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Aims: Immunotherapy is a rising alternative to traditional treatment in breast cancer

(BC) patients in order to transform cold into hot immune enriched tumours and

improve responses and outcome. A computational modelling approach was applied

to quantify modulation effects of immunotherapy and chemotherapy response on

tumour shrinkage and progression‐free survival (PFS) in naïve BC patients.

Methods: Eighty‐three Her2‐negative BC patients were recruited for neoadjuvant

chemotherapy with or without immunotherapy based on dendritic cell vaccination.

Sequential tumour size measurements were modelled using nonlinear mixed effects

modelling and linked to PFS. Data from another set of patients (n = 111) were used

to validate the model.

Results: Tumour size profiles over time were linked to biomarker dynamics and

PFS. The immunotherapy effect was related to tumour shrinkage (P < .05), with the

shrinkage 17% (95% confidence interval: 2–23%) being higher in vaccinated patients,

confirmed by the finding that pathological complete response rates in the breast were

higher in the vaccinated compared to the control group (25.6% vs 13.6%; P = .04). The

whole tumour shrinkage time profile was the major prognostic factor associated to

PFS (P < .05), and therefore, immunotherapy influences indirectly on PFS, showing

a trend in decreasing the probability of progression with increased vaccine effects.

Tumour subtype was also associated with PFS (P < .05), showing that luminal A BC

patients have better prognosis.

Conclusions: Dendritic cell‐based immunotherapy is effective in decreasing tumour

size. The semi‐mechanistic validated model presented allows the quantification of the

immunotherapy treatment effects on tumour shrinkage and establishes the relation-

ship between the dynamics of tumour size and PFS.
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What is already known about this subject

• Breast cancer is a widely studied disease, and tumour

growth models have already been described in this

setting.

What this study adds

• The quantification of the immunotherapy effect on

tumour growth dynamics of nonmetastatic patients is a

novelty in this area.
1 | INTRODUCTION

Breast cancer (BC) is the most commonly diagnosed malignancy in

developed countries1,2 with a lifetime risk of developing being 1 in 8

women.3 Despite significant improvements in survival outcomes over

the past 2 decades, BC remains the most common cause of cancer‐

related mortality among women, accounting for 15% of all cancer‐

related deaths.1

Different BC subtypes according to their genetic profile and

molecular expression are defined, with important prognostic and pre-

dictive implications.4-6 The rate of pathological complete responses

(pCR) after neoadjuvant chemotherapy (NAC) approaches 15% in

luminal tumours and almost a 50% in Her‐2 pure BC.7 Although pCR

has been identified as a surrogate endpoint for outcome in BC, triple

negative (TN) and luminal tumours with low progesterone receptor

expression represent an exception, having a worse long‐term outcome

despite the achievement of pCR.8 Additionally, luminal tumours out-

comes are generally good whether they achieved pCR or not.

Moreover, a 15% discordance has been identified in pCR among the

lymph nodes and the primary breast tumour in the same patient,9

suggesting that other surrogate endpoints could reflect better the

biological heterogeneity of BC when related to outcome.

From a biological perspective, either resistance to NAC or the

absence of targeted therapies could explain differences in pCR in BC

subtypes. This, together with lack of maintenance therapy in TN BC,

translates into distant relapse of the disease, and drives the need of

looking for new therapeutic approaches.10 In this scenario, the immu-

notherapy is an adequate and innovative solution to train the patients'

own immune system to target cancer cells.11,12 Dendritic cells (DC) are

1 of the most potent antigen‐presenting cells and are capable of prim-

ing naïve T‐cells, activating the immune response.13,14 Therefore,

immunotherapy with DC‐based vaccines is a very attractive approach

to treat cancer, offering the potential for high tumour‐specific

cytotoxicity13,15 and a synergistic effect when combined with

chemotherapy. In this respect, an increasing number of clinical

studies16-18 demonstrate that vaccination with DC is capable of induc-

ing antitumour‐specific response in BC, while being safe and well

tolerated.

Patient response is evaluated through the results obtained from

tumour scans and measurements of circulating biomarkers, as well as

with additional data from the disease progression. In general, each

item from the battery of response data is reported in an isolated

way, hampering the quantification of their impact to clinical outcome.

This could be beaten by an integrated analysis of all the information

available in the clinical setting.

Population disease progression and pharmacokinetic/

pharmacodynamic (PK/PD) models as part of the pharmacometrics
platform allow the integrated analysis of all the information, and pro-

vide a tool to predict outcomes, and to improve and optimise the ther-

apies administered (dosing schedules). Once established and validated,

mechanistic PK/PD models offer a series of in silico related possibili-

ties covering from optimizing response follow‐up designs and

exploring alternative therapeutic scenarios, to personalize treatments

based on late predictions from early clinical longitudinal response.19

Even though BC is a widely studied disease, PK/PD modelling efforts

in BC have been focused on advanced or metastatic stages of the dis-

ease, relating tumour size (TS) at a certain time point with survival.20,21

However, modelling exercises applied to earlier stages of the disease

can have a greater impact on the patients' outcome.

