing the time to death under
carbenicillin treatment we conducted additional experiments
using a strain overexpressing gadX and a ΔgadX strain,
comparing each of these with a strain with wild-type levels of
gadX expression (Fig. 1d). We found that cells overexpressing
gadX could survive carbenicillin treatment longer than those with
wild-type levels; deleting gadX did not alter the survival time,
consistent with the heatmap data.

Bacterial promoters vary in ability to predict carbenicillin
response. Next, we extended this analysis to include additional
genes, constructing reporters for a total of 15 promoters. Our
analysis included genes that covered the major branches of the
gene ontology classification system for E. coli29 (Supplementary
Fig. 1). They include reporters for genes involved in metabolism,
cell processes, cell structure, transport, information transfer, and
regulation. We repeated the antibiotic exposure experiments for

each reporter and compared time of death for single cells to the
initial fluorescence level of that cell. Each reporter had a unique
distribution of initial fluorescence values, and ranking and
dividing cells into ten equal groups gave us an unbiased way of
comparing levels of gene expression given diverse means and
distributions of fluorescence (Supplementary Figs. 2, 3).

We quantified the percentage of the initial population that
survived for each decile (10%) of initial fluorescence over-time for
all promoters (Fig. 2a). Qualitatively, we observed that certain
promoters have a clear relationship between the time to cell death
and the fluorescence at t= 0 (PpurA, PinaA, Prob, and PgadX), while
others die at a uniform time regardless of initial fluorescence (e.g.,
Pfis). These features are visible in the heatmaps showing the
percentage of dead cells over time as a function of the initial
fluorescence. Interestingly, not all reporters with predictive power
about the time to cell death have the same characteristic shape to
their heatmaps. For instance, some reporters show a negative
relationship between cell death and fluorescence (PinaA, Prob, and
PgadX) while others show a positive relationship (PpurA). Also, in
some cases there is a distinct expression level that defines a cutoff
for extended survival times (top 10% of cells for PgadX, bottom
30% of cells for PpurA). In other cases, there is a continuous
relationship between fluorescence and survival (Prob). The
differences in the shape of these heatmaps may reflect the
biological mechanism by which these genes offer tolerance or
resistance.

For instance, expression of purA is downregulated by
transcription factors that increase antibiotic resistance30. PurA
is involved in AMP synthesis, suggesting possible interplay
between intracellular ATP, growth, and carbenicillin survival.
inaA encodes a weak acid inducible protein31, while gadX plays a
regulatory role in acid resistance27. Interestingly, a noisy response
to antibiotic stress has been shown to predict acid resistance via
the gad operon and the depletion of adenine nucleotides26. Rob is
a transcription factor that is involved in a wide set of functions,
from decreasing the concentration of antibiotics in cells to
detoxifying oxidative stress32. Thus, cells with high Rob
expression likely have multiple survival mechanisms.

To quantify the predictive power of each reporter in
determining cell killing, we measured how the initial fluorescence
decreases uncertainty about the future cell state. Because of the
differences in the heatmaps, we sought to use a metric that was
agnostic to the exact shape of the killing curve over time as a
function of gene expression. To do this, we computed the mutual
information between reporter florescence at t= 0 and the cellular
state at each subsequent time point (see “Methods”). To provide
intuition into the results, we visualized several characteristic
heatmaps (Supplementary Fig. 4). If all cells are alive (as at t= 0)
or if all cells are dead (as is the case after long periods of antibiotic
exposure), the information is zero. If cells die linearly in precise
proportion to their initial fluorescence, the corresponding
information is a parabolic arc, where information peaks at the
theoretical maximum of 1.0 bit when half the cells are dead.
Variations on this pattern decrease the information. Finally, if cell
death is not related to initial fluorescence, then the information is
always zero.

Computing the information over time allowed us to compare
the predictive power of each of the reporters (Fig. 2b). We found
that the peak mutual information between initial fluorescence and
cellular death varies among promoters. The peak information
occurs at the point in the experiment where the initial
fluorescence is the most informative about the cellular state at
that time. Considering the top four promoters when ranked by
peak information (Fig. 2c) (PpurA, PinaA, Prob, PgadX), we found
that each peak occurs at a different time point, indicating that
temporal ordering of these genes may be significant in
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determining cell killing. To provide insight into the magnitude of
the peak information necessary to distinguish between random
variation and clear trends in the relationship between gene
expression patterns and cell killing we also conducted permuta-
tion tests on the data. In this analysis, we randomly grouped data
into tenths rather than sorting by fluorescence (Supplementary
Fig. 5A) and calculated the peak information (Supplementary
Fig. 5B). We repeated the randomization 100 times to generate
statistics for the permutation test, providing a baseline against
which to judge peak information values (Supplementary Fig.
S5C). The top ranked promoters all well exceeded the peak
information values that would be expected due to random chance,
while low peak information values typically indicate no concrete
relationship between gene expression levels and killing times. As
an additional control, we also included a reporter with no
promoter driving cfp expression. As expected, the information
provided by this reporter was negligible.

