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Practical access to axially chiral sulfonamides and
biaryl amino phenols via organocatalytic
atroposelective N-alkylation
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László Kürti3 & Yu Zhao 2

The importance of axial chirality in enantioselective synthesis has been widely recognized for

decades. The practical access to certain structures such as biaryl amino phenols known as

NOBINs in enantiopure form, however, still remains a challenge. In drug delivery, the

incorporation of axially chiral molecules in systematic screening has also received a great

deal of interest in recent years, which calls for innovation and practical synthesis of struc-

turally different axially chiral entities. Herein we present an operationally simple catalytic N-

alkylation of sulfonamides using commercially available chiral amine catalysts to deliver two

important classes of axially chiral compounds: structurally diverse NOBIN analogs as well as

axially chiral N-aryl sulfonamides in excellent enantiopurity. Structurally related chiral sul-

fonamide has shown great potential in drug molecules but enantioselective synthesis of them

has never been accomplished before. The practical catalytic procedures of our methods also

bode well for their wide application in enantioselective synthesis.
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Molecular chirality plays an essential role in drug delivery
as enantiomeric molecules perform distinct interactions
with homochiral macromolecules in biological

systems1,2. In contrast to the ubiquitous central chirality, axial
chirality stems from hindered rotation around a bond axis, which
was unfortunately overlooked for many years in drug delivery due
to the dynamic nature of such chiral compounds. With the
support of much recent synthetic efforts3–5, the significance of
axially chiral compounds in systematic drug screening has
attracted a great deal of attention, and are considered to possess
unique advantage in delivering stable and compact structures for
small molecule drugs6,7. Out of the different classes of axially
chiral compounds, biaryls bearing hindered rotation represent the
most recognized type8–10. Molecules such as knipholone (Fig. 1a)
have found much use in traditional medicine. In addition, the
discovery of new bioactive biaryl compounds also represents a
highly active area of research. In the realm of enantioselective
catalysis, axially chiral biaryls have proven to be privileged
structures as well11. In particular, 1,1’-bi-2-naphthol (BINOL)
and related compounds have found extensive use as catalysts in a
myriad of stereoselective transformations12,13. A wide range of
enantiopure BINOL analogs have been made readily available and
are routinely screened for the development of new enantioselec-
tive transformations. The accessibility of a large library of them
has proven to be essential for reaction optimization.

Despite the great advances in this area of research, significant
limitations still exist for the practical access to certain important
structures, such as the axially chiral amino alcohol NOBIN that
has shown great utility in asymmetric catalysis (Fig. 1b)14. In fact,
the preparation of NOBIN in enantiomerically pure form still
represents a significant challenge. Although many attempts have
been documented on traditional oxidative coupling of two aryl
fragments15, classical resolution16, as well as catalytic kinetic
resolution17,18 and enantioselective synthesis19, most of the
known methods possess limitations such as low efficiency (the use
of stoichiometric chiral reagents) or the use of catalysts that take
multiple steps to prepare. In fact, due to their cumbersome
synthesis, NOBIN analogs bearing substituted chiral backbones
have rarely been prepared and explored14. Therefore, a general,
practical and scalable synthetic approach to enantiopure NOBIN
and analogs is still highly desired.

The phenomenon of axially chirality is not limited to hindered
biaryls. Much recent efforts have also been devoted to the iden-
tification of new axially chiral compounds as promising structural
motifs in pharmaceuticals. Tertiary amides and anilides bearing a
chiral axis (Fig. 1c), in particular, have attracted much attention
in recent years and many efficient catalytic systems have been
developed for their enantioselective synthesis20–25. Among the
different strategies, the construction of the key amide bond or the
aryl-carbonyl C–C bond represents the most commonly explored
approach. In sharp contrast, substituted sulfonamides are largely
uncharted for axially chiral entities, despite the fact that some
molecules containing this structural motif have been recognized
as potent drug candidates in the pharmaceutical industry. One
example is UK-240455, which is an effective NMDA antagonist26.
Surprisingly, the enantioselective synthesis of this class of axially
chiral compounds remains elusive in the literature and represents
a significant gap in the synthetic method development.