In this setting, the current work aims to develop a computational

PK/PDmodel describing, mechanistically, the effect of immunotherapy

in naïve locally Her‐2‐negative BC patients treated with autologous DC

vaccines together with standard NAC and how such effects are modu-

lated by patient's covariates, and translate either toTS, biomarker pro-

files, and beyond as predictors of progression‐free survival (PFS). The

model is established based on data from 83 case–control patients,

and was externally validated in a different cohort of 111 patients.
2 | METHODS

2.1 | Patient population

Eighty‐three treatment‐naïve patients were selected with locally or

locally advanced BC and without overexpression of Her‐2 that could

benefit from NAC. Thirty‐nine patients received DC vaccines together

with NAC (21 of them from the multicentre phase II pilot clinical trial—

EudraCT number 2009–017402‐3622; and 18 under compassionate

use approved by the Spanish Institute of Health). Forty‐four patients,

diagnosed and treated at the University Clinic of Navarra, with the

same NAC schedule represented the control group. Table 1 provides

a summary of patient characteristics.



TABLE 1 Summary of patient characteristics corresponding to the study (control and vaccinated patients) and validation dataset

Vaccinated (n = 39) Control (n = 44) Validation dataset* (n = 111)

Age (y)a 45.68 (36.15–74.48) 55.31(26–84.35) 47.6 (28.69–83.93)

Body mass index (kg/m2)a 24.04 (17.41–35.93) 24.55 (18.92–42.74) 23.36 (18.19–39.88)

Subtypeb LA 10 (25.64) 13 (29.54) 27 (24.32)

LB 12 (30.77) 18 (40.91) 60 (54.04)

TN 17 (43.59) 13 (29.54) 24 (21.62)

Stageb I ‐ 2 (4.55) ‐
II 25 (64.10) 26 (59.09) 111 (100)

III 10 (25.64) 14 (31.82) ‐
IV 4 (10.26) 2 (4.55) ‐

Hormonal statusb Menopausal 11 (28.20) 25 (56.82) 47 (42.34)

Perimenopausal 2 (5.13) 2 (4.55) 6 (5.4)

Premenopausal 26 (66.67) 17 (38.64) 57 (51.35)

Pregnant ‐ ‐ 1 (0.9)

Men ‐ ‐ 1 (0.9)

Tumour size diagnosisa US (mm) 30 (0–100) 29.5 (0–84) 33 (0–111)
MRI (mm) 54 (0–160) 42 (0–132) 62 (14–234)

Pathological responseb

Miller and Payne—T

I 3 (7.69) 3 (6.82) ‐

II 1 (2.56) 12 (27.27) ‐

III 15 (38.46) 16 (36.36) ‐

IV 8 (20.51) 7 (15.91) ‐

V 10 (25.64) 6 (13.64) ‐

Not available 2 (5.13) ‐ ‐

Circulating biomarkersa

LDH diagnosis (IU/L) 207 (143–382) 225 (145–357) 165 (84–196)

CEA diagnosis (ng/mL) 1.2 (0.3–6.6) 2.05 (0.369–52.9) 2.03 (0.3–12.0)

CA15‐3 diagnosis (IU/mL) 18.7 (3.7–63.0) 18 (5.7–224.9) 15.5 (6.4–32.0)

PROGRESSIONb 5 (12.8) 8 (18.18) 21 (18.91)

Median follow‐up (months) 64.60 66.14 113

aShowing median (range).
bShowing count (percentage).

*No vaccination.

CA15‐3, carcinoma antigen 15‐3; CEA, carcinoembryonic antigen; LA, luminal A; LB, luminal B; LDH, lactate dehydrogenase; MRI magnetic resonance

imaging; TN, triple negative; US, ultrasound.
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All patients provided informed consent consistent with the Inter-

national Conference on Harmonization of technical Requirements for

Registration of Pharmaceuticals for Human Use—Good Clinical Prac-

tice and local legislation. The study was performed in accordance with

the declaration of Helsinki and was approved by the institutional

review board of the ethics committee.
2.2 | Treatment

2.2.1 | Chemotherapy

All patients received NAC with a sequential treatment consisting

of 4 cycles of dose‐dense epirubicin plus cyclophosphamide with gran-

ulocyte‐macrophage colony‐stimulating factor support (schedule A),
followed by a second schedule of 4 cycles each 21 days of docetaxel

(schedule B) according to standard protocols. Changes to the original

protocol in terms of drugs or dose administered were recorded, and

permitted due to toxicity or specific patients' requirements.