For each promoter, we also calculated the difference between
cell killing times by measuring the difference in time to 50% cell
killing between the decile where cells were killed fastest and
that where they survived the longest (Fig. 2d). Cells containing
PpurA and PinaA reporters exhibited the greatest diversity in
killing times.

We next asked if it was possible that the predictive power of a
particular promoter was a result of the statistics of that promoter,
not its cellular function. To do this, we calculated the correlation
between the peak information and its strength (mean expression)
and noise (coefficient of variation) for all reporters. We found no
appreciable correlation between mean expression and peak
information (Supplementary Fig. 6A), nor between the coefficient
of variation and peak information (Supplementary Fig. 6B). These
results show that the naive statistics of a promoter are not the
reason why it is or is not predictive for cell fate.

We also computed the information between cell fate and
measurements that are independent of the fluorescence, including
cell size and growth rate at t= 0. Cell size is variable at the initial
time point because cells are at different stages in the division
process. We found that initial cell size has modest predictive
power about survival, and the heatmap showed slightly extended
survival times for smaller cells in the presence of carbenicillin
(Supplementary Fig. 7). This finding on the relationship between
cell size and killing time is consistent with previous research
showing that the longer it has been since division, the more likely
a cell is to lyse in the presence of carbenicillin33. However, the
modesty of its predictive capacity is a testament to the relative
phenotypic importance of stochastic gene expression by compar-
ison. Although this effect is present, expression of reporters like
PpurA is far more predictive of survival than cell size. In contrast,
cell growth rate is predictive of cell killing time, with slow
growing cells surviving longer than fast growing ones (Supple-
mentary Fig. 8). This agrees with recent results showing a robust
correlation between growth rates and lysis rates under β-lactam
antibiotic treatment34.

Predictive power varies by antibiotic. Our initial experiments
used carbenicillin, however, we next asked whether results on
information between gene expression and cell killing were specific
to this particular stressor or extended to other antibiotics. We
repeated our experiments using a subset of reporters with
ciprofloxacin. Ciprofloxacin is a clinically relevant antibiotic that
inhibits DNA gyrase35. Unlike carbenicillin, it exhibits both
bactericidal and bacteriostatic effects36. Comparing the peak
mutual information between six of the promoters with the two
antibiotics, we found distinct differences between their predictive
power for carbenicillin and ciprofloxacin (Fig. 3a). First, PgadX has
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a peak mutual information of ~0.3 bits under ciprofloxacin
treatment. This is considerably more than the information PgadX
provides under carbenicillin. Contrary to this, PpurA, PinaA, and
Prob all offer more predictive power under carbenicillin stress
than ciprofloxacin. Pσ70 and PhdeA offer comparable predictive
power between the two antibiotics, with the constitutive promoter
Pσ70 providing negligible capacity to forecast cell fate in either
case. The heatmaps from both antibiotics also show qualitative
differences in how reporters predict cell fate (Fig. 3a, b). For
instance, while cells with comparatively high PgadX fluorescence
survive well in both carbenicillin and ciprofloxacin, it is only
the top decile of cells in carbenicillin that have a comparative
advantage, while the upper half do in ciprofloxacin. The opposite
proves true for PhdeA where only the lowest decile of cells have an
advantage in ciprofloxacin, but there is a continuous advantage as
a function of lower fluorescence in carbenicillin. Together, these
results show that although gene expression may correlate well
with cell death, the time to death and single-cell level killing
effects can vary considerably with the type of stress.

Discussion
We have demonstrated that differences in gene expression asso-
ciated with noisy promoter activity have the potential to forecast
information about the future fate of a cell. This approach allowed
us to quantify how phenotypically meaningful the stochastic
expression of a particular promoter is for survival in the presence
of antibiotics. The promoters we selected for our reporters occupy
a variety of roles (Supplementary Note). Of those we tested,
reporters for stress response, metabolism, cell processes, and
information transfer had the most predictive power (Supple-
mentary Fig. 9), however, not every promoter within those classes
is predictive. Interestingly, the genes that had the highest pre-
dictive power were involved in ATP synthesis and/or acid
response (purA, gadX, and hdeA) in addition to regulators
involved in antibiotic resistance and oxidative stress response (rob
and soxS). This highlights the coupling between responses to
multiple stressors such as low pH and antibiotics. It also sheds
light on the need to further understand the overlapping
mechanisms cells use to cope with stress.

