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Abstract

The pervasive nature of perfluoroalkyl chemicals in the environment has generated considerable 

interest for developing new strategies for risk assessment. In experimental animal models, 

exposure to perfluoroalkyl chemicals can cause developmental toxicity and hepatotoxicity. 

Peroxisome proliferator-activated receptor-α (PPARα) is required to mediate some but not all of 

these effects. Since PPARα has a role in mediating some of these effects, and there is some 

overlap in the type of toxicities elicited by perfluoroalkyl chemicals, it has been suggested that a 

scaling system analogous to the toxic equivalency factor (TEF) system used for polychlorinated 

dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF), and polychlorinated biphenyls 

of species differences in the response mediated by different receptors as well as qualitative 

differences in toxicities elicited by perfluoroalkyl chemicals. These differences and other data gaps 

preclude the development of a TEF approach for perfluoroalkyl chemicals.
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INTRODUCTION

Perfluoroalkyl chemicals exhibit unique surfactant properties that led to their extensive use 

for many consumer applications including fire-fighting foam, additives in self-shine floor 

polishes, cement, lubricants, paint, gasoline, and paper, textile and leather treatments, 

waterproofing of clothing and carpets, and oil repellants in food packages.1 Two classes of 

perfluoroalkyl chemicals that are commonly measured in environmental samples are the 

perfluorinated carboxylic (PFCAs) and sulfonic acids (PFSAs), which have a fatty acid-like 

structure with a carbon backbone and covalently linked fluorine atoms and a carboxylic acid 

or sulfonic acid group at one end (Figure 1). It is important to note that perfluoroalkyl 

chemicals include both PFCAs and PFSAs that contain different acidic groups (Figure 1). 

The major commercial perfluorinated chemicals are perfluorinated sulfonamide polymers, 

which are used for stain protection in carpets and textiles, and perfluorinated sulfon-amide-

based phosphate fluorosurfactants, which are used as leveling and wetting agents and to 

greaseproof paper food packaging.2 Because of their prevalent use and persistent nature, it is 

not surprising that perfluoroalkyl chemicals have been detected in human serum.3 Since 

administration of perfluoroalkyl chemicals can cause toxicity in experimental animal 

models, including hepatic effects, tumorigenesis, developmental toxicity, and 

immunotoxicity,4–6 there remains considerable interest in determining whether exposure to 

this class of chemicals represents a health risk in humans.

Risk assessment involves both quantitative and qualitative examinations of hazards, 

including those due to the presence of chemical carcinogens, toxicants, or microbes. There 

are a number of approaches used to assess risk of different chemicals. Understanding the 
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mode of action for any chemical can be very useful for risk assessment because it provides a 

strong rationale for establishing a causal relationship between chemical exposure and a toxic 

effect. For example, exposure to d-limonene causes renal tumors in male rats through an 

interaction with α2 μ-globulin leading to hyaline droplets and sustained renal cell 

proliferation thought to drive tumor formation.7 However, since humans do not express α2 

μ-globulin or an α2 μ-globulin homologue, d-limonene-induced renal cancer is unlikely to 

occur in humans because the mode of action is not functional in the absence of α2 μ-

globulin expression.7 In addition to illustrating the importance of understanding the mode of 

action for examining relative risk for a chemical, this example also shows that species 

differences should be considered when this information is available. In recent years, 

experiments conducted with null mouse models have shown that some chemicals mediate 

their toxic effects through receptor-based modes of action. For example, the aryl 

hydrocarbon receptor (AHR) is required to mediate acute toxicity induced by 

tetracholordibenzo-p-dioxin (TCDD) as well as TCDD-induced developmental toxicity,8,9 

the constitutive androstane receptor (CAR) is required to mediate hepatotoxicity induced by 

phenobarbital,10 and PPARα is required for hepatocarcinogenesis caused by chronic 

exposure to the PPARα agonists such as Wy-14,643 and bezafibrate.11,12 Knowing that a 

class of chemicals can bind to and activate the AHR and that this class of chemicals elicited 

similar toxicity in many species contributed to the development of the toxic equivalency 

factors (TEF) as a tool to help assess the risk associated with exposure to AHR ligands.13,14