2.2.2 | Immunotherapy

In addition to the NAC treatment described above, 39 patients

received vaccination with monocyte‐derived autologous DC loaded

with autologous tumour lysate. The vaccination plan included at least

6 vaccines, with the first 1 administered between the last dose‐dense

epirubicin plus cyclophosphamide and the first taxane‐based cycle of

NAC. Vaccines were administered through intradermal injection every

3 weeks in the first 6 doses. Afterwards, 4 vaccines were administered
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every 2 months and, finally, quarterly until the end of the vaccines. DC

vaccines were prepared according to the standard procedure23 under

good manufacturing practices at the University Clinic of Navarra's Cell

Therapy Area.

A schematic representation of the treatment program is provided

in Figure 1A, along with the complete information of NAC received

by the patients under study (Figure 1B), and from the validation

dataset (Figure 1C).
2.3 | Assessment of tumour dynamics

Tumour assessment was performed through imaging techniques,

either through ultrasound (US; Mylab 60; Esaote, Genoa, Italy) or

magnetic resonance imaging (MRI; Aera; Siemens, Erlangen, Germany)

before the beginning of the NAC (US and MRI), between schedules
FIGURE 1 Information regarding treatment
administered. Ai, NAC and IT administration
schedules (upper); Aii, measurements sampling
protocols (lower). B, C, Oncology treatments
summarized as median (and range values in
parenthesis) corresponding to the trial and
validation datasets, respectively.
Chemotherapy (CT), biomarkers (BM),
ultrasound (US), magnetic resonance imaging
(MRI)
(US), and at the end of the entire course of NAC, before surgery (US

and MRI). The number of TS observations was 326, of which 206 were

assessed by US, and 120 by MRI. The sum of the longest diameters

was used for modelling purposes. The limit of quantification was set

to 5 and 6 mm for US and MRI, respectively.
2.3.1 | Measurement of circulating biomarkers

Blood samples for measurement of lactate dehydrogenase (LDH),

carcinoembryonic antigen (CEA) and carcinoma antigen 15‐3

(CA15‐3) were collected from each patient before the beginning and

between NAC cycles. Table 1 lists the median and range values of

the circulating biomarkers. A description of the methodology used to

quantify biomarker concentrations is provided in the Supplementary

material S1.
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2.4 | Disease progression

PFS was defined as time to disease progression (TS increment or

metastasis apparition) or death within 10 years after diagnosis. The

Response Evaluation Criteria in Solid Tumours (RECIST)24 was used

in the US and MRI performed.
2.5 | Mixed‐effect modelling

In the context of longitudinal data analysis (multiple measurements are

made on the same subject over time), parameters from a model can be

estimated by mixed‐effect modelling techniques, using all the informa-

tion collected from different individuals.

The advantages of using mixed effects in an analysis are that

observations within a subject may be correlated and, in addition to

the estimation of the model structural parameters, the existing interin-

dividual variability can be estimated. The structural parameters follow

a statistical distribution, which is often assumed to be log‐normal, so

negative values can be avoided. This distribution describes the varia-

tion of the parameter values and, therefore, reflects the interindividual

variability (IIV). The second level of variability is the residual variability,

as it represents the underlying error of the measurements.25

The structural model is built based on the entire population under

analysis, not on data from 1 particular subject, and therefore does not

require rich data, nor is there a need for structured time schedules.

This explains why sparse data can be used in the development of this

kind of mathematical models.
2.6 | Data analysis

A nonlinear mixed effects model, also known as the population

approach,26 was used to study and establish the link between treat-

ment, tumour progression, biomarker dynamics and PFS data,

consisting of a structural model and a statistical model, therefore

accounting for variability within the population.27

Longitudinal tumour and circulating biomarker data were logarith-

mically transformed. IIV was modelled exponentially implying a log‐

normal distribution of the individual model parameters. Nondiagonal

elements of the Ω variance–covariance matrix were tested for signifi-

cance. Residual error was described with an additive model in the log-

arithmic domain. Data reported as below the limit of quantification

(BLQ) of the analytical determination technique were also included

in the TS analysis, treated as censored information and modelled

accordingly.28 For the analysis of the data, the first‐order conditional

estimation method with LAPLACIAN, available in the population

analysis software NONMEM version 7.329 was used.
2.7 | Tumour growth inhibition model

Equation 1 describes tumour dynamics (TA) as a function of 2 pro-

cesses: (i) tumour progression (represented by the term KP × TA

accounting for an exponential growth governed by the first order rate
constant [KP]), and (ii) treatment induced tumour regression or lysis

(LYSIS, represented by the term f [EDrug] × TA × KLYS, where KLYS

is a constant that modulates the lysis effect).

dTA
dt

¼ KP × TA − f Edrug
� �

× TA × KLYS (1)

At time of diagnosis, TA was assumed to be equal 1, and tumour lysis

equal to zero. The parametersTSUS and TSMRI were used to scaleTA to

describe tumour size observations obtained by US or MRI, respec-

tively. This was possible due to the fact that measurements obtained

by US and MRI were obtained at the same time and a correlation

between them could be established.

The term f (EDrug), represents both drug exposure and effects.