Surprisingly, some genes known to be involved in antibiotic
resistance were not detected to have a strong relationship to when
the cells died. For instance, the reporter for the acrAB multidrug
efflux pump had a low peak information value, despite the

pump’s ability to export carbenicillin37. This could be because
promoter activity is not necessarily representative of actual pro-
teins within the cell, where direct measurements of protein levels
would provide better information38. Alternatively, the advantages
of additional acrAB at the levels provided due to endogenous
variability in promoter activity may simply be too subtle to
produce a detectable phenotypic difference in these conditions. In
addition, results related to cell killing times may be dependent
upon imaging conditions. For example, a switch between growth
in liquid cultures and the specific imaging conditions could have
an impact on cell survival as a function of gene expression. To
control for this, we tested PgadX in an additional condition where
we moved cultures from LB liquid media to LB agarose pads and
found results that were similar to those where the same cultures
were moved to MGC pads (see “Methods”; Supplementary
Fig. 10). However, there may be other conditions where these
changes are important.

Interestingly, we observed some variation in the exact killing
curves between the strains with the reporters (Supplementary
Fig. 11A). Some strains were killed more rapidly than others, and
this effect was reproducible across replicates. While the time to
reach 50% dead cells does vary among strains bearing the dif-
ferent reporters, this time does not correlate with their peak
information (Supplementary Fig. 11B). The exact source of the
variation in killing curves is unclear, but it may be that the
promoter copies on the reporter plasmids operate as competitive
binding sites for transcription factors and other cellular
machinery necessary for tolerance or resistance39. Further, it
would be interesting to compare results for plasmid-based
reporters with chromosomally-integrated constructs to identify
whether copy number and competitive effects influence the
timing of cell killing.

An additional question raised by this work is whether the
information offered by the various reporters could be used in
combination to further improve predictions about time to cell
death. To tackle this problem, the notion of multivariate infor-
mation could be applied to include multiple genetic reporters40. If
multiple reporters contain nonredundant information about cell
fate, it may be possible to predict the outcome of a cell based on
sufficient initial data, even prior to antibiotic exposure.

By showing how life expectancy varies as a function of initial
fluorescence, we demonstrate an important relationship between
gene expression and time to cell death across genes of a wide
range of functions. Differences in the time to death are important
because they may point to underlying mechanisms by which a
particular gene grants tolerance or resistance and could expose
new gateways in the evolution of drug resistance. Expanding this
research to include additional reporters and antibiotics has the
potential to provide a global overview of how stochasticity in gene
expression propagates to variability in survival times.

Methods
Reporter plasmids and strains. All reporter plasmids have a kanamycin resis-
tance cassette and a promoter transcriptionally controlling the gene for CFP. We
isolated each promoter region based on annotations in the EcoCyc database41. The
selected sequences include all known regulatory binding sites within the database.
In the absence of any binding annotations, we selected a 200 bp fragment ending
with the transcriptional start site. Each construct was cloned using the Gibson
assembly method; the vector was either SC101 origin pBbS5k or ColE1 origin
pBbE5k6,42 (purA, inaA, hdeA, σ70, acrAB, and sodA reporters use pBbS5k; all
others use pBbE5k). Primers for construct designs are listed in Supplementary
Table 1. Reporter plasmids are available on AddGene (https://www.addgene.org/
Mary_Dunlop/). All plasmids were transformed into E. coli strain MG1655.

gadX overexpression and deletion. The gadX gene was amplified from the
chromosome of E. coli MG1655 and was cloned into the medium-copy (p15A)
origin vector pBbA5k42 (Supplementary Table 1). This plasmid was transformed
into E. coli MG1655.
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In order to delete the gadX gene from the E. coliMG1655 chromosome, we used
homologous recombination43. Primers with extensions homologous to the regions
adjacent to the gene were used to generate the PCR products (Table S1). After
recombination, the resistance marker gene was removed using the pCP20 helper
plasmid encoding FLP recombinase.