The concept of TEF currently used for polychlorinated dibenzo-p-dioxins (PCDD), 

polychlorinated dibenzofurans (PCDF), and polychlorinated biphenyls (PCB) is based on the 

prerequisite that the mechanism of action is understood. For PCDDs, PCDFs, and PCBs, it 

was recognized that the mode of action for the toxicities associated with these chemicals was 

mediated by binding to and activation of the AHR.15–17 It is implied that all molecular 

events in the mode of action following activation of the AHR are dependent on AHR 

activities. This allowed for the development of a model whereby the relative toxicity of each 

chemical was based on its relative ability to bind to and activate the AHR, by comparison 

with the standard AHR agonist TCDD.13,14 Thus, the determination of relative risk due to 

exposures to various mixtures of PCDDs, PCDFs, and/or PCBs was aided by allowing for an 

estimation of AHR activity based on the relative ability of the chemical to bind to and 

activate the AHR, which in turn modulates molecular events leading to toxicity. This model 

relies on several assumptions to justify this approach: (1) the mechanism of toxicity is 

mediated by one receptor, the AHR; (2) the class of chemicals used for TEF has to cause 

toxic responses similar to those of TCDD; and (3) there is sufficient evidence demonstrating 

that the class of chemicals produces toxic effects that are additive.13,14

While the TEF provides a common approach for aiding risk assessment for exposure to 

PCDDs, PCDFs, and PCBs, this approach also has inherent weaknesses.18,19 For example, 

additivity is not always observed for all end points for all PCDDs, PCDFs, and PCBs.19 

Moreover, the relative bioavailability and pharmacokinetics of PCDDs, PCDFs, and PCBs is 

not taken into account, there are known AHR-independent toxic effects induced by some 

chemicals that activate the AHR, and the molecular mechanisms by which AHR-mediated 

changes in gene expression cause toxicity remain unclear.18
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Recently, Scialli and colleagues performed analysis to determine whether a TEF system 

could be developed and applied for perfluoroalkyl chemicals.20 Their analysis focused on 

data from rat studies examining the toxic effect of four perfluoroalkyl chemicals, PFOA, 

PFDA, PFOS, and PFBS. While this analysis indicated that combining exposures of 

perfluoroalkyl chemicals using a TEF approach was not feasible due primarily to 

discordance in the available data sets, it was suggested that future analysis with new data 

could provide the basis for developing TEFs for perfluoroalkyl chemicals. Since the time of 

the Scialli publication,20 additional data have become available that have increased our 

knowledge, and these data likely preclude the use of TEFs for perfluoroalkyl chemicals. The 

main factors that limit the TEF approach are as follows: (1) lack of conclusive evidence 

demonstrating that a single receptor is required to mediate the toxicities of perfluoroalkyl 

chemicals; (2) the potential influence of species differences in the response to PPARα 
ligands that would significantly limit this approach; (3) inconsistent toxicities observed with 

different perfluoroalkyl chemicals; and (4) a limited toxicological database for a number of 

perfluoroalkyl chemicals (e.g., perfluorinated sulfonamide polymers and perfluorinated 

sulfonamide-based phosphate fluorosurfactants). The following sections summarize recent 

advances to illustrate these points.

IS THERE A SINGLE RECEPTOR-MEDIATED MECHANISM FOR 

PERFLUOROALKYL CHEMICAL-INDUCED TOXICITIES?

Perfluoroalkyl chemicals can cause hepatotoxicity, tumorigenesis, developmental toxicity, 

and immunotoxicity.4–6 The hypothesis that these effects are mediated by a single receptor 

(PPARα) is based primarily on four lines of evidence: (1) the changes observed in the liver 

in response to perfluoroalkyl chemicals (e.g., hepatomegaly, increased expression of lipid 

metabolizing enzymes, etc.) are similar to those observed with PPARα agonists;4,21–23 (2) 

perfluoroalkyl chemicals can activate PPARα based on reporter assays and increased 

expression of PPARα target genes;24–30 (3) PPARα is required for some perfluoroalkyl 

chemical-induced hepatic effects or developmental toxicity22,31–34 (Tables 1 and 2); and (4) 

it is known that many effects, in particular hepatocarcinogenesis, induced by PPARα 
agonists are mediated through a mechanism that requires PPARα.35,36 The evidence 

supporting the hypothesis that perfluoroalkyl chemicals cause toxicities exclusively through 

a mechanism that is mediated by PPARα alone is not strong.