Plasma or serum concentrations were not available for any of the

drugs administered to patients. However, the current modelling strat-

egy predicts drug exposure based on the K‐PD approach30 using the

complete dosing history recorded for each patient, accounting for

dose modifications, as shown in in equation 2.

dCTRTn

dt
¼ −KD × CTRTn (2)

Where CTRTn represents the predicted active concentrations for the n

NAC treatment. Although the parameter KD should be treatment spe-

cific and mimics the elimination rate constant of each of the drugs

modelled, in our case and due to the lack of data regarding drug

concentrations, drugs that were given simultaneously were grouped

together, and treated as the same treatment in terms of efficacy,

differing in dose intensity. Hence, based on the dosing records, drugs

given to a patient at the same time were treated as the same drug.

Therefore, with the available data, only 1 KD could be estimated

because no differences between chemotherapy treatments is done.

In order to modulate the effect of the drugs administered and their

effect on tumour shrinkage, a constant (EFF) is introduced.

Vaccine exposure (θVac) was arbitrarily set to 1 for those patients

not receiving immune‐therapy treatment and estimated otherwise.

Equation 3 shows the full model for drug effects.

f EDrugð Þ ¼ KD × CTRTn × EFF × θVac (3)

Where θVac is the parameter accounting for the modulating effects

of the vaccine on the tumour response elicited by chemotherapy.

As shown in equation 3, it is assumed that the rate of drug elimina-

tion (KD × CTRTn) is the driver of drug effect, and an EFF parameter is

also estimated. As suggested by Jacqmin et al. in 2006,30 the elimina-

tion rate constant from the elimination compartment (Kd) estimates

the time for equilibrium between the rate of drug administration and

the observed response to drug action. However, the parameter EFF

combines both PK and PD, and represents the apparent potency of

the drug at steady state.
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2.8 | Biomarker model

The time course of circulating levels of LDH, CEA and CA15‐3 were

described as a function of a zero order synthesis (Kin—modulated by

tumour lysis), and a first order degradation processes (Kout), as shown

in equation 4. The parameter θLYS accounts for the increasing levels of

biomarkers as a function of tumour lysis.

dBMm

dt
¼ Kinm × 1þ θLYS × LYSISð Þ − Koutm × BMm (4)

Where the suffix m corresponds to LDH, CEA or CA15‐3.

Tumour size and circulating biomarker data were analysed simulta-

neously. The same residual error was estimated for the 3 biomarkers.

2.9 | Model for PFS

PFS was defined as time to disease progression or death within

10 years after diagnosis. Study withdrawals due to disease progression

were considered informative dropouts, which were analysed simulta-

neously with TS and biomarker dynamics to describe the link between

these and the probability of having disease progression.31

PFS was modelled as a time to event variable by means of a sur-

vival analysis, allowing identification of the underlying hazard function

(instantaneous rate of event), from which the probability of remaining

in the study can be obtained by integrating the hazard with respect to

time. First, different distributions (exponential, Weibull, log‐logistic or

Gompertz) were explored to see which better characterized the

underlying hazard function.

Second, different expressions of tumour size and biomarker

dynamics, along with other covariates that are shown in Table 1 were

evaluated as potential modulators of the hazard.

2.10 | Covariate selection

The stepwise covariate model building procedure implemented in

Pearl Speaks NONMEM software32 was used to build the covariate

model. The stepwise covariate model procedure is based on a forward

inclusion followed by a backward deletion approach and, during

these, the levels of significance used to incorporate the model and

to keep a covariate in the model were set to 0.05 and 0.001,

respectively.

Significant covariates were associated with the parameters using

the general covariate model shown in Supplementary material S2.

2.11 | Model selection criteria

Selection among models was based on: (i) the minimum value of the

objective function provided by NONMEM, equal to −2 × log likelihood

(−2LL); −2LL differences of 3.84, 7.88 and 10.83 are considered

significant at the 5, 0.5 and 0.1% levels, respectively, for nested

models differing in 1 parameter; (ii) precision of parameter estimates;
and (iii) results from model performance judged by visual exploration

of the goodness of fit plots.
2.12 | Model evaluation

Parameter precision was further evaluated performing 200 nonpara-

metric bootstrap analyses using Pearl Speaks NONMEM,33 stratified

by treatment group to keep the same proportion of vaccinated vs con-

trol and listing the 2.5th, 50th and 97.5th percentiles of each parameter

distribution. Evaluation of the final model was based mainly on

simulation‐based diagnostics. For the biomarker and tumour growth

model, performance was evaluated by prediction‐corrected visual pre-

dictive checks (VPCs). A total of 500 datasets with the same study

characteristics as the original were simulated. For the tumour size

and biomarker variables the 2.5th, 50th and 97.5th percentiles of the

simulated observations were computed for all time intervals and the

95% prediction interval of each calculated percentile was obtained

and plotted against the 2.5th, 50th and 97.5th percentiles obtained

from the raw data. For the PFS model, simulated event times were

obtained following the MTIME method34 to create Kaplan–Meier

VPCs.
2.13 | Model validation

The model was externally validated using tumour size, circulating

biomarkers, and PFS data gathered from 111 nonmetastatic BC

patients treated and diagnosed at the University Clinic of Navarra.