In this paper, we present our recent efforts in the development
of a unified and practical catalytic procedure to deliver two
important classes of axially chiral molecules (i.e., NOBIN analogs
and chiral sulfonamides) in high efficiency and excellent enan-
tiopurity (Fig. 1d). The first transformation provides an effective
kinetic resolution of NOBIN analogues, which can serve as
valuable chiral catalyst precursors. The second process converts
readily available aniline-derived sulfonamides to axially chiral

sulfonamides in excellent yield and enantioselectivity. This
method is practical, utilizes readily available reagents/catalysts
and can be easily scaled up with straightforward recovery of the
chiral catalyst. Derivatization and application of the chiral com-
pounds accessed using this method have also been demonstrated.

Results
Access to enantiopure NOBIN analogs by N-alkylative kinetic
resolution. Kinetic resolution is a highly effective strategy to
produce a general library of enantiopure NOBIN analogs. Despite
the inherent 50% yield limitation, the conversion of a resolution
process can be controlled to reliably access the unreacted sub-
strates in a nearly enantiopure form (≥98% ee)27,28. The avail-
ability of the racemic substrates, on the other hand, largely
influences the effectiveness of a resolution process. Our previous
work resulted in a highly practical and scalable organocatalytic
preparation of a wide range of racemic biaryl sulfonamide phe-
nols in high yields (see below)29,30. If this racemic synthesis can
be combined with a catalytic kinetic resolution using a com-
mercial and inexpensive catalyst, this sequence may provide a
practical access to enantiopure NOBIN library. Bearing this in
mind, we initiated our investigation by exploring different cata-
lytic strategies for the resolution of 1a. These strategies included
an NHC-catalyzed acylation of the phenolic OH group, which
was done in our previous work18,31, and an amine-catalyzed
substitution of the sulfonamide N–H bond using various reagents.

From these attempts, N-alkylation of 1a using the MBH
carbonate 2a under chiral amine catalysis32 proved to be the most
promising. Moderate conversion and selectivity were obtained for
the alkylation using commercial quinine A as the catalyst
(Table 1, entry 1). Encouraged by this initial lead, we examined
a series of commercially available chiral amines, including
monomeric and dimeric cinchona alkaloid-derived compounds
(Table 1, entries 2–6). (DHQD)2AQN E proved to be the optimal
catalyst for this reaction, resulting in good selectivity (S= 9) and
moderate efficiency (Table 1, entry 5).

Other reaction parameters such as the nature of the solvent,
catalyst loading, and steric bulk of the alkylating agent were
evaluated next. The choice of solvent showed to be particularly
influential (Table 1, entries 7–9). The use of CH3CN led to a
much-improved reactivity, although with a low selectivity (S= 4).
When we examined the solvent combination of CH2Cl2 and
CH3CN, a good balance of yield and selectivity was achieved
(Table 1, entry 10). Employing a bulkier MBH carbonate 2b,
which can be prepared in one step, led to a significantly improved
selectivity of S= 21 (Table 1, entry 11). Importantly, the
reduction in the catalyst loading did not affect the enantioselec-
tivity of this process (Table 1, entry 12). However, a higher
loading of catalyst was needed to achieve good conversion and in
turn an excellent ee for the recovered (R)-1a. It is important to
note that the catalyst can be easily recovered from this process.

With the optimal conditions in hand, we examined the scope of
this catalytic kinetic resolution (Fig. 2). All the racemic substrates,
in which a polysubstituted aryl group bears the sulfonamide
moiety, were easily accessed by our efficient organocatalytic
procedure. The S factor was determined based on the ee of the
product and recovered substrate. The model substrate 1a was
recovered in 38% yield with 98% ee. Having a Br substituent in
the 3-position led to a very high selectivity and enantiopure 1b
(99% ee) was recovered in 40% isolated yield. Notably, for
substrate 1c bearing a 3-methoxy group, the selectivity dropped
to S= 11. However, the substrate could still be recovered with a
high 95% ee and only a slightly lower yield of 32%. This
showcased the flexibility of a kinetic resolution process and its
ability to be used for library synthesis.
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Examples 1d–1g exemplified that substrates with a variety of
functional groups (i.e., halogens, esters, and ethers) in different
positions, could also produce good to high level of enantioselec-
tivity for the N-alkylation reactions. These substrates were
recovered in excellent enantiopurity (95–99% ee). Similar to the
Ms-protected anilines, the tosyl-protected 1h could undergo the
resolution reaction with the same level of enantioselectivity.
Amino phenol 1i, which features a more bulky fused aryl group,
was also recovered in an excellent 99% ee. However, in the case of
other halogenated substrates such as 1j and 1k, the lower
efficiency of N-alkylation led to an overall lower enantiopurity.
Nonetheless, further optimizing the conditions to improve the
reaction conversion should allow these compounds to be
recovered in excellent enantioselectivity.