Chemicals that activate PPARα typically contain a hydrophobic region that binds 

hydrophobic amino acids in the ligand binding domain of the receptor and an acidic group 

that forms hydrogen bonds with tyrosine residues in the ligand binding pocket of the 

receptor.37,38 Thus, it is not surprising that PFCAs and PFSAs activate PPARα because both 

types of perfluoroalkyl chemicals have hydrophobic and acidic regions (Figure 1). The 

structure—activity relationship between perfluoroalkyl chemicals with increasing carbon 

length and PPARα activity is of interest, but the dose—response curves do not exhibit good 

linearity.24,30 This shows that the relationship between the structure and the ability to 

activate PPARα is complicated and could be influenced by indirect effects such as the 

release of endogenous PPARα ligands due in part to the surfactant properties of 

perfluoroalkyl chemicals, which could influence receptor activity. The complexity of this 
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relationship is also nicely illustrated by the observations that whereas PFOA can activate 

PPARα at lower concentrations as compared to PFOS,28,29 the effect of developmental 

exposure to PFOS can be greater as compared to PFOA.20 This also suggests that PPARα-

independent mechanisms could mediate the developmental toxicity associated with 

perfluoroalkyl chemical exposure in experimental animal models. Indeed, this is supported 

by the studies showing that while the postnatal lethality observed in response to gestational 

exposure to PFOA or PFNA requires PPARα since postnatal lethality is only found in wild-

type and not Pparα-null mice.39,40 In contrast, postnatal lethality observed following 

gestational exposure to PFOS occurs independently of PPARα because postnatal lethality is 

found in both wild-type and Ppαrα-null mice41 (Table 1). Whether these differences in 

phenotype are due in part to structural differences between PFOA/PFNA, which are PFCAs, 

and PFOS, which is a PFSA, remains unclear. Moreover, while the postnatal lethality 

observed in response to gestational exposure to PFOA is mediated by PPARα, PFOA-

induced early full litter resorptions does not require PPARα39 (Table 1). Administration of 

PFOA has also been shown to stimulate mammary gland development in both wild-type and 

Ppαrα-null mice, indicating that mechanisms independent of PPARα are required for this 

effect.42 In addition to PPARα-independent effects observed following exposure to 

perfluoroalkyl chemicals, there is also evidence showing that perfluoroalkyl chemicals can 

elicit changes in liver that are not mediated by PPARα (Table 2). Relatively low dose 

exposure to PFOA (0.1—0.3 mg/kg) that results in serum PFOA concentrations similar to 

those found in humans, increases liver weight, and this effect is not found in mice that do not 

express PPARα.31 This is similar to the PPARα-dependent hepatomegaly observed in 

response to PFBA.22 In contrast, higher concentrations of PFOA cause hepatomegaly 

through a mechanism that does not require PPARα,32,33 an effect that is similar to that found 

following administration of PFOS.34 These observations suggest that activating PPARα and 

the subsequent pleiotropic effects that result is not the only mechanism that mediates the 

effects of perfluoroalkyl chemicals in the liver. Whether the observed differences in the 

susceptibility to the developmental and/or liver-specific effects of perfluoroalkyl chemicals 

are due in part to differences in pharma-cokinetics has not been examined extensively to 

date. The hypothesis that other mechanisms, independent of PPARα, modulate the effects 

induced by perfluoroalkyl chemicals is supported by microarray analysis and reporter gene 

assays, which revealed that in addition to PPARα, perfluoroalkyl chemicals also activate 

other transcription factors including PPARβ/δ, PPARy, CAR, and PXR24–29 (Table 3). 