Patients from the validation dataset received similar NAC treatment,

but none of them received immunotherapy. Table 1 also lists the

characteristics of the population whose data were used for model

validation.

The same procedure as that described for model evaluation

through visual predictive checks was applied here to evaluate whether

or not the model was capable of describing the data obtained from a

population of patients different from the original.
3 | RESULTS

3.1 | General description of the data

Longitudinal raw data used in the current analysis as well as the

schematic representation of how that information was integrated

and linked together within the modelling framework is shown in

Figure 2.

Tumour size at diagnosis ranged from observations reported as

BLQ to 100 mm (median = 30 mm) and BLQ to 160 (median = 54 mm)

for US and MRI, respectively. Tumour size at diagnosis reported as

BLQ were modelled accordingly. A decrease in TS during the treat-

ment period occurred in the vast majority of the patients (95%), with

12% of the total measurements reported as BLQ at the time of

surgery. Tumour regrowth after regression was not observed in any

of the patients. The time‐course of circulating biomarkers showed a



FIGURE 2 A, Schematic representation of the tumour growth inhibition model after NAC treatment and IT. KP corresponds to proliferation rate
constant; EVAC and EDRUG correspond to the vaccination and neoadjuvant chemotherapy effect, respectively. Tumour size affects progression‐
free survival (PFS). LYSIS refers to the tumour shrinkage, which affects the elimination (Kout) of the biomarkers. B, Tumour size vs time profiles.
Solid lines correspond to tumour size assessed by ultrasound, and dashed lines to magnetic resonance imaging. The light‐yellow colour represents
control patients while the dark colour shows vaccinated patients. Middle panel, circulating biomarker vs time profiles: green (lactate
dehydrogenase), blue (carcinoembryonic antigen) and red (carcinoma antigen 15‐3), and the PFS vs time profile is shown. LDH, lactate
dehydrogenase; CEA, carcinoembryonic antigen; CA 15‐3, carcinoma antigen 15‐3. C, Raw PFS vs time profile is shown, stratified by treatment
group and tumour subtype
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temporal increase over the values at diagnosis which was assumed to

be the consequence of tumour lysis exerted by the treatment. All lon-

gitudinal continuous variables showed a moderate degree of IIV. As
listed inTable 1 a small proportion of the patients experienced disease

progression during the follow‐up period (8 patients out of 83 in the

case–control groups).
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3.2 | Model for tumour size dynamics and circulating
biomarkers

Disease initial status is represented by the typical baseline parameters

with estimated values of 33.5 and 59.5 mm, for US and MRI, respec-

tively, and their corresponding degree of variability, which was rather

similar: 47 vs 42%.

Describing tumour shrinkage as a function of the total dose

intensity administered provided a significantly better data description

compared with when treatment effects were ignored (P < .001).

Differences between schedules A and B could not be established

(P > .05), indicating that both NAC schedules were equally effective

with regard to TS reduction. The estimated IIV associated to the drug

effect parameters was 49%. The parameter KD representing the per-

manence of treatment effects in the body was estimated to be 2.23/

week, corresponding to a half‐life of 2.2 days. A correlation between

the rate of tumour decline and the initial tumour size could not be

found.

As expected (due to the fact that there is 1 additional US measured

around midterm of treatment) the modelling results were better when

US data were described alone compared to the same approach applied

to MRI. However, the pooled analysis provided better results in terms

of data description, link to the clinical outcome and parameter

precision.

Interestingly, and despite most of the patients did not show

tumour increase during the treatment period, data supported the char-

acterization of the progression of the disease (P < .001, according to

the model selection criteria previously exposed). The estimate of first

order proliferation rate constant (KP) was low (2 × 10−4/week) and

likely slowdown by the treatment. The KP could only be estimated

when the BM and TS data were simultaneously analysed. A model

without KP provided a worse fit (P > .05) than the final model.

Inclusion of vaccination effects in the model provided a significant

improvement in data fitting (P < .01) and predicted almost a 20% fur-

ther reduction in TS compared to the reduction achieved by NAC

alone. This fact is confirmed by the finding that pCR rates in the breast

were higher in the vaccinated cohort than in the control group (25.6%

vs 13.6%; P = .04).

The circulating biomarkers showed different levels at diagnosis

(ranging from 1.56 ng/mL to 234 IU/L), as well as different dynamics

of turnover. Despite the differences in the biomarker specific parame-

ter estimates, the magnitude of the tumour lysis effect of the rate of

synthesis was not significantly different across the 3 biomarkers,

although the model sustained the inclusion of IIV on this term, being

the associated variability 45.5%.