To further explore the scope of this catalytic method beyond
the NOBIN analogs available from our previous synthesis30, other
NOBIN analogs bearing different anilines such as 1l29 or
binaphthyl-derived NOBINs including 1m–1o were prepared
using alternative syntheses. These analogs were subjected to the
kinetic resolution and gratifyingly, similar or even higher levels of
reactivity and enantioselectivity could be achieved. Our catalytic
kinetic resolution can thus deliver a wide range of NOBIN
analogs with biphenyl, binaphthyl, as well as phenyl–naphthyl
backbones in excellent enantiopurity. Such diversity is of great
value for reaction development. It is noteworthy that the Tan
group has reported an elegant and direct chiral phosphoric acid-
catalyzed preparation of NOBIN analogs in high yield and
excellent enantioselectivity19. However, in order to obtain the
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products in >90% ee an aryl protecting group on the NOBIN
nitrogen is required.

The impact of substitution on the amino and hydroxyl groups
was also examined. In contrast to the N-Ms substituted 1a that
was produced with a high enantioselectivity (S= 21), the
resolution of a N-tert-butoxycarbonyl (i.e., Boc-carbamate)
substrate 1p led to an enhanced reactivity but with a dramatic
loss in selectivity (S < 2). This highlights the importance of the
sulfonamide moiety in enantioselectivity control in this N-

alkylation reaction. On the other hand, when the phenol moiety
was protected as a methyl ether, a complete loss of enantioselec-
tivity was observed for the kinetic resolution of 1q. Although the
exact nature of this effect has not been confirmed, it is likely that
the free phenol may interact with the basic moiety on the catalyst,
which could rigidify the transition state structure and thus induce
high enantioselectivity31.

To further showcase the practicality of this catalytic system,
the gram-scale preparation of the substrate 1b followed by the

Table 1 Optimization of resolution of amino phenol 1a

Entry 2 Cat Solvent Conv.
(%)b

Product, ee
(%)c

1a, ee
(%)c

Sd

1 2a A CH2Cl2 30 3a, 60 26 5
2 2a B CH2Cl2 26 3a, −26 −9 2
3 2a C CH2Cl2 76 3a, −7 −23 1.4
4e 2a D CH2Cl2 5 3a, 73 4 6.6
5 2a E CH2Cl2 28 3a, 74 29 9
6e 2a F CH2Cl2 9 3a, 78 8 8.7
7 2a E CH3CN 80 3a, 22 90 4
8 2a E THF 28 3a, 20 8 1.6
9 2a E EtOAc 28 3a, 36 14 2.4
10 2a E 1:1 CH2Cl2/

CH3CN
62 3a, 50 82 7

11f 2b E 1:1 CH2Cl2/
CH3CN

60 4a, 65 98 21

12g 2b E 1:1 CH2Cl2/
CH3CN

39 4a, 86 55 23

aUnless noted otherwise, the reactions were performed with 1a (0.04mmol, 1.0 equiv.), 2 (0.8 equiv.), catalyst (20mol%) in solvent (0.5 mL) at 24 oC for 4 h
bDetermined by 1H NMR
cDetermined by chiral HPLC
dS= ln[(1− Conv.)(1− ee1a)]/ln[(1− Conv.)(1+ ee1a)]
e15 h instead of 4 h
fThe reaction time was 24 h
gUse of 10 mol% E and with 24 h reaction time
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kinetic resolution of 1b using a reduced catalyst loading (10 mol
%) was carried out (Fig. 3a). Enantiopure (R)-1b was obtained
in 35% yield. Single crystal X-ray analysis of 4b further
confirmed the structure of this N-alkylated product. In
addition, the catalyst was recovered in 90% yield. When the
recovered catalyst was used for another round of kinetic
resolution, the recovered 1b could be obtained with the same
efficiency and enantioselectivity.