Indeed, increased expression of PPARα, CAR, and PXR target genes are found in rat liver 

following treatment with PFOA, and these changes are associated with hepatomegaly and 

hepatocyte hypertrophy and hyperplasia.21 More recently, it was shown that perfluoroalkyl 

chemicals also weakly interfere with human estrogen receptor-α (ERα)43 (Table 3), 

although another study indicates that PFOA and PFOS do not activate ERα.44 Combined, 

these observations strongly suggest that the mechanism of toxic action for perfluoroalkyl 

chemicals is considerably more complicated than the hypothesis that they induce their 

effects exclusively by activating PPARα. The relative contribution of receptors other than 

PPARα to the mechanisms underlying perfluoroalkyl chemical-induced effects has not been 

examined extensively to date.
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DO SPECIES DIFFERENCES IN PPARα ACTIVITIES CONFOUND 

PREDICTION OF THE MODE OF ACTION OF PERFLUOROALKYL 

CHEMICAL-INDUCED TOXICITIES?

Many studies show that there are significant species differences in PPARα activities. PFBA, 

PFHA, PFOA, PFNA, PFDA, PFBS, PFHS, and PFOS can all activate PPARα based on 

reporter assays.24,28–30 However, in general, the concentration of perfluoroalkyl chemicals 

required to minimally activate mouse PPARα is considerably lower as compared to the 

concentration of perfluoroalkyl chemicals required to activate human PPARα.30 

Additionally, the magnitude of the response to perfluoroalkyl chemicals is generally greater 

for mouse PPARα as compared to human PPARα.30 These differences found in reporter 

assays are similar to multiple studies showing that the hepatic responses (e.g., induction of 

PPARα target genes, hyperplasia, peroxisome proliferation, etc) induced by PPARα ligands 

in rodent liver, hepatocytes, and/or liver cell lines are typically greater as compared to 

human cells (reviewed in refs 36 and 45). For example, PFOA induces expression of PPARα 
target genes in primary rat hepatocytes, but these changes are markedly attenuated in 

primary human hepatocytes or HepG2 cells cultured in medium containing PFOA.46 

PPARα-humanized mice respond to PPARα ligand by increasing the expression of lipid 

catabolizing enzymes, an effect also found in wild-type mice, but they are resistant to 

PPARα ligand-induced hepatic effects including hyperplasia and hepatocarcinogenesis.47,48, 

Studies with mice expressing the human PPARα have also provided evidence that a species 

difference in the response to perfluoroalkyl chemicals exists. Whereas PFBA increases liver 

weight, causes hepatocyte hypertrophy, and upregulates PPARα target genes in both wild-

type and PPARα-humanized mice, hepatocyte focal necrosis with inflammatory cell 

infiltrate is only found in wild-type mice but not in Ppαrα-null or PPARα-humanized mice 

treated with PFBA.22 These observations show that while PFBA can activate both mouse 

and human PPARα, there is a species difference in the hepatic effects mediated by mouse 

and human PPARα. Wild-type mice exposed to PFOA at doses (0.1 and 0.3 mg/kg) that 

cause increases in serum PFOA concentration comparable to the concentration of PFOA 

found in humans exhibit increased liver weight and increased expression of PPARα target 

genes in liver.31 Since these changes are not found in similarly treated Ppαrα-null mice or 

PPARα-humanized mice, this demonstrates that relatively low dose exposure of PFOA 

differentially activates mouse and human PPARα in a mouse model. In contrast, PFOA 

administered at higher doses (5.0 mg/kg) increases liver weight in wild-type, Ppαrα-null, 

and PPARα-humanized mice.32 This effect was found in all three genotypes, thus suggesting 

that the effects of PFOA administered at higher doses are not mediated exclusively by 

PPARα. Administration of 5 mg/kg PFOA activated both mouse and human PPARα as 

shown by the increased expression of fatty acid catabolizing enzymes, but evidence that the 

effects of PFOA in the liver were differentially affected by either the mouse or human 

PPARα was also observed. For example, increased presence of lobular inflammatory cells 

and macrovesicular steatosis in liver was not found in either PFOA-treated wild-type or 

PPARα-humanized mice but was noted in PFOA-treated Ppαrα-null mice.32 An increased 

incidence of hepatic microvesicular steatosis was only found in PPARα-humanized mice 

administered PFOA, but this effect was not observed in either wild-type or Ppαrα-null mice 
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exposed to PFOA.32 Moreover, hydropic degeneration was observed in Ppαrα-null mice and 