For the 3 different biomarkers, a baseline parameter, synthesis rate

and elimination rate were estimated. In normal conditions, the baseline

can be described as the ratio between synthesis and elimination. How-

ever, at the time of diagnosis, these patients have their initial bio-

marker values already modified by the tumour (initial values were set

as baseline), and therefore it does not correspond to the initial healthy

value at which the system has to return (and therefore described by

the ratio between synthesis and elimination). This fact explains why
the model presented here described the data better than a model with

only 2 parameters accounting for the biomarker dynamics.

Table 2 lists all model parameter estimates obtained with adequate

precision. The model provided a very good description of TS (regard-

less the measurement method) and circulating biomarker data, both

the typical profiles and the variability in the data (Figure 3A, B).

3.3 | Model for PFS

The probability of PFS in BC patients was best described by a para-

metric survival model using a Weibull distribution (P < .001). Simpler

parametric distributions with 1 parameter, such as exponential models,

or other 2‐parameter hazard distributions (log‐logistic, Gompertz),

described the data less well (P > .05).

Among all the covariates and tumour related variables, the full TS

profile predicted from diagnosis to surgery together with tumour sub-

type were the only covariates showing statistically significant effects

on the hazard (P < .05). As a result, luminal A patients have better

PFS. Biomarker dynamics were also tested as descriptors of the PFS

data, ignoring TS dynamics, obtaining a worse description of the PFS

(P > .05) than the description obtained when using the full TS profile

over time.

Equation 5 represents the select model for the hazard.

h tð Þ ¼ BaseS × β × BaseS×tð Þβ−1 × e−α×TA (5)

Where BaseS is the baseline hazard modified by tumour subtype, β is

the shape parameter, and the parameter α modulates the effect of

the dynamics of tumour activity on the hazard.

Parameter estimates are listed inTable 2. Results shown in Figure 3

C indicate that the model describes well the PFS data. Additionally,

the median predicted estimate of the 5‐year survival rate (87%) agrees

well to observed (85%).

An exploration of the immunotherapy effects on PFS showed an

increase on the 5‐year PFS compared to the control patients with

increased vaccine effect, even though it was not statistically

significant.

3.4 | Model validation

A simulations‐based diagnosis (prediction‐corrected VPC) based on

the model represented by the set of equations 1–5 and the parameter

estimates listed inTable 2 was performed. As shown in supplementary

material Figure S1 all response variables were well captured by the

model confirming its model performance robustness.
4 | DISCUSSION

BC is a global disease, with one of the highest incidences among all

types of cancer. Even though it has been traditionally considered as a

poorly immunogenic tumour, the number of clinical trials based on

the application of DC immunotherapy is increasing in the metastatic

setting.35-39 DC‐based vaccines induce antitumour specific responses



TABLE 2 Population parameter estimates of the integrated model

Parameter Estimate 2.5th–97.5th IIV (SHR%) 2.5th–97.5th

Tumour size

TSU0 (mm) 33.5 31.2–37.4 47.3 (7.9) 31.6–48.3

TSM0 (mm) 59.5 54.9–67.9 42.5 (17.3) 33.6–52.1

Covariance 79.1

KD (/week) 2.23 2.13–40.95 NE NE

EFF 0.028 0.024–0.037 49.2 (29.8) 34.0–54.2

KP (/week) 0.0002 0.0001–0.0003 NE NE

θVAC 1.17 1.02–1.23 NE NE

KLYS 4.91 4.25–5.80 NE NE

Biomarkers

BM0LDH (IU/L) 234 202–235 16.6 (33.4) 10.6–16.88

BM0CEA (ng/mL) 1.56 1.26–1.82 99.4 (33.4) 84.1–116.3

BM0CA15‐3 (IU/mL) 19.8 16.9–22.8 66.6 (14.4) 56.7–85.1

KINLDH (IU/week) 0.02 0.01–0.39 23.6 (57.4) 0.9–10.1

KINCEA (ng/week) 0.013 0.012–0.027 89.1 (45.6) 80.9–122.6

KINCA15‐3 (IU/week) 0.075 0.07–0.28 52.4 (35.4) 35.4–73.9

KOUTLDH (/week) 0.03 0.01–0.32 24.7 (55) 8.6–20.5

KOUTCEA (/week) 0.00096 0.0007–0.002 227.2 (40.1) 214.9–325.7

KOUTCA15‐3 (/week) 0.09 0.01–0.23 26.8 (56.5) 7.9–30.9

θLYS 45.4 26.67–58.47 45.5 (33.5) 45.4–87.5

Progression‐free survival

BASE 5.67 × 10−4 1.19 × 10−4–9.29 × 10−4 NE NE

BASE subtype LA 1.5 × 10−7 1.2 × 10−7–2.0 × 10−7 NE NE

BETA 1.07 0.93–1.80 NE NE

ALPHA 0.28 0.06–1.42 NE NE

Residual error: US = 0.229; MRI = 0.302; biomarker: 0.173.