In an effort to recycle the sacrificial product in this kinetic
resolution, product 4b was subjected to Ni-catalyzed de-allylation
to regenerate 1b in 95% yield with 60% ee (Fig. 3b). The use of
another chiral amine catalyst, (DHQ)2PHAL, resulted in an
enhancement of the enantiopurity of (S)-1b to 97% ee. In this
way, both enantiomers of the axially chiral amino phenol 1b
could be accessed.

The enantiopure halogen-containing amino phenols can be
derivatized through Pd-catalyzed cross coupling, which further
expands the NOBIN library. As shown in Fig. 3c, coupling of (R)-
1b with phenyl boronic acid furnished 5a bearing different
substituents ortho to the phenol moiety in high yield without
optimization. Similarly coupling of 1f produced 5b with an
altered backbone in 82% yield. Based on our previous report30,
the removal of the Ms group could also be carried out to deliver
free amino phenol 6a in high yield. This free amino phenol could
be further modified using the same Pd-catalyzed cross coupling to
yield 6b in a good yield.

The method provides highly efficient access to enantiopure
axially chiral amino alcohols bearing a polysubstituted aniline
moiety. We set out to explore the utility of this class of NOBIN
analogs in asymmetric catalysis. As shown in Fig. 3d, pyridine-
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containing amino alcohol 7 could be easily accessed from 1a using
two one-pot procedures (see Supplementary Information for
details). When amino alcohol 7 was used as a chiral ligand with
standard Ru-catalyzed asymmetric transfer hydrogenation condi-
tions (i.e., conditions which typically utilize the parent NOBIN-
derived ligand33), a high yield of 90% was obtained for alcohol 8
with an excellent 93% ee. This serves as a convincing proof-of-
principle for the utility of this class of axially chiral compounds.

Access to chiral sulfonamides by enantioselective N-alkylation.
An unexpected discovery was made during our optimization of
the formation of 4ha (Fig. 4a). Under certain reaction conditions,
a mixture of two isomers was observed for the formation of the
tertiary sulfonamide 4ha (see Supplementary Information for
details). In addition, the ratio of the two isomers changed over an
extended period of time. We were intrigued that this observation
should be attributed to the possibility of atropisomerism of the
sulfonamide moiety. Interestingly, no enantioselective prepara-
tion of such functionality has been reported in the literature.
Taking that into consideration, we decided to explore the for-
mation of axially chiral N-aryl sulphonamide 9 using the same N-
alkylation reaction, and initiated our efforts by examining the
configurational stability of sulfonamides 9 bearing different
substitution patterns.

As illustrated in Fig. 4b, compound 9aa bearing a mono-
ortho-tert-butyl substituent on the aryl group could be obtained
in up to 70% ee by amine-catalyzed N-alkylation in 2h;

however, the enantiopurity of this compound decreased rapidly
with longer reaction time (only 30% ee after 24 h). In contrast,
the ee of 9ba bearing two ortho-substituents on the aryl group
remained constant after an extended period of time (i.e., after
96 h). With these results, we decided to focus on optimizing the
enantiopurity of sulfonamides such as 9ba with both ortho-
substituents. The examination of different catalysts, solvents
and temperature was carried out systematically, the represen-
tative data from which was shown in Fig. 4c (see supinfo for
more details). Under the optimcal conditions using
(DHQD)2PHAL as the catalyst and comercially available 2a at
−20 °C, 9ba could be obtained with a high 86% yield with an
excellent 92% ee. It is important to note that the use of the
diastereomeric catalyst (DHQ)2PHAL could deliver the enan-
tiomeric 9ba in a slighly reduced 87% ee. Thus, both
enantiomers of 9ba can be accessed with good enantioenriche-
ment using this straightforward catalytic system.