PPARα-humanized mice treated with PFOA but not in wild-type mice.32 Combined, 

exposure to relatively low doses of PFOA can elicit some hepatic effects in wild-type but not 

Ppαrα-null or PPARα-humanized mice, thus supporting the notion that there are differences 

in the effects modulated by mouse or human PPARα. However, the diversity in phenotypes 

observed in response to higher dose exposure to PFOA also suggests that the presence of 

mouse or human PPARα can each differentially modulate the hepatic effects induced by 

PFOA in mice. Indeed, in response to PFOA administration, relatively unique phenotypes 

were found in mice expressing endogenous PPARα, mice lacking expression of endogenous 

PPARα, and PPARα-humanized mice that lack expression of mouse PPARα but express the 

human PPARα. This demonstrates the complexity in the mode of action for at least one 

perfluoroalkyl chemical, PFOA, and suggests that the ability to predict the risk of PFOA-

dependent toxicity in humans using data from animal studies is not likely feasible if it is 

assumed that both mouse and human PPARα mediate similar biological outcomes.

QUALITATIVE DIFFERENCES IN TOXICITIES INDICATE MULTIPLE MODES 

OF ACTION FOR PERFLUOROALKYL CHEMICAL-INDUCED TOXICITIES

Despite evidence indicating that perfluoroalkyl chemicals elicit toxicity, at least in part, 

through activation of PPARα, there is also qualitative evidence indicating that other modes 

of action are likely involved in mediating perfluoroalkyl chemical-induced toxicities (Table 

4). For example, chronic administration of PFOA causes hepatocellular adenomas, 

pancreatic acinar cell adenomas, and Leydig cell adenomas in rats, a phenomenon termed 

the “tumor triad”.49 The tumor triad is also found with other PPARα agonists, thus 

supporting the notion that PPARα could mediate these effects.45 However, while an increase 

in the incidence of hepatocellular adenomas is observed following chronic administration of 

another perfluoroalkyl chemical, PFOS, no significant dose-related changes in the incidence 

of Leydig cell tumors or pancreatic acinar cell tumors were found.50 Qualitative differences 

in toxicity following exposure to perfluoroalkyl chemicals have also been observed for other 

end points. Whereas developmental exposure to PFBA in mice does not cause neonatal 

lethality, developmental exposure to PFOA, PFOS, or PFNA causes neonatal lethality in 

mice (Table 4). Similarly, while administration of PFBS to rats can cause alterations in the 

kidney, this pathology is not found in rats administered PFBA or PFHA (Table 4). 

Administration of PFOS causes a marked decrease in serum cholesterol concentration in 

nonhuman primates, but these changes are not found in this species following administration 

of PFOA (Table 4). In addition to qualitative differences in the type of toxicities observed in 

response to exposure to different perfluoroalkyl chemicals, qualitative differences in some 

end points can also be highly variable in different strains of rodents within species when 

administered the same perfluoroalkyl chemical. For example, PFOA inhibits mammary 

gland development in CD1, Balb/c, and C57BL/6 mice but enhances mammary gland 

development in C57BL/6 mice at lower doses (Table 4). Qualitative differences in the 

response to perfluoroalkyl chemicals have also been noted with in vitro studies.51 While 

secretion of estradiolor progesterone by human adrenocortical H295R carcinoma cells is 

increased following exposure to PFOS, secretion of estradiol and progesterone by H295R 

cells is unchanged following treatment with either PFOA or PFNA (Table 4). Further, 
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secretion of testosterone by H295R cells is increased in response to PFOS and PFOA, 

whereas secretion of testosterone by H295R cells is decreased in response to PFNA (Table 

4). Combined, while some of these qualitative differences could be influenced by structural 

differences between PFCAs and PFSAs, or differences in pharmacokinetics, it is clear that 

there is marked diversity in the types of alterations induced by individual perfluoroalkyl 

chemicals.