IIV, interindividual variation; SHR, Shrinkage; TSU0, TSM0, Tumour size at diagnosis by US or MRI, respectively; Kd, NAC elimination constant; EFF, param-

eter modulating NAC effect; KP, tumour growth constant; θVAC, parameter representing the DC vaccine effect; KLYS, tumour lysis constant.

NE, not estimated; BM0, biomarker at diagnosis; KIN, synthesis rate; KOUT, elimination rate; θLYS, parameter modulating the tumour lysis on the biomarker

synthesis; BASE, baseline hazard; BASE subtype LA, baseline hazard for patients with Luminal A BC; BETA, shape parameter; ALPHA, parameter modulating

the effect of tumour dynamics on the hazard. LDH, lactate dehydrogenase; CEA, carcinoembryonic antigen; CA 15‐3, carcinoma antigen 15‐3

Model equations:

Tumour size:
dTA
dt

¼ KP × TA − f Edrug
� �

× TA × KLYS

f (EDrug) = KD × CTRTn × EFF × (1+ θVAC × CVAC)

Biomarkers:
dBMm

dt
¼ Kinm × 1þ θLYS × LYSISð Þ − Koutm × BMm

Progression‐free survival: h(t) = Base × BaseS × β × (Base × BaseS × t)β − 1 × e−α × TA
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while being well tolerated and safe. In this context, the current work

aimed to provide an original mechanistic quantitative description of

the effect of the administration of DC vaccines in the novel neoadju-

vant scenario in BC patients.
Even though some modelling exercises have been applied to data

obtained from BC patients,20,21 this work reports for the first time a

semi‐mechanistic modelling framework suitable for the quantification

of the immunotherapy treatment given along with NAC to naïve early



FIGURE 3 Results from simulation‐based model evaluation. (A, B upper panels) Points in black represent raw data, and coloured shaded areas
represent the 95% confidence intervals of the 2.5th, 50th and 97.5th percentiles obtained from 500 simulated datasets. A, Shows the tumour
size assessed by ultrasound (US; left panel) and magnetic resonance imaging (right panel). The lower panels show the percentage of the below limit
of quantification values. The solid line represents the observed proportion of below the limit of quantification values and the area is the 95%
confidence interval predicted by the model. B, Biomarker prediction‐corrected visual predictive checks for lactate dehydrogenase,
carcinoembryonic antigen and carcinoma antigen 15–3 (left to right). C, Kaplan–Meier curves for the progression‐free survival (PFS); the solid line
represents the raw PFS profile and shaded areas cover the 95% confidence intervals of the model based simulated PFS profiles
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or locally advanced BC patients. The model built provided a better

understanding of the relationship between TS, biomarker dynamics

and PFS by integrating all the information available in the context of
routinely available data in the clinical setting. Predictability of model

readouts is warranted as the model has been externally validated in

a cohort of 111 BC patients.



FIGURE 4 Summary of the model building process and representation of the potential benefits of the integrated pharmacokinetic/
pharmacodynamic/disease progression models as part of the pharmacometric platform
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Tate et al.20 developed a mathematical model that related survival

with tumour size. The patients they used to build up their model

were metastatic BC patients. They proposed an overall survival

model related to tumour size at 1 discrete time point (6–8 weeks),

and did not take biomarker dynamics into account. In contrast, our

work has the novelty of being developed in the neoadjuvant scenario

that takes the whole dynamics of the tumour size into account to

explain PFS, along with the fact that biomarker dynamics are also

included.

The whole time profile of TS was successfully described integrating

information from 2 different imaging techniques (US and MRI), and

thus increasing the available tumour size information. In fact, the TS

estimation after NAC by standard imaging methods correlates poorly

with the residual tumour, does not serve as a predictive factor for

pCR and does not avoid breast surgery so far. By contrast, pCR is

not the best endpoint for predicting survival in all BC subtypes, more-

over regarding the addition of immune therapies that reflect better the

benefit on survival than on tumour shrinkage.40 The implementation

of this dynamic analysis provides more integrated information of the

impact of tumour dynamics on PFS (Figure 4), based onTS rather than

on RECIST based response criteria, which considers only 1 data point

at one particular time. This is, to our knowledge, the first time that a

modelling exercise combines different imaging techniques to model

1 variable like TS, optimising tumour information during the model‐

building process.

Since clinical data are usually sparse, all the resources available

should be used in the patient's favour. In this context, an innovative

way of treating data obtained from different imaging techniques is

shown here. These, addressed separately, give additional data to the

clinicians, but maximize the information obtained when joined in the

quantitative modelling exercise.
The magnitude of the immunotherapy effects could be precisely

quantified using all longitudinal data available. Immunotherapy needs

a longer median time to response (~4 months) than conventional che-

motherapy.41 Our model predicts almost 20% shrinkage in TS when

the vaccines are added to conventional NAC, and this value fits with

the 18% ORR that has been described in a phase Ib clinical trial of

TN metastatic BC patients treated with pembrolizumab.41 Even

though the methodologies applied are different, other studies in which

immunotherapy is used, reported an increase in complete responses

after adding it to the NAC treatment,42 showing concordance with

what it was obtained in this study.