With the optimal conditions in hand, the scope of this catalytic
synthesis of axially chiral sulfonamides was explored. As shown
in Fig. 5, the change of ester moiety resulted in uniformly high
enantioselectivity for 9ba–9be. Single crystal X-ray analysis of
9ba also confirmed the absolute configuration of this class of
compounds. Next, the incorporation of additional halide
substituents on the aryl group was well-tolerated to produce
9ca–9ea in 89–91% ee. All these examples possesses an iodo- and
a methyl substituents at the ortho-positions. We were curious
whether the size difference of these two substituents was essential
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for the high enantio-control. The test of substrates bearing larger
alkyl groups including ethyl, propyl and even isopropyl was then
carried out. As a pleasant surprise, products 9fa–9ha were
obtained in even higher enantioselectivities (92–95% ee). Even in
the cases of 9ja and 9ka, which bears a bromo- or chloro-group
vs. a methyl group, an excellent level of enantioselectivity could

be obtained. We surmise that the presence of a halogen-
substituent is key for this catalytic enantioselective system. Laslty,
the variation of the sulfonamide moiety was examined. It was
found that substrates from the small mesyl group to a range of
substituted aryl solfonamidescould be synthesized with uniformly
high ees (9la–9qa).
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To further demonstrate the utility of this catalytic system, the
derivatization of chiral sulfonamide 9ba was carried out. Under
palladium-catalyzed reductive Heck conditions, substituted indo-
line 11 could be obtained with good chirality transfer and high
yield. It is worth noting that the enantioselective reductive Heck
reaction still represents a challenge in synthetic chemistry34. In
addition, the tosyl group could be easily removed to deliver the
free indoline product 12 in high yield. Hydrolysis of 11 also
delivered free acid 13, whose crystal structure established the
absolute configuration of these synthetically valuable indoline
products.

Discussion
We have developed a powerful and practical catalytic system that
allows access to two classes of axially chiral compounds (i.e.,
structurally diverse NOBIN analogs and N-aryl sulfonamides) in
high efficiency and enantioselectivity. The practical preparation of
NOBIN analogs has been recognized as a serious limitation for
decades. This catalytic system operates by N-alkylation using
commercially available chiral amine catalyst and MBH carbonate
reagent. These factors allow this method to be a practical option
to access libraries of synthetically valuable NOBIN analogs for
catalyst development. In addition, our method also provides an
efficient synthesis of axially chiral N-aryl sulfonamides, a struc-
tural motif that has shown great potential in the pharmaceutical
industry. The utility of this class of compounds in drug delivery is
currently under investigation in our laboratories.

Methods
Representative procedure for the kinetic resolution of NOBIN 1. To a 4 mL vial
containing 1 (0.04 mmol) and (DHQD)2AQN (7.0 mg, 20 mol%) were added
CH2Cl2 (0.5 mL), CH3CN (0.5 mL) and MBH carbonate (6 μL). The reaction
mixture was allowed to stir at 24 °C for 24 h. The volatiles were removed in vacuo
at 24 °C and the residue was purified by silica gel column chromatography with
hexanes/ethyl acetate (10:1 v/v) as the eluent to afford the product 4 and unreacted
starting material 1.

Representative procedure for synthesis of axially chiral sulfonamide 9. To a 4
mL vial containing 10 (0.04 mmol) and (DHQ)2PHAL (3.0 mg, 10 mol%) were
added CH2Cl2 (0.25 mL) and CH3CN (0.25 mL). The reaction mixture was allowed
to stir for 10 min at −20 °C. Then MBH carbonate (12 μL) was added. Once the
starting material 10 was consumed completely as judged by thin layer chromato-
graphy, the volatiles were removed in vacuo at 24 °C and the residue was purified
by silica gel column chromatography with hexanes/ethyl acetate (10:1 v/v) as the
eluent to afford the product 9.

Data availability
Experimental details, characterization of compounds, and copies of NMR data are
available with the submitted manuscript. The X-ray crystallographic coordinates for
structures reported in this study have been deposited at the Cambridge Crystallographic
Data Centre (CCDC), under deposition numbers 1917938-1917941. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif.
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