LIMITED TOXICOLOGICAL DATABASE OF COMMERCIALLY USED 

PERFLUOROALKYL CHEMICALS

The predominant commercially used perfluoroalkyl chemicals are perfluorinated 

sulfonamide polymers used for stain protection in carpets and textiles and perfluorinated 

sulfonamide-based phosphate fluorosurfactants used as leveling and wetting agents and to 

greaseproof paper food packaging.2 Recent evidence suggests that both direct and indirect 

exposure to perfluorinated sulfonamide polymers and/or perfluorinated sulfonamide-based 

phosphate fluorosurfactants represent significant sources of human contamination.2 

However, while these compounds are an important exposure source, it is currently unknown 

whether perfluorinated sulfonamide polymers and/or perfluorinated sulfonamide-based 

phosphate fluorosurfactants are capable of activating PPARα or other nuclear receptors. 

Moreover, while there are relatively large toxicological databases for many PFCAs and 

PFSAs, comparative studies examining relative exposure and the effects of perfluorinated 

sulfonamide polymers and/or perfluorinated sulfonamide-based phosphate fluorosurfactants 

is lacking. Thus, even if a TEF approach could be developed for PFCAs and PFSAs, the lack 

of comparative databases for perfluorinated sulfonamide polymers and/or perfluorinated 

sulfonamide-based phosphate fluorosurfactants limits the suitability of TEFs for the broader 

class of perfluoroalkyl chemicals.

DISCUSSION

There are three assumptions used to help justify the use of TEFs for risk assessment: (1) the 

mechanism of toxicity is mediated by one receptor; (2) the class of chemicals used for TEF 

has to cause toxic responses similar to those of a model compound of this class; and (3) 

there is sufficient evidence demonstrating that the class of chemicals produces toxic effects 

that are additive.13,14 While the TEF approach has been used for risk assessment for 

exposure to PCDDs, PCDFs, and PCBs, there are inherent deficiencies in interpretation.18,19 

Previous analysis by others demonstrated that TEFs were not suitable for risk assessment of 

four perfluoroalkyl chemicals, PFOA, PFDA, PFOS, and PFBS, due primarily to 

discordance in the available data sets.20 However, it was also suggested that future analysis 

with new data could provide the basis for developing TEFs for perfluoroalkyl chemicals.20 

Since this time, it has become increasingly clear that TEFs are not likely suitable for the risk 

assessment of perfluoroalkyl chemicals for a number of critical reasons (Figure 2).

There is now compelling evidence that the toxicities induced by perfluoroalkyl chemicals 

are not mediated by a single receptor. While the PPARα modulates the gene expression 

profiles and the observed hepatic changes in response to some perfluoroalkyl chemicals, 

there are other receptors in the liver that can also be activated by these agents including CAR 

Peters and Gonzalez Page 8

Chem Res Toxicol. Author manuscript; available in PMC 2019 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and PXR that could influence the resulting effects. In extra-hepatic tissues, the evidence that 

PPARα is the sole receptor that mediates toxicological events induced by perfluoroalkyl 

chemicals is not convincing. In fact, enhanced mammary gland development caused by 

PFOA does not require PPARα.42 More studies are needed using other null mouse models 

including compound null mouse models to more conclusively determine the relative role of 

multiple receptors in the mode of action for perfluoroalkyl chemical toxicities. However, 

given the likelihood that more than one receptor is involved in mediating the effects of 

perfluoroalkyl chemicals in different tissues, this caveat significantly limits the suitability of 

TEFs for risk assessment purposes. This is also complicated by the fact that there can be 

significant species differences in receptor biology including potential tissue differences in 

coactivators recruited and/or corepressors dissociated from the receptor complexes following 

ligand activation or potential differences in target genes for any given nuclear receptor. This 

is particularly true for PPARα and CAR where it is recognized that significant species 

difference in receptor function exists, in ligand binding and biological effects. If one or more 

nuclear receptors were found to have essential roles in modulating effects induced by 

perfluoroalkyl chemicals, additional studies would still be necessary to determine whether 

there is a species difference in receptor biology. For this reason, the use of humanized mice 

and/or complementary analysis of rodent versus human cells types would be of great benefit.