Predicted TS dynamics helped to successfully describe the time

course of LDH, CEA and CA15‐3 data by the proposed model. Despite

none of the studied biomarkers resulted to be a better prognostic fac-

tor of PFS than tumour dynamics (P > .05), the stablished relationship

between these and tumour progression is relevant, since the latter can

be used as a surrogate of tumour activity, as shown by Buil‐Bruna

et al.19,43 This is particularly useful in cases when resources are limited

or more readily available data can be used to infer more time and

resource‐consuming information.

Ideally, we would have wanted the biomarkers to be used as a sur-

rogate for the tumour, and therefore remove the need to obtain tumour

measurements. However, in this particular case, the benefit of adding

the biomarkers relies only in being able to estimate 1 parameter

representing tumour growth (KP). Including biomarker data in our

modelling framework was key to better characterize tumour dynamics,

including proliferation, since biomarker data are more frequently

obtained. Tate et al.,20 in a modelling exercise perform in metastatic

breast cancer, reported a tumour growth constant of 1.19 × 10−4/week,

which is comparable to the 1 tumour growth constant estimated in our

model (2 × 10−4/week). Therefore, in this case, biomarkers are not used
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as true biomarkers able to potentially replace tumour dynamics, but are

included as additional data to support tumour dynamics description.

The parameter representing the permanence of NAC antitumoural

effects in the body was estimated to be 2.23/week, which

corresponds to a half‐life of 2.2 days. Therefore, the model predicts

that the drug effect is gone in approximately 9 days. The estimated

half‐life is higher than the reported in the prescribing information for

the drugs, indicating a sustained and kinetically delayed response with

respect to the plasma and tissue drug concentration vs time profiles.44

The analysis of PFS shown that the predicted time course of TS

was the major factor contribution to the hazard. Given the fact that

DC vaccines promoted tumour shrinkage, this provides a plausible

mechanistic explanation for the greater PFS seen in the vaccinated

patients. At a median follow up of 60 months, PFS for the control

and the vaccinated groups were 80 and 88% respectively. Results

obtained during the process of model building indicated that those

effects were jeopardized when vaccination was introduced directly

as a stratifying factor on the survival analysis, highlighting the benefit

of using integrative computational methodologies. Further explora-

tions of the model through simulations shown an improvement on

PFS with increasing vaccine effects, which is line with previous studies

not related to the modelling approach that have shown that immune

activation against tumour suggest an improvement in survival.17,45

The proposed model provides the basis of the improvement and

optimization of the vaccine administration. Using the suggested

framework, different administration schedules of the vaccines could

be evaluated to select the most effective one. To do so, more data

and a more refined model would be needed, but through this, the eval-

uation of shifting the timing of vaccine delivery would be possible,

personalising treatment even more.

One limitation was, however, that some of the tumour size

measurements overlap in time, and, by better characterising disease

dynamics, more robust relationship could have been established.

Although more repeated measures of imaging techniques could serve

to better establish tumour dynamics, they are not recommended in

the clinical practice. However, liquid biopsy such as circulating tumour

DNA could solve this limitation and better predict PFS.46

Further studies will be needed to evaluate the safety of the

vaccines, even though studies with similar treatment report them as

safe.42,47 An extended modelling framework with NAC and DC

vaccination toxicity integrated with the current work will be helpful to

completely understand the impact of this therapy on the patients.

The presented approach is in line with the concern regarding the

development and application of pharmaco‐statistical models of drug

efficacy and safety from clinical data, to improve drug development

knowledge management and decision‐making (model‐informed drug

development48); moreover, when we apply therapeutic strategies in

which time effect reflects better the efficiency rather than criteria at

1 time point.24 This is an important pathway for lowering drug attri-

tion rates, and dealing with new strategies for individualising medicine.

The path exposed in this work can help us increase the potential

knowledge that can be obtained from the typically available data in

routine clinical practice.
Integrated population PK/PD/disease progression models as part

of the pharmacometric platform provide a powerful tool to predict

outcomes, so that the balance between efficacy and toxicity can be

established. This work highlights the potential benefits (such as the

quantification and identification of the vaccine effects, the establish-

ment of not that evident relationships with PFS or the estimation of

patient variability, therefore allowing individualization) of using

pharmacometric techniques as a successful and accessible aid for clin-

ical scientists in the optimization of current oncology therapies

(Figure 4). The development and application of pharmaco‐statistical

models of drug efficacy from clinical data is, therefore, a feasible and

effective tool to improve drug development knowledge management

and decision‐making.

To conclude, a semimechanistic validated modelling framework

was developed to evaluate the increased effect of DC vaccines along

with NAC on tumour shrinkage and to better understand the relation-

ship between tumour size, biomarker dynamics and PFS. The identifi-

cation and quantification of the immunotherapy effect was possible

through a modelling strategy.
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