Time-lapse microscopy. Overnight cultures were grown from single colonies in
LB medium with 30 μg/ml kanamycin for plasmid maintenance. From these cul-
tures, a 1:100 dilution was used to inoculate fresh LB with kanamycin. Cultures
were incubated for 4 h at 37 °C with shaking. Cells were then diluted 3:10 in
M9 minimal medium containing 0.2% glycerol, 0.01% casamino acids, 0.15 μg/ml
biotin, and 1.5 μM thiamine (which we denote MGC medium). Cells were then
placed on 1.5% MGC low melting temperature agarose pads containing either
50 μg/ml carbenicillin or 2 μg/ml ciprofloxacin along with 10 μg/ml propidium
iodide. For the LB agarose pad experiments (Supplementary Fig. 10), cells were
diluted 3:10 in LB and then placed on 1.5% LB low melting agarose pads containing
50 μg/ml carbenicillin along with 10 μg/ml propidium iodide. For all conditions,
cells were imaged at 100× using a Nikon Instruments Ti-E microscope. The elapsed
time between adding cells to the pads and the initial imaging time point (t= 0) was
no more than 15 min. The temperature of the microscope chamber was held at
32 °C for the duration of the movies. Images were taken after every 5 min for 5 h
for at least five pad positions per strain, with each image containing ~100 cells.

For the heatmaps and information calculations we used microscopy settings
that optimized our ability to visualize variation in reporter expression
(Supplementary Fig. 2). As a result, we used different imaging exposure times for
each of the reporters. When calculating mean and coefficient of variation of
reporters, we used data from a separate experiment with identical imaging
conditions to allow for comparison across all strains (Supplementary Fig. 3).

Image analysis. We tracked cell death using a combination of custom MATLAB
scripts and manually scanning through the movies to locate the time of death. Our
MATLAB scripts adapted the SuperSegger software for the initial segmentation44.
We used propidium iodide fluorescence as well as other visual markers (loss of
contrast in phase images, compromises to the cell wall) to ascertain the moment of
cell death (Supplementary Fig. 12). It is important to note that ciprofloxacin
inhibits DNA gyrase, which might lead to cell death without or before membrane
depolarization. For these reasons, in addition to propidium iodide, we also relied
on other visual markers for identifying the timing of cell death (Supplementary
Fig. 12). We note that ciprofloxacin induces TisB, a toxin involved in membrane
depolarization and persister induction45, therefore, there may be cases where
propidium iodide staining could mischaracterize cell death.

Growth rates were estimated using increases in cell size during the first five
frames of the movie (20 min), as identified with SuperSegger44. We selected this
interval because it is rare for cells to die during this initial period (Fig. 2a).

Population-level survival rates. Overnight cultures were diluted 1:100 in LB
medium with 30 μg/ml kanamycin for plasmid maintenance. At 3 h, when cultures
reached exponential phase, aliquots were diluted and plated on LB agar in order to
determine the number of colony forming units before antibiotic exposure. We then
added 50 μg/ml carbenicillin and cultures were incubated for 5 h. After 5 h, cells
were diluted and plated on LB agar in order to determine the number of colony
forming units following antibiotic exposure.

Computing mutual information. We computed the mutual information between
cellular state (alive or dead) at time t (xt) and the initial fluorescence of that cell for
a given promoter (y).

I xt ; yð Þ ¼ H xtð Þ � Hðxt jyÞ
We computed the entropy of xt from the binary entropy formula. p(xt) is computed
as a fraction of cells dead at time t, across all initial fluorescence values for that time
point.

H xtð Þ ¼ �pðxtÞ log2 pðxtÞ � ð1� p xtð ÞÞ log2ð1� pðxtÞÞ
Finally, the conditional entropy is computed for a given initial fluorescence level
(yi). Where i is one of the ten deciles of initial fluorescence (Supplementary Fig. 2).
We then average the conditional entropy across all fluorescence bins to calculate
the average conditional entropy over time. We optimized the number of bins given
the number of individual cells analyzed for each strain (~500 cells)46, however the
general trends are not sensitive to the exact bin number (Supplementary Fig. 13).
Analysis was conducted using custom Python scripts.

H xt jyð Þ ¼ 1
n

Xn

i¼1

�pðxt jyiÞ log2 pðxt jyiÞ � ð1� p xt jyið ÞÞ log2ð1� pðxt jyiÞÞ

Permutation test. To assess the significance of the peak information values, we
compared results based on information calculations conducted with data sorted
based on fluorescence at t= 0 with those where the data order was randomized.
For the randomized data, we divided each data set into tenths and then conducted

the information calculations. We repeated this process 100 times to calculate sta-
tistics across many instances of the randomization.

Gene ontology. To map our data to the functions of each gene, we looked up the
role of each gene from the multifunctional classification scheme29,41. We pooled
the categories of information transfer and regulation, as they were entirely over-
lapping for the promoters we selected.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw data sets are available at: https://gitlab.com/dunloplab/forecasting-cell-fate. Any
other data are available from the authors upon reasonable request.

Code availability
Custom code for data analysis is available at: https://gitlab.com/dunloplab/forecasting-
cell-fate.
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