The second limiting factor that precludes developing TEFs for perfluoroalkyl chemical risk 

assessment is the discordance in toxicities resulting from exposure. For example, PFOA can 

activate PPARα at lower concentrations as compared to PFOS,28,29 but the effect of 

developmental exposure to PFOS can be greater as compared to PFOA.20 Additionally, there 

are many examples where one perfluoroalkyl chemical causes a specific effect, while other 

perfluoroalkyl chemicals do not (Table 4). Moreover, in some cases the same perfluoroalkyl 

chemical can cause different effects depending on the species, strain, or substrain used. For 

example, PFOA can either inhibit or enhance mammary gland development in C57BL/6 

mice.52 Some of these differences could be related to marked differences in the 

pharmacokinetics of perfluoroalkyl chemicals.53–57 The discordant nature of effects elicited 

by perfluoroalkyl chemicals further confounds the identification of a model perfluoroalkyl 

chemical to form the basis of an equivalency factor to establish TEFs. For the AHR, TCDD 

is the chemical of choice because it causes toxicity at lower concentrations and with greater 

efficacy than other chemicals in the class of AHR activators. For perfluoroalkyl chemicals, 

the identity of a chemical that could be used for this purpose has yet to be determined. Given 

the discordance in effects resulting from perfluoroalkyl chemical exposure, this may not be 

feasible.

The third limiting factor that precludes the development of TEFs for perfluoroalkyl chemical 

risk assessment is the lack of evidence demonstrating additivity of the effects induced by this 

class of chemicals. One major limitation in this data gap is the fact that the effects of 

perfluoroalkyl chemicals are unlikely to be mediated by a single receptor. Since the TEF 

model is based on the notion that only one receptor mediates the effects of a class of 

chemical, and it is clear that the biological effects of perfluoroalkyl chemicals are mediated 

by more than one receptor, additivity may be extremely difficult, if not impossible, to 

establish due to the complicated mode(s) of action. For example, while low dose exposure to 

perfluoroalkyl chemicals induces changes that appear to be mediated by PPARα, higher 
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doses of perfluoroalkyl chemicals can also activate other receptors such as CAR and PXR. 

Since the activity of CAR can significantly inhibit PPARα activity,58 this type of interaction 

could make it very difficult to establish an additive effect for perfluoroalkyl chemicals.

The fourth and final limiting factor that precludes the development of TEFs for 

perfluoroalkyl chemical risk assessment is the lack of a comprehensive toxicological 

database on exposure and effects of perfluorinated sulfonamide polymers and/or 

perfluorinated sulfonamide-based phosphate fluorosurfactants. These perfluorinated 

chemicals may represent a significant source of human exposure, and as compared to PFCAs 

or PFSAs, considerably less is known about the toxicities induced by these chemicals. Thus, 

it would be difficult to establish similarities in toxicities, a prerequisite for establishing 

TEFs. Further, whether these chemicals or the metabolites derived from these chemicals can 

activate PPARα or other nuclear receptors is also unclear. Moreover, whether a single 

receptor mediates the toxicities induced by perfluorinated sulfonamide polymers and/or 

perfluorinated sulfonamide-based phosphate fluorosurfactants has not been examined to 

date.

Combined, there are at least four facts that diminish the feasibility of the development of 

TEFs for perfluoroalkyl chemical risk assessment including the following: (1) the effects of 

perfluoroalkyl chemicals are modulated by more than one receptor, (2) the discordant nature 

of the effects induced by perfluoroalkyl chemicals, (3) the lack of data demonstrating 

additivity of effects by this class of chemicals, and (4) the lack of a strong toxicological 

database for commonly used commercial perfluoroalkyl chemicals. There are also inherent 

limitations for TEFs that exist including the following: (1) they ignore the issue of 

bioavailability/pharmacokinetics, (2) there is an incomplete understanding of the target 

genes that mediate toxicity, (3) the potential influence of species differences that could be 

modulated by differences in expression patterns of receptor coactivators/corepressors, 

receptor function, (4) the potential for nonadditive effects, and (5) the uncertain influence of 

endogenous chemicals that may interact with receptors that mediate the effects for this class 

of chemicals.18,19 While a TEF approach might theoretically be developed for application 

with a smaller, select group of perfluoroalkyl chemicals, this would still require 

identification of a single receptor that mediates the relevant changes to the most sensitive 

biological end point, and all of the aforementioned limitations would have to be controlled 

for. This is currently not feasible and would not be a trivial avenue of investigation to pursue. 

Given these major limitations pertaining to both perfluoroalkyl chemicals and/or TEFs, the 

development of TEFs for the broad class of perfluoroalkyl chemicals is likely unsuitable.
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ABBREVIATIONS

AHR aryl hydrocarbon receptor

CAR constitutive androstane receptor
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ER estrogen receptor

PCB polychlorinated biphenyls

PCDD polychlorinated dibenzo-p-dioxins

PCDF polychlorinated dibenzofurans

PFBA perfluorobutanoic acid

PFBS perfluorobutane sulfonic acid

PFDA perfluorodecanoic acid

PFHA perfluorohexanoic acid

PFHS perfluorohexane sulfonic acid

PFNA perfluorononanoic acid

PFOA perfluorooctanoic acid

PFOS perfluorooctane sulfonic acid

PPAR peroxisome proliferator-activated receptor-α

PXR pregnane X receptor

TCDD tetracholordibenzo-p-dioxin

TEF toxic equivalency factor
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Figure 1. 
Chemical structures of representative perfluorinated carboxylic and sulfonic acids. Anionic 

forms are shown to reflect physiological speciation.
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Figure 2. 
Contrasting the logic of TEFs for PCDDs, PCDFs, and PCBs versus TEFs for perfluoroalkyl 

chemicals. (A) PCDDs, PCDFs, and PCBs all bind to and activate the AHR, which is 

required to mediate the primary toxic effects induced by these classes of chemicals. The 

relative toxic equivalency factor for each chemical is calculated relative to the reference 

chemical, TCDD, and used to estimate relative risk because of assumed additivity in effects. 

The TEFs listed are simply examples, except that for TCDD, which is always 1. (B) 

Perfluoroalkyl chemicals (PFCs) can activate PPARα, but they also interact with other 

nuclear receptors that may or may not mediate effects induced by this class of chemicals 

(e.g., CAR, PXR, PPARβ/δ, PPARy, ERα, etc.). Because more than one receptor could 

mediate the effects induced by PFCs, development of a TEF approach does not appear 

suitable. Moreover, because of discordance in the available data, it is not feasible to establish 

a reference chemical to estimate a toxic equivalency factors.
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Table 1.

Role of PPARα in Modulating Developmental Effects Induced by Perfluoroalkyl Acids in Mice

compd dose (mg/kg) PPARα-dependent effect? PPARα-independent effect? refs

PFOA (C8) 0.1–20.0 yes (neonatal lethality) yes (full litter resorption) 39

PFNA (C9) 0.83–2.0 yes (neonatal lethality) no 40

PFOS (C8) 4.5–10.5 no yes (neonatal lethality) 41
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Table 2.

Role of PPARα in Modulating Hepatic Effects Induced by Perfluoroalkyl Acids in Mice

Compd dose (mg/kg) PPARα-dependent? refs

PFBA (C4) 35–350 yes 22

PFOA (C8) 0.1–0.3 yes 31

PFOA (C8) 1.0–5.0 no 32

PFOA (C8) 1.0–10.0 no 33

PFOS (C8) 10–40 no 34
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Table 3.

Perfluoroalkyl Acids Interact with/Activate Mouse or Human Nuclear Receptors
a

Compd pparα PPARβ/δ PPARγ CAR PXR ERα refs

PFBA (C4) yes ND ND ND ND ND 30

PFHA (C6) yes ND ND ND ND ND 30

PFOA (C8) yes yes yes yes yes yes 24–30,43

PFNA (C9) yes ND ND ND ND yes 30,43

PFDA (C10) yes ND ND yes ND yes 25,30,43

PFBS (C4) yes ND ND ND ND ND 30

PFHS (C6) yes ND ND ND ND ND 30

PFOS (C8) yes yes yes yes yes yes 28–30,43,59

a
On the basis of the analysis using reporter assays, gene expression profiles, confirmation in null mouse models and/or in silica modeling. yes = 

evidence of interaction/activation; ND = not determined to date.
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